# Lecture 31: Section 4.8 <br> Applications and Models 

Solving right triangles
Navigational bearings

Solving Right Triangles
To solve a right triangle means to find the missing lengths of its sides and measurements of its angles.


$$
a^{2}+b^{2}=c^{2} ; A+B=90^{\circ}
$$

ex. Solve the triangle.
1)


$$
\begin{aligned}
& \frac{A D J}{A Y P}=\cos \left(40^{\circ}\right) \\
& \frac{2}{C}=\cos \left(40^{\circ}\right) \\
& C=\frac{2}{\cos \left(40^{\circ}\right)}=2.61
\end{aligned}
$$

$$
\begin{array}{r}
A+B=90^{\circ} \\
40^{\circ}+B=90^{\circ} \\
B=50^{\circ}
\end{array}
$$

$$
\frac{O P P}{\tan }=\tan \left(40^{\circ}\right)
$$

$$
\frac{4}{2}=\tan \left(40^{\circ}\right)
$$

L31-2

$$
a=2 \tan \left(40^{\circ}\right) \approx 1.68
$$


ex. A $40-\mathrm{ft}$ ladder leans against a building. If the base of the ladder is 6 ft from the base of the building. What is the angle formed by the ladder and the building?


$$
\frac{O P P}{H Y P}=\sin (\theta)
$$

ex. A woman standing on a hill sees a flagpole that she knows is 60 ft tall. The angle of depression to the bottom of the pole is $14^{\circ}$, and the angle of elevation to the top of the pole is $18^{\circ}$. Find her distance $x$ to the pole.


TOP $\Delta$ :

$$
\begin{aligned}
& \frac{O P P}{A D J}=\tan \left(18^{\circ}\right) \\
& \frac{h_{2}}{x}=\tan \left(18^{\circ}\right) \\
& h_{1}+h_{2}=60 \\
& \Rightarrow h_{2}=x \tan \left(18^{\circ}\right) \\
& x \tan \left(14^{\circ}\right)+x \tan \left(18^{\circ}\right)=60 \\
& \text { BOTTOM } \Delta \text { : } \\
& \frac{O P P}{A D J}=\tan \left(14^{\circ}\right) \\
& \frac{h_{1}}{x}=\tan \left(14^{\circ}\right) \\
& x\left(\tan \left(14^{\circ}\right)+\tan \left(18^{\circ}\right)\right)=60 \\
& x=\frac{60}{\tan \left(14^{\circ}\right)+\tan \left(18^{\circ}\right)} \\
& x \approx 104 \mathrm{FT} \text {. } \\
& \Rightarrow h_{1}=x \tan \left(14^{\circ}\right)
\end{aligned}
$$

ex. A state trooper is hidden 30 ft from a highway. One second after a truck passes, the angle between the highway and the line of observation from the patrol car to the truck is measured.


1) If the angle measures $15^{\circ}$, how fast is the truck traveling? Express the answer in feet per second and

$$
\begin{aligned}
& \text { in miles per hour. } \\
& \begin{array}{l}
\text { LET } d=\operatorname{DISTANLE} \text { TRAVELED IN SEC } \left\lvert\, \quad \frac{112 \text { FT }}{1 \text { SEC }} \cdot \frac{1 \text { MI }}{5280 F T} \cdot \frac{36003 E C .}{1 H R} .\right. \\
\frac{\text { OPP }}{10 J}=\tan \left(15^{\circ}\right)
\end{array} \\
& \frac{O P P}{A D J}=\tan \left(15^{\circ}\right) \\
& \frac{30}{d}=\tan \left(15^{\circ}\right) \Rightarrow d=\frac{30}{\tan \left(15^{\circ}\right)}=112 \text { FT } / \text { EEC } \\
& \begin{array}{l}
=\frac{112.3600 \mathrm{ml}}{5280 \mathrm{HR}} \\
\approx 76 \mathrm{ml} / \mathrm{HR}
\end{array}
\end{aligned}
$$

2) If the speed limit is 55 miles per hour and a speeding ticket is issued for speeds of 5 miles per hour or more over the limit, for what angles should the trooper issue a ticket?
(1.) NEED TO KNOW \# OF FEET TRAVELED IN ISEC GOING 60 mPH $\frac{60 \mathrm{MII}}{1 \mathrm{HEL}} \cdot \frac{5280 \mathrm{FT}}{1 \mathrm{MI}} \cdot \frac{1 \mathrm{HFE}}{3600 \mathrm{SEC}}=\frac{60 \cdot 5280}{3600} \mathrm{FT} / \mathrm{SEC} \approx 88 \mathrm{FT} / \mathrm{SEC}$
6.) FInd the angle associated with the triangle



ALTERNATE
interior ankles are congruent
ex. An airplane is flying at an elevation of 5000 ft , directly above a straight highway. Two motorists are driving cars on the highway on opposite sides of the plane, and the angle of depression to one car is $35^{\circ}$ and to the other is $52^{\circ}$. How far apart are the cars?


FIND $x+y$

$$
\begin{aligned}
\tan \left(35^{\circ}\right)=\frac{5000}{x} \Rightarrow x=\frac{5000}{\tan \left(35^{\circ}\right)}
\end{aligned} \begin{aligned}
& \tan \left(52^{\circ}\right)=\frac{5000}{y} \Rightarrow x+y=\frac{5000}{\tan \left(35^{\circ}\right)}+\frac{5000}{\tan \left(52^{\circ}\right)} \\
&=\begin{array}{l}
\tan \left(52^{\circ}\right)
\end{array} \\
& x+y \approx 3906 \mathrm{~F}+7141 \mathrm{FT} \\
& \approx 2 \mathrm{ml} .
\end{aligned}
$$

Checkpoint: Lecture 31, problem 2
ex. If both cars in the previous example are on the side of the plane and if the angle of depression to one car is $35^{\circ}$ and to the other is $52^{\circ}$, how far apart are the cars?


FIND $y-x$

$$
\begin{aligned}
& \tan \left(52^{\circ}\right)=\frac{5000}{x} \\
& x=\frac{5000}{\tan \left(52^{\circ}\right)} \\
& \tan \left(35^{\circ}\right)=\frac{5000}{y} \\
& \Rightarrow y-x=\frac{5000}{\tan \left(35^{\circ}\right)}-\frac{5000}{\tan \left(52^{\circ}\right)} \\
& y=\frac{5000}{\tan \left(35^{\circ}\right)} \\
& \approx \frac{1}{2} M I
\end{aligned}
$$

Checkpoint: Lecture 31, problem 3

