An introduction to reverse mathematics

Caleb J.B. Davis
University of Florida
Gainesville, FL

September 28, 2021

University of Florida
Logic Seminar

Preliminaries

An axiom system is a collection of statements taken as true. Using these axioms, we then deduce mathematical theorems.

If we can prove a theorem Thm from an axiom system \mathfrak{T}, we write

$$
\mathfrak{T} \vdash \text { Thm }
$$

If an additional axiom $\mathbf{A} \mathbf{x}$ is needed to prove $\mathbf{T h m}$, we write

$$
\mathfrak{T}+\mathbf{A} \mathbf{x} \vdash \mathbf{T h m} \quad \text { or } \quad \mathfrak{T} \vdash \mathbf{A x} \longrightarrow \mathbf{T h m}
$$

Motivation

Suppose we are working in a weak axiom system \mathfrak{B} that proves Thm $_{1}$ but not Thm $_{2}$:

$\mathfrak{B} \vdash \mathbf{T h m}_{1} \quad \mathfrak{B} \nvdash \mathbf{T h m}_{2}$

Motivation

Suppose we are working in a weak axiom system \mathfrak{B} that proves $\mathbf{T h m}_{1}$ but not $\mathbf{T h m}_{2}$:

$$
\mathfrak{B} \vdash \text { Thm }_{1} \quad \mathfrak{B} \nvdash \mathbf{T h m}_{2}
$$

If we use an additional axiom $\mathbf{A} \mathbf{x}_{1}$ and show

$$
\mathfrak{B}+\mathbf{A} \mathbf{x}_{1} \vdash \mathbf{T h m}_{2},
$$

we can say that $\mathbf{T h m}_{2}$ requires more "strength" to prove.

Motivation

Suppose we are working in a weak axiom system \mathfrak{B} that proves Thm $_{1}$ but not Thm $_{2}$:

$$
\mathfrak{B} \vdash \text { Thm }_{1} \quad \mathfrak{B} \nvdash \mathbf{T h m}_{2}
$$

If we use an additional axiom $\mathbf{A} \mathbf{x}_{1}$ and show

$$
\mathfrak{B}+\mathbf{A} \mathbf{x}_{1} \vdash \mathbf{T h m}_{2},
$$

we can say that Thm ${ }_{2}$ requires more "strength" to prove.

This is not a precise measurement of logical strength. A \mathbf{x}_{1} may be too powerful to give any useful insight in how to properly compare $\mathbf{T h m}_{1}$ and $\mathbf{T h m}_{2}$.

Improving this measure

Since $\mathfrak{B}+\mathbf{A x}_{1} \vdash \mathbf{T h m}_{2}$, then

$$
\mathfrak{B} \vdash \mathbf{A} \mathbf{x}_{1} \longrightarrow \mathbf{T h m}_{2}
$$

Suppose we can show $\mathfrak{B}+\mathbf{T h m}_{2} \vdash \mathbf{A} \mathbf{x}_{1}$; that is, $\mathfrak{B} \vdash \mathbf{T h m}_{2} \longrightarrow \mathbf{A} \mathbf{x}_{1}$.

Improving this measure

Since $\mathfrak{B}+\mathbf{A x}_{1} \vdash \mathbf{T h m}_{2}$, then

$$
\mathfrak{B} \vdash \mathbf{A} \mathbf{x}_{1} \longrightarrow \mathbf{T h m}_{2}
$$

Suppose we can show $\mathfrak{B}+\mathbf{T h m}_{2} \vdash \mathbf{A} \mathbf{x}_{1}$; that is,

$$
\mathfrak{B} \vdash \mathbf{T h m}_{2} \longrightarrow \mathbf{A} \mathbf{x}_{1} .
$$

We call this reversing $\mathbf{T h m}_{2}$ to $\mathbf{A} \mathbf{x}_{1}$ and we conclude that $\mathbf{A} \mathbf{x}_{1}$ and $\mathbf{T h m}_{2}$ are provably equivalent over \mathfrak{B}.

$$
\mathfrak{B} \vdash \mathbf{A} \mathbf{x}_{1} \longleftrightarrow \mathbf{T h m}_{2}
$$

Improving this measure

Let's consider another theorem Thm $_{3}$.
Suppose we find another axiom $\mathbf{A} \mathbf{x}_{2}$ and show

$$
\mathfrak{B} \vdash \mathbf{A} \mathbf{x}_{2} \longleftrightarrow \mathbf{T h m}_{3}
$$

What can we say about the relationship between $\mathbf{T h m}_{1}, \mathbf{T h m}_{2}$, and Thm_{3} ?

Improving this measure

Let's consider another theorem Thm $_{3}$.
Suppose we find another axiom $\mathbf{A} \mathbf{x}_{2}$ and show

$$
\mathfrak{B} \vdash \mathbf{A} \mathbf{x}_{2} \longleftrightarrow \mathbf{T h m}_{3}
$$

What can we say about the relationship between $\mathbf{T h m}_{1}, \mathbf{T h m}_{2}$, and Thm_{3} ?

For the relationship between $\mathbf{T h m}_{2}$ and $\mathbf{T h m}_{3}$, we need the comparison of $\mathbf{A} \mathbf{x}_{1}$ and $\mathbf{A} \mathbf{x}_{2}$.

Reverse Mathematics

Goal: Determine which set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form

$$
\mathrm{RCA}_{0} \vdash \mathbf{T h m} \text { and } \mathrm{RCA}_{0} \vdash \mathbf{A x} \longleftrightarrow \mathbf{T h m}
$$

where:

- RCA_{0} is a weak axiom system,
- Ax is a set existence axiom, and
- Thm is a familiar non-set theoretic theorem.

What's the point?

Work in reverse mathematics can:

- categorize the logical strength of theorems in a precise manner.
- distinguish between different proofs of theorems.
- provide insight into the foundation of mathematics.
- utilize and contribute to disciplines of mathematical logic including computability theory, proof theory, models of arithmetic, etc.

Second Order Arithmetic Z_{2}

Language:

Natural number variables: x, y, z Set variables: X, Y, Z

Second Order Arithmetic Z_{2}

Language:

Natural number variables: x, y, z Set variables: X, Y, Z
Axioms:

- Arithmetic axioms of \mathbb{N} :
($0,1,+, \times,=$, and $<$ behave as usual)

Second Order Arithmetic Z_{2}

Language:

Natural number variables: x, y, z Set variables: X, Y, Z
Axioms:

- Arithmetic axioms of \mathbb{N} :
($0,1,+, \times,=$, and $<$ behave as usual)
- The second order induction scheme:

$$
(\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n(\varphi(n))
$$

where φ is any formula in Z_{2}.

Second Order Arithmetic Z_{2}

Language:

Natural number variables: x, y, z Set variables: X, Y, Z

Axioms:

- Arithmetic axioms of \mathbb{N} :
($0,1,+, \times,=$, and $<$ behave as usual)
- The second order induction scheme:

$$
(\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n(\varphi(n))
$$

where φ is any formula in Z_{2}.

- Set comprehension:

$$
\exists X \forall n(n \in X \longleftrightarrow \varphi(n))
$$

where $\varphi(n)$ is any formula of Z_{2} in which X does not occur freely.

Subsystems of Second Order Arithmetic

A subsystem of second order arithmetic is an axiom system consisting of the arithmetic axioms, the induction and comprehension schemas restricted to certain formulas, or has theorems of Z_{2} as axioms.

There are five subsystems of particular interest, each with an increasing strength of set comprehension:

$$
\mathrm{RCA}_{0} \quad \mathrm{WKL}_{0} \quad \mathrm{ACA}_{0} \quad \mathrm{ATR}_{0} \quad \Pi_{1}^{1}-\mathrm{CA}_{0}
$$

In reverse mathematics, RCA_{0} is (usually) chosen as the base system, the weakest subsystem we will work in. The other four subsystems are given by amending RCA_{0} with additional set existence axioms.

Some notation

Formulas of Z_{2} can be categorized into two forms.

- Formulas that do not quantify over sets (called arithmetic)
- Σ_{0}^{0} formulas are constructed from atomic formulas and bounded quantifiers.
- Σ_{k}^{0} formulas: $\exists n_{1} \forall n_{2} \ldots \exists n_{k} \theta$, where $\theta \in \Sigma_{0}^{0}$
- Π_{k}^{0} formulas: $\forall n_{1} \exists n_{2} \ldots \forall n_{k} \theta$, where $\theta \in \Sigma_{0}^{0}$
- Formulas that do quantify over sets:
- Σ_{k}^{1} formulas: $\exists X_{1} \forall X_{2} \ldots \exists X_{k} \varphi$, where φ is arithmetic
- Π_{k}^{1} formulas: $\forall X_{1} \exists X_{2} \ldots \forall X_{k} \varphi$, where φ is arithmetic

Recursive Comprehension and RCA_{0}

$R C A_{0}$ is the subsystem of Z_{2} whose axioms are:

- Arithmetic axioms of \mathbb{N}
- Σ_{1}^{0} induction $(\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n(\varphi(n))$, where φ is any Σ_{1}^{0} formula
- Recursive comprehension If $\varphi \in \Sigma_{1}^{0}$ and $\psi \in \Pi_{1}^{0}$, then

$$
\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n))
$$

Coding

The language of Z_{2} can only express statements about natural numbers and sets of natural numbers.

However, we can encode mathematics using these tools.

Coding

The language of Z_{2} can only express statements about natural numbers and sets of natural numbers.

However, we can encode mathematics using these tools.

- Elements of countable collections of objects can be identified with natural numbers.

Coding

The language of Z_{2} can only express statements about natural numbers and sets of natural numbers.

However, we can encode mathematics using these tools.

- Elements of countable collections of objects can be identified with natural numbers.
- RCA_{0} is able to prove the arithmetic necessary for pairing functions.
- Functions and countable sequences correspond to sets of pairs.

Coding

The language of Z_{2} can only express statements about natural numbers and sets of natural numbers.

However, we can encode mathematics using these tools.

- Elements of countable collections of objects can be identified with natural numbers.
- RCA_{0} is able to prove the arithmetic necessary for pairing functions.
- Functions and countable sequences correspond to sets of pairs.
- RCA_{0} can encode the integers, rational numbers, real numbers, countable Abelian groups, continuous real-valued functions, and many other mathematical objects.

What can RCA_{0} prove?

Theorem: The following are provable in RCA_{0}.
(1) The system $\mathbb{Q},+,-, \cdot, 0,1,<$ is an ordered field.
(2) The intermediate value theorem: If f is continuous on $[0,1]$ and $f(0)<0<f(1)$, then there exists an x such that $0<x<1$ and $f(x)=0$.
(3) If $f: \mathbb{N} \rightarrow 2$, then there is an infinite set X such that f is constant on X.
(4) Every finite graph with maximum degree 2 and no cycles of odd length is bipartite (i.e. can be 2-colored).
(5) Van der Waerden's theorem: For any c and k there exists n such that if $f: n \rightarrow c$ then there is a homogenous arithmetic progression of length k.

Weak König's Lemma

Weak König's Lemma
Statement: Big skinny trees are tall.

Weak König's Lemma

Weak König's Lemma
Statement: Big skinny trees are tall.
More formally: If T is an infinite tree in which each node is labeled 0 or 1 , then T contains an infinite path.

Weak König's Lemma

Weak König's Lemma
Statement: Big skinny trees are tall.
More formally: If T is an infinite tree in which each node is labeled 0 or 1 , then T contains an infinite path.

The subsystem $W K L_{0}$ is $R C A_{0}$ plus weak König's lemma.

There is an infinite computable binary tree with no infinite computable path, so $\mathrm{RCA}_{0} \nvdash \mathrm{WKL}_{0}$.

Some Reverse Mathematics!

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) WKL_{0}
(2) If f and g are one-to-one functions from \mathbb{N} to \mathbb{N} and Range $(f) \cap \operatorname{Range}(g)=\emptyset$, then there exists a set X such that Range $(f) \subset X$ and $X \cap$ Range $(g)=\emptyset$.
(3) Every continuous function on $[0,1]$ attains a supremum.
(4) The Heine-Borel theorem for $[0,1]$.
(5) If every finite subgraph of G can be 2-colored, then G can be 2-colored.

Some Reverse Mathematics!

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) WKL_{0}
(2) If f and g are one-to-one functions from \mathbb{N} to \mathbb{N} and Range $(f) \cap \operatorname{Range}(g)=\emptyset$, then there exists a set X such that Range $(f) \subset X$ and $X \cap \operatorname{Range}(g)=\emptyset$.
(3) Every continuous function on $[0,1]$ attains a supremum.
(4) The Heine-Borel theorem for $[0,1]$.
(5) If every finite subgraph of G can be 2-colored, then G can be 2-colored.

The "standard trick" to show that Thm reverses to WKL_{0} is to use (2); that is, show that RCA $+\mathbf{T h m}$ can find a separating set of two arbitrary injections with disjoint ranges.

Arithmetical Comprehension

$A C A_{0}$ is $R C A_{0}$ plus the arithmetical comprehension scheme:
For any arithmetical formula $\varphi(n)$, then

$$
\exists X \forall n(n \in X \longleftrightarrow \varphi(n))
$$

Equivalently, the set $\{n \in \mathbb{N} \mid \varphi(n)\}$ exists.

Arithmetical Comprehension

$A C A_{0}$ is $R C A_{0}$ plus the arithmetical comprehension scheme:
For any arithmetical formula $\varphi(n)$, then

$$
\exists X \forall n(n \in X \longleftrightarrow \varphi(n))
$$

Equivalently, the set $\{n \in \mathbb{N} \mid \varphi(n)\}$ exists.
Aside: One may want to consider the subsystem $\Sigma_{1}^{0}-C A_{0}$, given by replacing recursive comprehension with Σ_{1}^{0} comprehension in $R C A_{0}$.

Arithmetical Comprehension

$A C A_{0}$ is $R C A_{0}$ plus the arithmetical comprehension scheme:
For any arithmetical formula $\varphi(n)$, then

$$
\exists X \forall n(n \in X \longleftrightarrow \varphi(n))
$$

Equivalently, the set $\{n \in \mathbb{N} \mid \varphi(n)\}$ exists.
Aside: One may want to consider the subsystem $\Sigma_{1}^{0}-C A_{0}$, given by replacing recursive comprehension with Σ_{1}^{0} comprehension in RCA_{0}.

However, $\mathrm{RCA}_{0} \vdash \mathrm{ACA} \mathrm{A}_{0} \longleftrightarrow \Sigma_{1}^{0}$ comprehension, so $\Sigma_{1}^{0}-\mathrm{CA}_{0}$ would be equivalent to $A C A_{0}$.

Mathematics in $A C A_{0}$

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) ACA_{0}
(2) If $f: \mathbb{N} \rightarrow \mathbb{N}$ is one-to-one, then $\operatorname{Range}(f)$ exists.
(3) Every Cauchy sequence converges.
(4) The Bolzano-Weierstraß theorem: Every bounded sequence of real numbers contains a convergent subsequence.
(5) König's lemma: Every finitely branching infinite tree has an infinite path.

Mathematics in $A C A_{0}$

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) ACA_{0}
(2) If $f: \mathbb{N} \rightarrow \mathbb{N}$ is one-to-one, then $\operatorname{Range}(f)$ exists.
(3) Every Cauchy sequence converges.
(4) The Bolzano-Weierstraß theorem: Every bounded sequence of real numbers contains a convergent subsequence.
(5) König's lemma: Every finitely branching infinite tree has an infinite path.

General rule of thumb: $A C A_{0}$ suffices for undergraduate math.

An example

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) ACA_{0}
(2) Suppose H is a hypergraph with finite edges presented as a sequence of characteristic functions. If every finite partial hypergraph of H has a proper 2-coloring, then H has a proper 2-coloring.

An example

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) ACA_{0}
(2) Suppose H is a hypergraph with finite edges presented as a sequence of characteristic functions. If every finite partial hypergraph of H has a proper 2-coloring, then H has a proper 2-coloring.

The idea of the proof:
$(1) \rightarrow(2)$: For every m, there is a least 2-coloring of the vertices v_{0}, \ldots, v_{m} that can be extended to a proper 2-coloring of every finite partial hypergraph. Nesting these least 2-colorings yields a 2-coloring of all of H that is arithmetically definable.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Ran}(f)$.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Ran}(f)$.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Ran}(f)$.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Ran}(f)$.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Ran}(f)$.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Ran}(f)$.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Ran}(f)$.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Ran}(f)$.

The reversal: 2-coloring implies ACA_{0}

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Example: Suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Ran}(f)$.

Arithmetical Transfinite Recursion

$A T R_{0}$ is the subsystem given by adding to RCA_{0} axioms that allow for iteration of arithmetical comprehension along any well-ordering.

A tool for proofs:
Theorem: $\left(\mathrm{ATR}_{0}\right)$ If $\psi(X)$ is a Σ_{1}^{1} formula that is only satisfied by well-ordered sets, then there is a well-ordering β such that $\psi(X)$ implies $X<\beta$.

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) ATR_{0}
(2) If α and β are well-orderings, then $\alpha \leqslant \beta$ or $\beta \leqslant \alpha$.
(3) Lusin's separation theorem: Any two disjoint analytic sets can be separated by a Borel set.
(4) Every countable reduced Abelian p-group has an Ulm resolution.

Π_{1}^{1} comprehension

$\Pi_{1}^{1}-C A_{0}$ is $R C A_{0}$ plus the Π_{1}^{1} comprehension scheme:
We can assert the existence of the set

$$
\{n \in \mathbb{N} \mid \psi(n)\}
$$

where ψ is a Π_{1}^{1} formula.
Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) $\Pi_{1}^{1}-\mathrm{CA}_{0}$
(2) If $\left\langle T_{n}\right\rangle_{n \in \mathbb{N}}$ is a sequence of trees in $\mathbb{N}<\mathbb{N}$, then there is a function $f: \mathbb{N} \rightarrow 2$ such that $f(n)=1$ if and only if T_{n} contains an infinite path.
(3) Every countable Abelian group is the direct sum of a divisible group and a reduced group.

To reverse $\mathbf{T h m}$ to $\Pi_{1}^{1}-C A_{0}$, the usual trick is to first show $\mathrm{RCA}_{0} \vdash \mathbf{T h m} \rightarrow \mathrm{ACA}_{0}$, then show $\mathrm{ACA}_{0} \vdash \mathbf{T h m} \rightarrow \Pi_{1}^{1}-C A_{0}$.

An abbreviated list of references

[1] Caleb Davis, Jeffry L. Hirst, Jake Pardo, and Tim Ransom, Reverse Mathematics and colorings of hypergraphs, Archive for Mathematical Logic 58 (2018), 575-585. DOI 10.1007/s00153-018-0654-z.
[2] Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181-196, DOI 10.1090/conm/106/1057822. MR1057822
[3] Saharon Shelah, Primitive recursive bounds for van der Waerden numbers, Journal of the American Mathematical Society 1 (1988), no. 3, 683-683, DOI 10.1090/s0894-0347-1988-0929498-x.
[4] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009.
DOI 10.1017/CBO9780511581007.

