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1. Integration(Revision)

1.1. u-Substitutions. Evaluate the following definite integrals.∫
(x2 − 3)3.2x dx∫

x√
x− 1

dx

1.2. Integration by Parts. Evaluate the following definite integrals.∫
xe2x dx∫

x2 sinx dx

1.3. Trigonometric Integrals. Problem-Solving Strategy: Integrating Products and Powers
of sin x and cos x ∫

cosj x sink x dx

To find the above integral, use the following strategies.

(1) If k is odd, rewrite sink x = sink−1 sinx and use the identity sin2 x = 1− cos2 x to rewrite
sink−1 x in terms of cosx. Integrate using the substitution u = cosx.

(2) If j is odd, rewrite cosj x = cosj−1 cosx and use the identity cos2 x = 1− sin2 x to rewrite
cosj−1 x in terms of sin x. Integrate using the substitution u = sinx. (Note: If both j
and k are odd, either strategy 1 or strategy 2 may be used.)

(3) If both j, k are even, then use the formulas sin2 x = 1
2
− 1

2
cos 2x and cos2 x = 1

2
+ 1

2
cos 2x.

After applying these formulas, simplify and reapply strategies 1 through 3 as appropriate.

Evaluate the following definite integrals.∫
cos8 x sin5 x dx∫
cos4 x sin4 x dx
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Lecture 3

The Dot Product
Given ~u =< u1, u2, u3 > and ~v =< v1, v2, v3 >, the dot product ~u.~v is defined by

~u.~v = u1v1 + u2v2 + u3v3.

Properties of the Dot Product.

(1) ~u.~u = u1
2 + u2

2 + u3
2 = |~u|2

(2) ~u.~v = ~v.~u
(3) ~u.(~v + ~w) = ~u.~v + ~u.~w
(4) (~v + ~w).~u = ~v.~u+ ~w.~u
(5) c(~u.~v) = (c~u).~v = ~u.(c~v)

(6) ~0.~u = ~0

.
Theorem:
If θ is the angle between the nonzero vectors ~u and ~v, then

~u.~v = |~u||~v| cos θ, or

cos θ =
~u.~v

|~u||~v|
.

Corollary:
The angle θ(0 ≤ θ ≤ π) between two nonzero vectors ~u and ~v is given by

θ = arccos

(
~u.~v

|~u||~v|

)
Notes:

(1) Two nonzero vectors are orthogonal if the angle between them is θ = π
2
.

(2) Two nonzero vectors ~u and ~v are orthogonal if and only if ~u.~v = 0.

(3) The zero vector ~0 is orthogonal to all other vectors.

Orthogonal Projections.

Scalar projection of ~u onto ~v.

comp~v~u = |~u| cos θ =
~u.~v

|~v|
Vector projection of ~u onto ~v.

proj~v~u = |~u| cos θ
~v

|~v|
=

(
|~u| ~u.~v
|~u||~v|

)
~v

|~v|

=

(
~u.~v

|~v|

)
~v

|~v|

Work Done. Suppose a constant force ~F is applied to an object resulting in displacement ~D.
If θ is the angle between ~F and ~D, then the work done by the force is given by

W = (|~F | cos θ)| ~D| = ~F . ~D
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The Cross Product. Given two vectors ~u = 〈u1, u2, u3〉 and ~v = 〈v1, v2, v3〉, the cross product
~u× ~v is given by

~u× ~v =

∣∣∣∣∣∣
î ĵ k̂
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
Note:
In general, (~u× ~v)× ~w 6= ~u× (~v × ~w).

Theorem 1:
The vector ~u× ~v is orthogonal to both ~u and ~v.

Theorem 2:
If θ is the angle between two nonzero vectors ~u and ~v, then

|~u× ~v| = |~u||~v| sin θ.
Corollary 3:
two nonzero vectors ~u and ~v are parallel if and only if ~u× ~v = ~0.

Note:
The area of a parallelogram determined by the vector ~a and ~b is given by A = |~u× ~v|.

Properties of the Cross Product.

(1) ~u× ~v = −~v × ~u
(2) ~u× ~u = ~0
(3) (c~u)× ~v = c(~u× ~v) = ~u× (c~v)
(4) ~u× (~v + ~w) = ~u× ~v + ~u× ~w
(5) (~u+ ~v)× ~w = ~u× ~w + ~v × ~w
(6) ~u.(~v × ~w) = (~u× ~v). ~w

.
Note:
The cross product is not associative. i.e., In general, (~u× ~v)× ~w 6= ~u× (~v × ~w).

Triple Product. The product ~a.(~b × ~c) that occurs in Property 6 above is called the scalar

triple product of the vectors ~a,~b and ~c. We can write the scalar triple product as a determinant:

~a.(~b× ~c) =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
Note:
The geometric significance of the scalar triple product can be seen by considering the paral-

lelepiped determined by the vectors ~a,~b and ~c. The volume of the parallelepiped is

V = ~a.(~b× ~c).
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Lines in Space. A line L in three-dimensional space is determined when we know a point
P (x0, y0, z0) on L, and a vector ~v that is parallel to the line. If P (x, y, z) is an arbitrary point
on the line, the vector equation of the line L is given by

~r = ~r0 + t~v

,where ~r and ~r0 are position vectors of P and P0 respectively.

If the vector ~v is given by ~v = 〈a, b, c〉, the above equation becomes

〈x, y, z〉 = 〈x0, y0, z0〉+ t〈a, b, c〉.

The parametric equation for the line L.

x = x0 + at , y = y0 + bt , z = z0 + ct.

The symmetric equation for the line L.

t =
x− x0
a

=
y − y0
b

=
z − z0
c

.

Planes. A plane in space is determined by a point P (x0, y0, z0) in the plane and a vector ~n that
is orthogonal to the plane. If P (x, y, z) is an arbitrary point on the plane.

Vector equation of the plane.
(~r − ~r0).~n = 0.

〈x− x0, y − y0, z − z0〉.〈a, b, c〉 = 0

Scalar equation of the plane.

a(x− x0) + b(y − y0) + c(z − z0) = 0.

ax+ by + cz + d = 0.

Definition Two planes are said to be parallel if their normal vectors are parallel (i.e., ~n1 = t ~n2.)
Two planes are said to be orthogonal if their normal vectors are orthogonal(i.e., ~n1. ~n2 = 0.) If
two planes are not parallel, then they intersect in a straight line and the angle between the two
planes is defined as the acute angle between their normal vectors.

Distances. The distance from point P1(x1, y1, z1) to the plane ax+ by+ cz + d = 0 is given by

D =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
.



Problems

(1) Find the angle between a diagonal of a cube and one of it’s edges.
(2) Find the area of the parallelogram with the vertices A(−3, 0), B(−1, 6), C(9, 5) and

D(7,−1).
(3) True or False

(a) (~u× ~u).~u = 0

(b) If ~u× ~v = ~u× ~w and ~u 6= ~0, then ~v = ~w.
(4) Find the parametric equation and symmetric equation for the line of intersection of the

planes x+ 2y + 2z = 5 and −x− 2y + z = 1.
(5) Find the distance from the point (1, 0,−1) to the line x = −1 + t, y = 1 + t, z = t.
(6) Find an equation of the plane that passes through the line of intersection of the planes

x− z = 1 and y + 2z = 3 and is perpendicular to the plane x+ y − 2z = 1.
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Lecture 6

Cylinders. Given a curve C in a plane P, and a line L not in the plane P, a cylinder is the
surface consisting of all lines parallel to L and passing through C.

Review of Conic Sections.

y = x2 Parabola

x2

a2
+
y2

b2
= 1 Ellipse

x2

a2
− y2

b2
= 1 Hyperbola

Surfaces in 3D. The graph of a 3-variable equation which can be written in the form F (x, y, z) =
0 or z = f(x, y) is a surface in 3D.

Quadratic Surfaces. A quadratic surface is a 3D surface whose equation is of the second
degree. The general equation is

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0,

given that
A2 +B2 + C2 +D2 + E2 + F 2 6= 0.

Basic Quadratic Surfaces.

x2

a2
+
y2

b2
+
z2

c2
= 1 Ellipsoid

x2

a2
+
y2

b2
− z2

c2
= 1 Hyperboloid of One Sheet

−x
2

a2
− y2

b2
+
z2

c2
= 1 Hyperboloid of Two Sheets

x2

a2
+
y2

b2
− z2

c2
= 0 Elliptic Cone

x2

a2
+
y2

b2
= z Elliptic Paraboloid

y2

b2
− x2

a2
= z Hyperbolic Paraboloid
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Vector Valued Functions. A vector valued function is a function of the form

~r(t) =< f(t), g(t), h(t) >,

where the component functions f(t), g(t), h(t) are real-valued functions of the parameter t.

Space Curves. A space curve C is the set of all ordered triplets (f(t), g(t), h(t)) together with
their defining parametric equations

x = f(t), y = g(t), z = h(t).

Limits. The limit of the vector valued function ~r(t) =< f(t), g(t), h(t) > is defined as

lim
t→a

~r(t) =< lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t) >

given that the limits of the component functions exist.

Continuity. A vector valued function ~r(t) is continuous at a if

lim
t→a

~r(t) = ~r(a).

Derivatives. The derivative ~r′ of the vector valued function ~r(t) is defined by

d~r

dt
= ~r′(t) = lim

h→0

~r(t+ h)− ~r(t)
h

.

Note: ~r′(t) gives the rate of change of the function ~r(t) at t = a.

Unit Tangent Vector. We define the ’unit tangent vector’ to the curve ~r(t) by

T̂ (t) =
~r′(t)

|~r′(t)|
.

Differentiation Rules. Differentiation rules for vector valued functions work the way you
think they do! Please refer to Lecture Notes for formulas.

Integrals. An antiderivative of the vector function ~r(t) =< f(t), g(t), h(t) > is a function
~R(t) =< F (t), G(t), H(t) > such that

~R′(t) = ~r(t).

The indefinite integral of ~r(t) is defined by∫
~r(t)dt = ~R(t) + ~C.

The definite integral of ~r(t) over [a, b] is defined by∫ b

a

~r(t)dt = ~R(b)− ~R(a).
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Arc Length. Consider a curve ~r(t) =< f(t), g(t), h(t) > , a ≤ t ≤ b, where f ′, g′ and h′ are
continuous. If the curve is traversed exactly once as t increases from a to b, then its length is

L =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2dt =

∫ b

a

|~r′(t)|

Arc Length Function. Suppose C is a piecewise smooth curve given by a vector-valued func-
tion ~r(t) =< f(t), g(t), h(t) >, a ≤ t ≤ b. The arc length functions is defined by

s(t) =

∫ t

a

|~r′(u)|du.

The fundamental theorem of calculus tells us that s is a differentiable function of t and
ds

dt
= |~r′(t)|.

Curvature. The curvature of a curve is defined by

κ =

∣∣∣∣∣dT̂ds
∣∣∣∣∣ .

We use the following two formulas to calculate the curvature.

κ(t) =
|T̂ (t)|
|~r′(t)|

κ(t) =
|~r′(t)× ~r′′(t)|
|~r′(t)|3



Problems.

(1) If r(t) =< ln(2t), t, t2 >, find the following.

(a) ~r′(t).

(b) ~r′′(t).

(c) |~r′(t)× ~r′′(t)|.
(d) T̂ (t).

(e) T̂ (1).
(f) The curvature of the curve r(t) =< ln(2t), t, t2 >.

(2) Find the length of the curve r(t) =< 2t, t2, 1
3
t2 >, 0 ≤ t ≤ 1.

(3) Find the unit tangent vector T̂ (t), and the unit normal vector ~N(t) of the curve r(t) =<
3 cos(t), 3 sin(t), 6 > at the point P ( 3√

2
, 3√

2
, 6).

(4) Find an equation for the surface consisting of all points that are equidistant from the
point (2, 0, 0) and the plane x = −2.

(5) Find the limit

lim
t→0

〈
3et − 3

t
,

√
t+ 9− 3

t
,

2

t+ 1

〉
.
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Limits. Intuitively, lim(x,y)→(a,b) f(x, y) = L means that as (x, y) gets very close to (a, b), f(x, y)
gets very close to L.

Strategy for Evaluating Limits. Limits can be a little daunting because there are many
things you can try. My advice is to follow the steps below. Step (1) should always be your first,
and step (5) should probably be your last. The rest can be done in any order:

1) Check for continuity at (a, b). If f(x, y) is continuous at (a, b), then lim(x,y)→(a,b) f(x, y) =
f(a, b). Practically, in most cases this means that if f(x, y) is NOT a piecewise function and
there is no problem with plugging in (a, b), then the limit is f(a, b).

2) Convert to polar coordinates. Only works if (x, y) approaches zero. Then you can con-
vert the limit to limr→0 f(r cos(θ), r sin(θ)). Don’t forget that x2 + y2 = r2. You may or may
not have to use the Squeeze Theorem to finish.

3) Try algebraic manipulations. Try factoring, rationalizing denominator, or simplifying in
some way.

4) Approach (a, b) along various paths. If f(x, y) approaches different things (or nothing)
as (x, y) → (a, b) along various paths, then the limit doesn’t exist. For the moment, assume
(a, b) = (0, 0). The paths you should use are:

(1) Along the x-axis. In this case y is always zero, so the limit becomes limx→0 f(x, 0).
(2) Along the y-axis. In this case x is always zero, so the limit becomes limy→0 f(0, y).
(3) Along the line y = mx, where m is a constant. The limit becomes limx→0 f(x,mx).
(4) Along the parabola y = cx2, or along the parabola x = cy2, where c is a constant. The limit
becomes limx→0 f(x, cx2) in the first case, and limy→0 f(cy2, y) in the second case.

For general (a, b), you can transform the paths above from going through (0, 0) to going through
(a, b). The corresponding limits are
(1)′ limx→a f(x, b)
(2)′ limy→b f(a, y)
(3)′ limx→a f(x,m(x− a) + b)
(4)′ limx→a f(x, c(x− a)2 + b) or limy→b f(c(y − b)2 + a, y)

5) Use the Squeeze Theorem. If you can find two functions g(x, y), h(x, y) that squeeze
f(x, y) (that is, g(x, y) ≤ f(x, y) ≤ h(x, y)) and L = lim(x,y)→(a,b) g(x, y) = lim(x,y)→(a,b) h(x, y),
you can conclude that lim(x,y)→(a,b) f(x, y) = L.



Continuity. As I already alluded to, f(x, y) is continuous at (a, b) means that lim(x,y)→(a,b) f(x, y)
exists and equals f(a, b).

Exercises

1) Find the domain and range of f(x, y) = ln(x) + ln(y − 1).

2) lim
(x,y)→(0,0)

x2 + y2

x2 + 2xy + 5

3) lim
(x,y)→(0,0)

x2 − y2

x2 + y2

4) lim
(x,y)→(0,0)

x− y√
x−√y

5) lim
(x,y)→(0,1)

arccos(x/y)

1 + xy

6) lim
(x,y)→(0,0)

1

x+ y

7) lim
(x,y)→(0,0)

5x2y

x2 + y2

8) Can f(x, y) =
xy

(x2 + y2)2
be defined at (0, 0) so that it becomes continuous on R2?

9) lim
(x,y)→(0,0)

x

x2 − y2

10) Can lim
(x,y)→(0,0)

4x2y2

x2 + y2
be defined at (0, 0) so that it becomes continuous on R2?

Extra Problem

Find the domain and range of g(x, y) = |x|+|y|
1+|x|+|y| .
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Lecture 12

Partial Derivatives
Consider the function f(x, y). The partial derivative with respect to x of f is denoted by

∂f

∂x
= fx = Dxf = D1f

and similarly for the partial w.r.t. y. The partials are functions of x and y, so you could put
(x, y) next to each of them to emphasize that. But we often don’t. If the function is written as
z = f(x, y), you can may see the f replaced with a z.

In this class, we will pretty much always use the first two notations.

Geometric Interpretation
Consider the function z = f(x, y) and the point (a, b) in the domain. Intersect the graph of
f(x, y) with the plane y = b. In the plane, you will see a curve, which has input x and output
z. The slope of the tangent line to that curve at x = a is precisely fx(a, b).

Higher Order Partial Derivatives
Partial derivatives are themselves functions of x and y, so we can take their partials. Remember
that in the different notations, the order of the variables is reversed. So

∂4f

∂x2∂y∂x
= fxyxx.

Thess both mean that you first take partial w.r.t. x, then y, then x, then x again.
It turns out that (under some technical assumptions which, unless you have a piecewise function,
you don’t usually worry about), the mixed partial derivatives are equal. I.e. fxy = fyx.



Lecture 13

Tangent Planes and Linear Approximations
The tangent plane of a function f(x, y) at the point (a, b) is

z = L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)
Suppose we want to approximate f(x, y) at a point (ā, b̄) that is close to (a, b). Then we could
just compute L(ā, b̄). That is,

f(ā, b̄) ≈ L(ā, b̄).

You may also see the following (same idea/equation, different notation):

f(ā, b̄) ≈ f(a, b) + df

where
df = fxdx+ fydy.

Here, the partials fx, fy are evaluated at (a, b) and dx = ā− a, and dy = b̄− b.

Theorems
So far, we discussed partial derivatives of a function f(x, y) at a point (a, b). There actually a
different thing called the derivative of f(x, y) at a point (a, b). While the partial derivatives are
ultimately numbers, the derivative is actually a matrix. The formal definition of the derivative
is a little bit technical, so it wasn’t given in the notes, and you don’t have to worry about it.
The informal definition is more simple: f(x, y) is differentiable at (a, b) if you can draw a tangent
plane to the graph at (a, b, f(a, b)).

Theorem 1 (Conditions for Differentiability): Consider f(x, y). If fx, fy exist near (a, b)
(including at (a, b) itself) and they are continuous at (a, b), then f is differentiable at (a, b).

Theorem 2: (Differentiability Implies Continuity) If f(x, y) is differentiable at (a, b),
then it is continuous at (a, b).

There are the tools you’ll need to tackle questions of the type ”Is f(x, y) differentiable at
(a, b)?” You have two possibilities:

a) If you can show that f is discontinuous at (a, b), you can conclude that it’s not differen-
tiable, by citing the statement of theorem 2.

b) If you can show that the partials exist near (a, b) and are continuous at (a, b) then you
can conclude f is differentiable, by citing the statement of theorem 1.
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Chain Rule
Here, it is just best to follow the tree diagram. Using it, you can find the derivatives of any
combination of functions. Here’s an example:

Implicit Differentiation
We can use partial derivatives to solve implicit differentiation problems. If F (x, y) = 0 and y is
a function of x, then

dy

dx
= −Fx

Fy

provided Fy 6= 0. If F (x, y, z) = 0 and z is a function of (x, y), then

∂z

∂x
= −Fx

Fz

and
∂z

∂y
= −Fy

Fz

.
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Gradient and Partial Derivative
Everything in this section applies to functions of 3, 4, or any number of variables, but we will
just concentrate on functions of two variables z = f(x, y).

The gradient of f(x, y) is the vector 〈fx(x, y), fy(x, y)〉 and it is denoted by ∇f(x, y).

If ~v = 〈v1, v2〉 is a unit vector, the directional derivative in the direction of v is defined by

D~vf(a, b) = lim
t→0

f(a+ tv2, b+ tv2)− f(a, b)

t
.

Notice that if ~v = 〈1, 0〉 or ~v = 〈0, 1〉 then D~vf(a, b) is fx(a, b) or fy(a, b), respectively.

Theorem: If f is a differentiable function of x and y, then f has a directional derivative
in the direction of any unit vector v̂ = 〈v1, v2〉 and

D~vf(a, b) = fx(a, b)v1 + fy(a, b)v2

or
D~vf(a, b) = ∇f(a, b) · ~v.

Geometric Interpretation of Gradient
Suppose you’re standing at a point (a, b, f(a, b)) on the graph of f(x, y), and you want to climb
to a higher point as quickly as possible. Which direction should you go in? The answer is
∇f(a, b)! Notice that for a function f(x, y), the gradient is a vector with two components. So it
gives you the direction you should follow in the domain, not in 3D space.

If you want to go to a lower point as quickly as possible, you should go in the direction −∇f(a, b).
If you want to maintain the same altitude, you should go in a direction perpendicular to∇f(a, b).

Theorem: Let f be differentiable at the point P (a, b) with ∇f(a, b) 6= 0.

• f has its maximum rate of increase at P in the direction of the gradient ∇f(a, b). The
rate of increase in this direction is |∇f(a, b)|.
• f has its maximum rate of decrease at P in the direction of the gradient −∇f(a, b). The

rate of decrease in this direction is −|∇f(a, b)|.
• D~vf(a, b) = 0 in any direction orthogonal to ∇f(a, b).



Lecture 16

Gradients and Tangent Planes
The main concept of this lecture is that the gradient is always perpendicular to level curves.
That is, if you have a level curve L which goes through a point (a, b), then ∇f(a, b) is perpen-
dicular to the tangent line (or tangent plane) of L at (a, b). This fact is very useful for finding
the tangent lines/planes of curves/surfaces.

Tangent Planes

• If a surface in R3 has the form z = f(x, y), then the tangent plane to the surface at the
point P (a, b, f(a, b)) can be found using

z − f(a, b) = fx(a, b)(x− a) + fy(a, b)(y − b).
• If a surface in R3 has the form F (x, y, z) = k, then the tangent plane to the surface at

the point P (a, b, c) can be found using

∇F (a, b, c).〈x− a, y − b, z − c〉 = 0.

Normal Lines
The normal line to the surface F (x, y, z) = 0 at P (a, b, c) is given by

x− a
Fx(a, b, c)

=
y − b

Fy(a, b, c)
=

z − c
Fz(a, b, c)

,

given that ∇F (a, b, c) 6= 0.
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Critical Points An interior point (a, b) in the domain of f is a critical point if either

• fx(a, b) = fy(a, b) = 0, or
• fx or fy does not exist at (a, b).

Theorem: If f has a local max or min value at (a, b) and fx and fy exist near (a, b), then
fx(a, b) = fy(a, b) = 0.

Important! The converse of the above theorem not true!

Saddle Points A function f has a saddle point at a critical point (a, b) if fx(a, b) = fy(a, b) = 0
but f does not have a local extremum at (a, b).

Therefore, if (a, b) is a critical point of f , then (a, b) is either a local min, a local max, or a
saddle point.

Second Derivative Test

Suppose (a, b) is a critical point of f(x, y). Let D be the determinant of the matrix[
fxx(a, b) fyx(a, b)
fxy(a, b) fyy(a, b)

]
called the hessian matrix. That is, D = fxx(a, b)fyy(a, b)−fyx(a, b)fxy(a, b) = fxx(a, b)fyy(a, b)−
fyx(a, b)2. D is called the discriminant.

(1) If D > 0 and fxx(a, b) < 0 then (a, b) is a local max.
(2) If D > 0 and fxx(a, b) > 0 then (a, b) is a local min.
(3) If D < 0 then (a, b) is a saddle point.
(4) If D = 0 the test is inconclusive.

Extreme Value Theorem
The Extreme Value Theorem tells us that if we have a function on a closed and bounded domain
(such as the unit disk, for example) then that function will achieve a global (i.e. absolute) min-
imum and a maximum, and these will be achieved either at a critical point or on the boundary.
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Lagrange’s Theorem. Let f and g have first partial derivatives such that f has an extremum
at a point (a, b) on the smooth constraint curve g(x, y) = c. If ∇g(a, b) 6= ~0, then there is a real
number λ such that

∇f(a, b) = λ∇g(a, b),

where the scalar λ is called a Lagrange multiplier.

Method of Lagrange Multipliers. To find the maximum and minimum values of f(x, y)

subject to the constraint g(x, y) = k (assuming that these extreme values exist and ∇g 6= ~0 on
the surface g(x, y) = k):

(1) Find all values of x, y and λ such that

f(x, y) = λ∇g(x, y)

and
g(x, y) = k.

(2) Evaluate f at all the points (x, y) that result from step (1). The largest of these values
is the maximum value of f and the smallest is the minimum value of f.

Note: The same method can be applied for a function with three variables(or more than three).

Note: If you want to find maximum and minimum values of f(x, y, z) subject to two constraints,
say g(x, y, z) = C1 and h(x, y, z) = C2, then you need to solve

f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)

g(x, y, z) = C1

g(x, y, z) = C1.
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Double Integrals over Rectangles

Definition. The double integral of f(x, y) over the rectangle R is∫ ∫
R

f(x, y)dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(xij
∗yij

∗)∆A.

Note: If f(x, y) ≥ 0, then the volume V of the solid that lies above the rectangle R and below
the surface z = f(x, y) is

V =

∫ ∫
R

f(x, y)dA.

Fubini’s Theorem. If f is continuous on the rectangle R = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d},
then ∫ ∫

R

f(x, y)dA =

∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy.

Note: If f(x, y) = g(x)h(y) on R = [a, b]× [c, d], then∫ ∫
R

f(x, y)dA =

∫ ∫
R

g(x)h(y)dxdy =

(∫ b

a

g(x)dx

)(∫ d

c

h(y)dy

)
.
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Double Integrals over General Regions

Consider a function and a general plane region D. To evaluate the integral∫ ∫
D

f(x, y)dA,

we classify the region D into two types:

Type I: D = {(x, y)|a ≤ x ≤ b, g1(x) ≤ yg2(x)} . In this case,∫ ∫
D

f(x, y)dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y)dydx.

Type II: D = {(x, y)|c ≤ y ≤ d, h1(y) ≤ xh2(y)} . In this case,∫ ∫
D

f(x, y)dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y)dxdy.

Notes:

(1) If we integrate the constant function f(x, y) = 1 over a region D, we get the area of D.

A(D) =

∫ ∫
D

1dA

(2) The techniques developed in this lecture can also be used to determine the volume
between two continuous surfaces z1 = f(x, y) and z2 = g(x, y) with g(x, y) ≤ f(x, y) on
a region D in the xy-plane.

V =

∫ ∫
D

[f(x, y)− g(x, y)] dA.



Exercises:

(1) Sketch the region of integration and change the order of integration.
(a) ∫ 1

0

∫ y

0

f(x, y)dxdy.

(b) ∫ 2

−2

∫ √
4−y2

0

f(x, y)dxdy.

(c) ∫ 2

0

∫ 4

x2

f(x, y)dydx.

(2) Evaluate ∫ 1

0

∫ 1

x

sin(y2)dydx.

(3) Evaluate ∫ 1

0

∫ 1

x2

√
y sin(y)dydx.

(4) Find the volume in the first octant bounded by y2 = 4− x and y = 2z.

(5) Find the volume of the solid bounded by the cylinder y2+ z2 = 4 and the planes x = 2y,
x = 0, z = 0 in the first octant.
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Polar Coordinates
Polar to rectangular :

x = r cos(θ) y = r sin(θ)

Rectangular to Polar :

r =
√

x2 + y2 tan(θ) =
x

y
Cylindrical Coordinates
Cylindrical to rectangular :

x = r cos(θ) y = r sin(θ) z = z

Rectangular to Cylindrical

r =
√

x2 + y2 tan(θ) =
x

y
z = z

Spherical Coordinates
Spherical to rectangular :

x = ρ sinϕ cos θ y = ρ sinϕ sin θ z = ρ cosϕ

Rectangular to spherical :

ρ =
√
x2 + y2 + z2 tan(θ) =

y

x
cosϕ =

z

ρ

Lecture 22

Jacobian Suppose x = g(u, v), y = h(u, v) is a transformation from the uv plane to the xy
plane. The Jacobian (or more accurately, Jacobian Determinant) is

J(u, v) =
∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ .
Similarly, if we have a transformation x = g(u, v, w), y = h(u, v, w), z = k(u, v, w) of uvw space
to xyz space, then the Jacobian is

J(u, v, w) =
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣∣
.

Change of Variables

Suppose x = g(u, v), y = h(u, v) is a transformation that maps a region S in the uv plane
onto a region R in the xy plane. Then∫∫

R

f(x, y)dA =

∫∫
S

f(g(u, v), h(u, v))|J(u, v)|dA

Similarly, suppose x = g(u, v, w), y = h(u, v, w), z = k(u, v, w) is a transformation that maps a
region S in uvw space onto a region R in xyz space. Then∫∫∫

A

f(x, y, z)dV =

∫∫
S

f(g(u, v, w), h(u, v, w), k(u, v, w))|J(u, v, w)|dV
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Double Integrals Over Polar Regions
Here, we apply the Change of Variables Theorem to the transformation of polar coordinates.
Suppose you can write a region R in the xy plane using polar coordinates as a ≤ θ ≤ b,
g(θ) ≤ r ≤ h(θ) where 0 < b− a ≤ 2π. Then∫∫

R

f(x, y)dA =

∫ b

a

∫ h(θ)

g(θ)

f(r cos θ, r sin θ)rdrdθ

Areas and Volumes Over Polar Regions
If a solid is bounded by the surface z = f(r, θ) over a polar region D = {(r, θ)|a ≤ θ ≤
b, 0]leg(θ) ≤ r ≤ h(θ)}, the volume of the solid is

V =

∫ b

a

∫ h(θ)

g(θ)

f(r, θ)rdrdθ

and the area of the polar region D is

A =

∫ b

a

∫ h(θ)

g(θ)

rdrdθ

Exercises

(1) Describe the set S = {(x, y)|0 ≤ x ≤ 8, 0 ≤ y ≤
√
8x− x2} in polar coordinates.

(2) Describe the set S = {(x, y, z)|x = 0, y ≥ 0,−
√

1− y2 ≤ z ≤
√

1− y2} in spherical
coordinates.

(3) Find ∫∫
R

(x− y)dA

where R is the parallelogram joining the points (1, 2), (3, 4), (4, 3), and (6, 5) using the

change of variable x =
3u− v

2
, y =

u− v

2
.

(4) Using x = v and y =
√
u+ v, evaluate∫∫

R

y sin(y2 − x)dA

where r is the region bounded by y =
√
x, x = 2, and y = 0.

(5) Find the volume of the solid that lies under the paraboloid z = 1 − x2 − y2 and above
the unit circle in the xy plane.

(6) A pizza slice has an angle of 30 degrees, a radius of 5 inches, and an average height of
0.5 inches. Approximate its volume using integrals.
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Volume and Triple Integrals If S is a solid in 3D space, its volume is given by∫∫∫
S

1 dV

Fubini’s Theorem If f is continuous on B = [a, b]× [c, d]× [r, s] then∫∫∫
B

f(x, y, z)dV =

∫ b

a

∫ d

c

∫ s

r

f(x, y, z)dzdydx

How to Calculate Triple Integrals Given an integrand f(x, y, z) and a region S, you have
to write S in one of the 6 different types. For example, one of the types is S = {(x, y, z)|a ≤
x ≤ b, g1(x) ≤ y ≤ g2(x), h1(x, y) ≤ z ≤ h2(x, y)}. Using this type, we have∫∫∫

S

f(x, y, z) =

∫ b

a

∫ g2(x)

g1(x)

∫ h2(x,y)

h1(x,y)

f(x, y, z)dzdydx.

Lecture 25

When to Transform to Cylindrical Coordinates A good rule of thumb is that you want to
transform whenever the integrand has lots of (x2 + y2)’s and/or when the region of integration
involves a cylinder, or some other solid of revolution.

How to Transform to Cylindrical Coordinates You want to describe the region if integra-
tion as a ≤ θ ≤ b, g1(θ) ≤ r ≤ g2(θ), h1(r, θ) ≤ z ≤ h2(r, θ). If you are successfully, you can
do ∫∫∫

f(x, y, z)dV =

∫ b

a

∫ g2(θ)

g1(θ)

∫ h2(r,θ)

h1(r,θ)

f(r cos θ, r sin θ, z)rdzdrdθ

Lecture 26

When to Transform to Spherical Coordinates You want to transform the spherical if the
integrand contains x2+y2+z2 and/or the region of integration has to do with a sphere or a cone.

How to Transform to Spherical Coordinates You want to describe the region if integration
as a ≤ θ ≤ b, g1(θ) ≤ ϕ ≤ g2(θ), h1(θ, ϕ) ≤ ρ ≤ h2(θ, ϕ). If you are successfully, you can do∫∫∫

f(x, y, z)dV =

∫ b

a

∫ g2(θ)

g1(θ)

∫ h2(θ,ϕ)

h1(θ,ϕ)

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cos θ)ρ2 sinϕdρdϕdθ



Exercises

(1) Evaluate ∫∫∫
E

2x+ 5y + 7zdV

where E = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ −x+ 1, 1 ≤ z ≤ 2}.
(2) Consider the solid enclosed by x2 + y2/9 = 4, z = −10, z = 10. Write it’s volume as an

integral in 3 different ways, using dxdydz, dydxdz, and dzdxdy.
(3) Consider ∫ 1

0

∫ x2

0

∫ y

0

f(x, y, z)dzdydx.

Change the order of integration to dxdzdy.
(4) Evaluate ∫∫∫

E

√
x2 + z2dV

where E is the region bounded by the paraboloid y = x2 + z2 and the plane y = 4.
(5) Find the volume of the solid E that lies under the plane 2x + y + z = 8 and whose

projection in the xy plane is bounded by y = 0, x = π/2, and y = sin(x).

(6) Let E be the region bounded below by the cone z =
√
x2 + y2 and above by the parabo-

loid z = 2− x2 − y2. Set up an integral to find the volume using cylindrical coordinates.
(7) Set up an integral to find the volume of the region bounded by the cone z =

√
(x2 + y2)

and the hemisphere z =
√

4− x2 − y2
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Vector Fields

Definition(Vector Field)

• Let D be a set in R2 (a plane region). A vector field on R2 is a function F⃗ that assigns

to each point (x, y) in D a two-dimensional vector F⃗ (x, y).

• Let E be a set in R3 (a plane region). A vector field on R3 is a function F⃗ that assigns

to each point (x, y, z) in E a three-dimensional vector F⃗ (x, y, z).

Note: Suppose F⃗ (x, y) = ⟨P (x, y), Q(x, y)⟩. The vector field F⃗ is continuous or differentiable
on D if P and Q are continuous and differentiable on D (similarly for 3-D).

Definition(Gradient Fields)

A vector field F⃗ is said to be a conservative (or gradient) field if there exists a differentiable

function f such that F⃗ = ∇f. The function f is called the potential function for F⃗ .

Cross Partial Property
Let P,Q and R have continuous first partial derivatives. If the vector field F⃗ = ⟨P,Q,R⟩ is
conservative, then

∂P

∂y
=

∂Q

∂x
,
∂Q

∂z
=

∂R

∂y
and

∂R

∂x
=

∂P

∂z
.

Note: F⃗ does not have the cross-partial property =⇒ F⃗ is not conservative.

Theorem
Let P,Q and R have continuous first partial derivatives on an open simply connected region D.
The vector field F⃗ = ⟨P,Q,R⟩ is conservative if and only if

∂P

∂y
=

∂Q

∂x
,
∂Q

∂z
=

∂R

∂y
and

∂R

∂x
=

∂P

∂z
on D.

Note: R2 and R3 are open simply connected.
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Line Integrals

Scalar Line Integrals in the Plane
If f is defined on a smooth curve C, then the line integral of f along C is is∫

C

f(x, y)ds = lim
n→∞

n∑
i=1

f(xi, yi)∆s

,if this limit exists.

Theorem
If the curve C is given by r⃗(t) = ⟨x(t), y(t)⟩, a ≤ t ≤ b, then

ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt = |r⃗′(t)|dt.

Therefore, ∫
C

f(x, y)ds =

∫ b

a

f(x(t), y(t))|r⃗′(t)|dt.

Scalar Line Integrals in Space
If the curve C is given by r⃗(t) = ⟨x(t), y(t), z(t)⟩, a ≤ t ≤ b, then∫

C

f(x, y, z)ds =

∫ b

a

f(x(t), y(t), z(t))|r⃗′(t)|dt.

Vector Line Integrals
The line integral of a vector field F⃗ = ⟨P,Q,R⟩ over an oriented curve C parametrized by
r⃗(t) = ⟨x(t), y(t), z(t)⟩, a ≤ t ≤ b can be expressed as∫

C

F⃗ .T⃗ ds =

∫ b

a

F⃗ .r⃗′(t)dt

=

∫ b

a

(
Px′(t) +Qy′(t) +Rz′(t)

)
dt

=

∫
C

Pdx+Qdy +Rdz

=

∫
C

F⃗ .dr⃗.

Application
Consider an object moving along a path C in the vector field F⃗ . The total work done by the
particle is given by

W =

∫
C

F⃗ .T⃗ ds.
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The Fundamental Theorem for Line Integrals

Definitions

• A curve is ’closed’ if it intersects itself at its endpoints.
• A curve is called ’simple’ if it intersects itself only at its endpoints.
• A region D is ’open’ if it does not contain any of its boundary points.
• An open region D is connected if any two points in D can be connected by a continuous
curve lying entirely in D.

• An open region D is ’simply connected’ if every closed curve in D enclosed only points
lying in D.

The Fundamental Theorem for Line Integrals
Let C be a smooth curve with parametrization r⃗(t), a ≤ t ≤ b lying in an open connected region
D. Let f be a function of two or three variables with first-order partial derivatives that exist
and are continuous on C. Then,∫

C

∇f.dr⃗ = f |r⃗(b)r⃗(a) = f(r⃗(b))− f(r⃗(a)).

Notes:

• If F⃗ is a conservative vector field and f is a potential function of F, then∫
C

F⃗ .dr⃗ =

∫
C

∇f.dr⃗ = f(r⃗(b))− f(r⃗(a)).

• If F⃗ is a conservative vector field and C is a closed curve, then∫
C

F⃗ .dr⃗ = 0.

Theorem (Independence of Path)

If Let F⃗ is continuous on an open connected region, then the line integral
∫
C
F⃗ .dr⃗ is independent

of path if and only if F⃗ is conservative.

Note:
Let F⃗ be continuous on an open simply connected region D. The following statements are
equivalent.

(1) F⃗ is conservative on D.

(2)
∫
C
F⃗ .dr⃗ is independent of path C in D.

(3)
∮
C
F⃗ .dr⃗ = 0 for every closed path C in D.

(4) Cross-partial property holds.
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Green’s Theorem

Green’s Theorem
Let D be an open simply connected region with a boundary curve δD that is a piecewise smooth
curve oriented positively. Let F⃗ = ⟨P,Q⟩ be a vector field with component functions that have
continuous partial derivatives on D. Then,∮

δD

F⃗ .dr⃗ =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Theorem
If D is a plane region bounded by a piecewise smooth simple closed curve C, oriented counter-
clockwise, then the area of the region D is

A =

∫
C

xdy = −
∫
C

ydx =
1

2

∫
C

(xdy − ydx)

Exercises

(1) Determine if F⃗ = ⟨y+z, x+z, x+y⟩ is conservative and if so, find its potential function.

(2) An object moves from (1, 1, 1) to (2, 4, 8) along the path r⃗(t) = ⟨t, t2, t3⟩, subject to the

force F⃗ (x, y, z) = ⟨sinx, sin y, sin z⟩. Find the work done.

(3) Evaluate
∫
C
F⃗ .dr⃗ where F⃗ (x, y, z) = ⟨2x ln(y), x2

y
+ z2, 2yz⟩ and C is a curve with

parametrization r⃗(t) = ⟨t2, t, t⟩, 1 ≤ t ≤ e.

(4) Use Green’s Theorem to evaluate
∮
C
y2dx+x2dy, where C is the positive oriented bound-

ary of the region determined by y = x2 and y = 1.

(5) Use Green’s Theorem to evaluate
∫
C
F⃗ .dr⃗, where F⃗ (x, y) = ⟨y cos(x) − xy sin(x), xy +

x cos(x)⟩ and C is the triangle from (0, 0) to (0, 4) to (2, 0) (0, 0).
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Parametric Surfaces

In the past, we’ve written curves parametrically as r(t) = ⟨x(t), y(t), z(t)⟩. Similarly, we can
write surfaces as r(s, t) = ⟨x(s, t), y(s, t), z(s, t)⟩.

Partial Derivatives The partial derivatives are defined as

r⃗s(s, t) = ⟨xs(s, t), ys(s, t), zs(s, t)⟩
r⃗t(s, t) = ⟨xt(s, t), yt(s, t), zt(s, t)⟩

r⃗s(s, t), r⃗t(s, t) are vectors tangent to the surface at the point r(s, t). If r⃗s × r⃗t is never 0, then
the surface is smooth, and it has a tangent plane at every point.

Surface Area Suppose (r, t) come from a region D in the st plane. The area of the surface
r(s, t) is

Surface Area =

∫∫
S

dS =

∫∫
D

|r⃗s × r⃗t|dA

as long as every point of S corresponds exactly to one point of D.
If we have a surface described by z = f(x, y), then it can be parametrized by (x, y, f(x, y)), and
we can use the formula above to get

Surface Area =

∫∫
D

√
fx(x, y) + fy(x, y) + 1dA
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In the past, we’ve integrated a function f(x, y, z) over a curve. Conceptually, what we did was
we divided the curve into n small pieces pi, found the function value at a point Pi of pi, found∑n

i=1 f(Pi) · length(pi), and let n → ∞. We can apply a similar concept to define the integral
of f(x, y, z) over a surface S. Divide S into n small pieces Si, pick a point Pi from each Si, find∑n

i=1 f(Pi) · area(Si), and let n → ∞.
It turns out that the integral of f(x, y, z) over S as defined above is∫∫

S

f(x, y, z)dS =

∫∫
D

f(r(s, t))|rs(s, t)× rt(s, y)|dA

Orientation of a Surface Most surfaces have 2 sides. We can pick which side we want to
be the ”positive side” and which side to be the ”negative side”. If the surface is closed (like a
ball), then by convention, we always pick the outside as the positive side, and the inside as the
negative side. Now suppose we have a parametrization r(s, t) of S. If the normal vector r⃗s × rt
is always pointing towards the positive side, then the parametrization is positive. If the normal
vector is pointing to the negative side, then the parametrization is negative.

Integrating a Vector Field Over a Surface Let F be a vector field. We define the integral
of F over S as ∫∫

S

F · (r⃗s(s, t)× rt(s, t))dS

The interpretation is that if we have a gas in 3D with velocity field F , then the rate at which
gas passes through S is the integral of F over S. This is called the flux.
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Let F (x, y, z) = ⟨P (x, y, z), Q(x, y, z), R(x, y, z)⟩ be a vector field.

curl F = ⟨Ry −Qz, Pz −Rx, Qx − Py⟩

∇ = ⟨ ∂

∂x
,
∂

∂y
,
∂

∂z
⟩

Note that curl F = ∇× F . If curl F = 0, then F is irrotational.

Theorem If F is conservative, then curl F = 0. If the domain is simply connected, then the
converse holds as well. That is, if curl F = 0, then F is conservative.

Stoke’s Theorem (without the technical assumptions) Let S be a surface whose boundary ∂S
has positive orientation. Then ∫

∂S

F · dr =
∫∫

S

curl F · n̂dS



Exercises

(1) Give a parametrization of the cone x2 + y2 = z2 lying on or above the plane z = −2.
(2) Show that the surface area of the sphere x2 + y2 + z2 = r2 is 4πr2

(3) Show that the surface area of the open cylinder x2 + y2 = r2, 0 ≤ z ≤ h is 2πrh.
(4) Calculate

∫∫
x+ y2dS where S is the cylinder x2 + y2 = 4, 0 ≤ z ≤ 3.

(5) Calculate
∫∫

S
F · n̂dS where F = ⟨−y, x, 0⟩ and S is the surface with parametrization

r(u, v) = ⟨u, v2 − u, u+ v⟩ with 0 ≤ u ≤ 3 and 0 ≤ v ≤ 4.
(6) Verify Stoke’s Theorem for the vector field F = ⟨y, 2z, x2⟩ and the surface S, where S is

the paraboloid z = 4− x2 − y2, z ≥ 0.
(7) Use Stoke’s Theorem to calculate

∫
C
F · dr where F = ⟨xy, x2 + y2 + z2, yz⟩ and C is the

boundary of the parallelogram with vertices (0, 0, 1), (0, 1, 0), (2, 0,−1), and (2, 1,−2),
going counterclockwise.
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