An introduction to reverse mathematics

Caleb J.B. Davis University of Florida Gainesville, FL

September 28, 2021

University of Florida Logic Seminar

Preliminaries

An **axiom system** is a collection of statements taken as true. Using these axioms, we then deduce mathematical theorems.

If we can prove a theorem Thm from an axiom system $\mathfrak{T},$ we write

 $\mathfrak{T}\vdash \mathbf{Thm}$

If an additional axiom Ax is needed to prove Thm, we write

 $\mathfrak{T} + \mathbf{Ax} \vdash \mathbf{Thm}$ or $\mathfrak{T} \vdash \mathbf{Ax} \longrightarrow \mathbf{Thm}$

Motivation

Suppose we are working in a weak axiom system $\mathfrak B$ that proves Thm_1 but not Thm_2 :

 $\mathfrak{B} \vdash \mathsf{Thm}_1 \qquad \mathfrak{B} \not\vdash \mathsf{Thm}_2$

Motivation

Suppose we are working in a weak axiom system \mathfrak{B} that proves **Thm**₁ but not **Thm**₂:

 $\mathfrak{B} \vdash \mathsf{Thm}_1 \qquad \mathfrak{B} \not\vdash \mathsf{Thm}_2$

If we use an additional axiom $\boldsymbol{\mathsf{Ax}}_1$ and show

 $\mathfrak{B} + \mathbf{A}\mathbf{x}_1 \vdash \mathbf{T}\mathbf{h}\mathbf{m}_2$,

we can say that **Thm**₂ requires more "strength" to prove.

Motivation

Suppose we are working in a weak axiom system \mathfrak{B} that proves **Thm**₁ but not **Thm**₂:

 $\mathfrak{B} \vdash \mathsf{Thm}_1 \qquad \mathfrak{B} \not\vdash \mathsf{Thm}_2$

If we use an additional axiom $\boldsymbol{\mathsf{Ax}}_1$ and show

 $\mathfrak{B} + \mathbf{A}\mathbf{x}_1 \vdash \mathbf{T}\mathbf{h}\mathbf{m}_2$,

we can say that **Thm**₂ requires more "strength" to prove.

This is not a precise measurement of logical strength. Ax_1 may be *too* powerful to give any useful insight in how to properly compare Thm_1 and Thm_2 .

Since $\mathfrak{B} + \mathbf{A}\mathbf{x}_1 \vdash \mathbf{T}\mathbf{h}\mathbf{m}_2$, then

$$\mathfrak{B}dash \mathsf{Ax}_1\longrightarrow \mathsf{Thm}_2$$

Suppose we can show $\mathfrak{B} + \mathsf{Thm}_2 \vdash \mathsf{Ax}_1$; that is,

 $\mathfrak{B} \vdash \text{Thm}_2 \longrightarrow Ax_1.$

Since $\mathfrak{B} + \mathbf{A}\mathbf{x}_1 \vdash \mathbf{T}\mathbf{h}\mathbf{m}_2$, then

$$\mathfrak{B} \vdash \mathsf{Ax}_1 \longrightarrow \mathsf{Thm}_2$$

Suppose we can show $\mathfrak{B} + \mathsf{Thm}_2 \vdash \mathsf{Ax}_1$; that is,

 $\mathfrak{B} \vdash \mathsf{Thm}_2 \longrightarrow \mathsf{Ax}_1.$

We call this *reversing* Thm_2 to Ax_1 and we conclude that Ax_1 and Thm_2 are *provably equivalent* over \mathfrak{B} .

 $\mathfrak{B} \vdash \mathsf{Ax}_1 \longleftrightarrow \mathsf{Thm}_2$

Let's consider another theorem Thm_3 .

Suppose we find another axiom Ax_2 and show

$\mathfrak{B}\vdash \textbf{Ax}_2\longleftrightarrow \textbf{Thm}_3$

What can we say about the relationship between Thm_1 , Thm_2 , and Thm_3 ?

Let's consider another theorem Thm_3 .

Suppose we find another axiom $\boldsymbol{\mathsf{Ax}}_2$ and show

 $\mathfrak{B}\vdash \textbf{Ax}_2\longleftrightarrow \textbf{Thm}_3$

What can we say about the relationship between Thm_1 , Thm_2 , and Thm_3 ?

For the relationship between Thm_2 and Thm_3 , we need the comparison of Ax_1 and Ax_2 .

Reverse Mathematics

Goal: Determine which set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form

 $\mathsf{RCA}_0 \vdash \textbf{Thm} \quad \mathsf{and} \quad \mathsf{RCA}_0 \vdash \textbf{Ax} \longleftrightarrow \textbf{Thm}$

where:

- RCA₀ is a weak axiom system,
- Ax is a set existence axiom, and
- **Thm** is a familiar non-set theoretic theorem.

What's the point?

Work in reverse mathematics can:

- categorize the logical strength of theorems in a precise manner.
- distinguish between different proofs of theorems.
- provide insight into the foundation of mathematics.
- utilize and contribute to disciplines of mathematical logic including computability theory, proof theory, models of arithmetic, etc.

Second Order Arithmetic Z₂

Language:

Natural number variables: x, y, z Set variables: X, Y, Z

Second Order Arithmetic Z_2

Language:

Natural number variables: x, y, z Set variables: X, Y, Z

Axioms:

 Arithmetic axioms of N: (0, 1, +, ×, =, and < behave as usual)

Second Order Arithmetic Z_2

Language:

Natural number variables: x, y, z Set variables: X, Y, Z

Axioms:

- Arithmetic axioms of N:
 (0, 1, +, ×, =, and < behave as usual)
- The second order induction scheme:

 $(\phi(\mathbf{0}) \land \forall n \, (\phi(n) \rightarrow \phi(n+1))) \rightarrow \forall n \, (\phi(n)),$

where ϕ is any formula in $\mathsf{Z}_2.$

Second Order Arithmetic Z₂

Language:

Natural number variables: x, y, z Set variables: X, Y, Z

Axioms:

- ► Arithmetic axioms of N: (0, 1, +, ×, =, and < behave as usual)</p>
- The second order induction scheme:

 $(\phi(\mathbf{0}) \land \forall n \, (\phi(n) \to \phi(n+1))) \to \forall n \, (\phi(n)),$

```
where \phi is any formula in Z<sub>2</sub>.
```


$$\exists X \forall n \ (n \in X \longleftrightarrow \varphi(n))$$

where $\varphi(n)$ is any formula of Z_2 in which X does not occur freely.

Subsystems of Second Order Arithmetic

A **subsystem** of second order arithmetic is an axiom system consisting of the arithmetic axioms, the induction and comprehension schemas restricted to certain formulas, or has theorems of Z_2 as axioms.

There are five subsystems of particular interest, each with an increasing strength of set comprehension:

 RCA_0 WKL₀ ACA₀ ATR₀ Π_1^1 -CA₀

In reverse mathematics, RCA_0 is (usually) chosen as the *base* system, the weakest subsystem we will work in. The other four subsystems are given by amending RCA_0 with additional set existence axioms.

Some notation

Formulas of Z_2 can be categorized into two forms.

- Formulas that do not quantify over sets (called *arithmetic*)
 - Σ₀⁰ formulas are constructed from atomic formulas and bounded quantifiers.
 - Σ_k^0 formulas: $\exists n_1 \forall n_2 \dots \exists n_k \theta$, where $\theta \in \Sigma_0^0$
 - Π_k^0 formulas: $\forall n_1 \exists n_2 \dots \forall n_k \theta$, where $\theta \in \Sigma_0^0$
- Formulas that do quantify over sets:
 - Σ_k^1 formulas: $\exists X_1 \forall X_2 \dots \exists X_k \varphi$, where φ is arithmetic
 - Π_k^1 formulas: $\forall X_1 \exists X_2 \dots \forall X_k \varphi$, where φ is arithmetic

Recursive Comprehension and RCA₀

 RCA_0 is the subsystem of Z_2 whose axioms are:

- Arithmetic axioms of \mathbb{N}
- ► Σ_1^0 induction $(\phi(0) \land \forall n (\phi(n) \to \phi(n+1))) \to \forall n (\phi(n)),$ where ϕ is any Σ_1^0 formula
- Recursive comprehension If $\varphi \in \Sigma_1^0$ and $\psi \in \Pi_1^0$, then

$$\forall n (\phi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n (n \in X \leftrightarrow \phi(n))$$

The language of Z_2 can only express statements about natural numbers and sets of natural numbers.

However, we can *encode* mathematics using these tools.

The language of Z_2 can only express statements about natural numbers and sets of natural numbers.

However, we can *encode* mathematics using these tools.

Elements of countable collections of objects can be identified with natural numbers.

The language of Z_2 can only express statements about natural numbers and sets of natural numbers.

However, we can *encode* mathematics using these tools.

- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ is able to prove the arithmetic necessary for pairing functions.
- Functions and countable sequences correspond to sets of pairs.

The language of Z_2 can only express statements about natural numbers and sets of natural numbers.

However, we can *encode* mathematics using these tools.

- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ is able to prove the arithmetic necessary for pairing functions.
- Functions and countable sequences correspond to sets of pairs.
- RCA₀ can encode the integers, rational numbers, real numbers, countable Abelian groups, continuous real-valued functions, and many other mathematical objects.

What can RCA₀ prove?

Theorem: The following are provable in RCA₀.

- (1) The system \mathbb{Q} , +, -, \cdot , 0, 1, < is an ordered field.
- (2) The intermediate value theorem: If f is continuous on [0, 1]and f(0) < 0 < f(1), then there exists an x such that 0 < x < 1 and f(x) = 0.
- (3) If $f : \mathbb{N} \to 2$, then there is an infinite set X such that f is constant on X.
- (4) Every finite graph with maximum degree 2 and no cycles of odd length is bipartite (i.e. can be 2-colored).
- (5) Van der Waerden's theorem: For any c and k there exists n such that if f : n → c then there is a homogenous arithmetic progression of length k.

Weak König's Lemma

Weak König's Lemma

Statement: Big skinny trees are tall.

Weak König's Lemma

Statement: Big skinny trees are tall.

More formally: If T is an infinite tree in which each node is labeled 0 or 1, then T contains an infinite path.

Weak König's Lemma

Statement: Big skinny trees are tall.

More formally: If T is an infinite tree in which each node is labeled 0 or 1, then T contains an infinite path.

The subsystem WKL₀ is RCA₀ plus weak König's lemma.

There is an infinite computable binary tree with no infinite computable path, so $RCA_0 \not\vdash WKL_0$.

Some Reverse Mathematics!

Theorem: (RCA₀) *The following are equivalent:* (1) WKL₀

- (2) If f and g are one-to-one functions from N to N and Range(f) ∩ Range(g) = Ø, then there exists a set X such that Range(f) ⊂ X and X ∩ Range(g) = Ø.
- (3) Every continuous function on [0, 1] attains a supremum.
- (4) The Heine-Borel theorem for [0, 1].
- (5) If every finite subgraph of G can be 2-colored, then G can be 2-colored.

Some Reverse Mathematics!

Theorem: (RCA₀) *The following are equivalent:* (1) WKL₀

- (2) If f and g are one-to-one functions from N to N and Range(f) ∩ Range(g) = Ø, then there exists a set X such that Range(f) ⊂ X and X ∩ Range(g) = Ø.
- (3) Every continuous function on [0, 1] attains a supremum.
- (4) The Heine-Borel theorem for [0, 1].
- (5) If every finite subgraph of G can be 2-colored, then G can be 2-colored.

The "standard trick" to show that **Thm** reverses to WKL₀ is to use (2); that is, show that $RCA_0 + Thm$ can find a separating set of two arbitrary injections with disjoint ranges.

Arithmetical Comprehension

ACA₀ is RCA₀ plus the arithmetical comprehension scheme: For any arithmetical formula $\varphi(n)$, then

$$\exists X \forall n \ (n \in X \longleftrightarrow \varphi(n))$$

Equivalently, the set $\{n \in \mathbb{N} \mid \varphi(n)\}$ exists.

Arithmetical Comprehension

ACA₀ is RCA₀ plus the arithmetical comprehension scheme: For any arithmetical formula $\varphi(n)$, then

$$\exists X \forall n \ (n \in X \longleftrightarrow \varphi(n))$$

Equivalently, the set $\{n \in \mathbb{N} \mid \varphi(n)\}$ exists.

Aside: One may want to consider the subsystem Σ_1^0 -CA₀, given by replacing recursive comprehension with Σ_1^0 comprehension in RCA₀.

Arithmetical Comprehension

ACA₀ is RCA₀ plus the arithmetical comprehension scheme: For any arithmetical formula $\varphi(n)$, then

$$\exists X \forall n \ (n \in X \longleftrightarrow \varphi(n))$$

Equivalently, the set $\{n \in \mathbb{N} \mid \varphi(n)\}$ exists.

Aside: One may want to consider the subsystem Σ_1^0 -CA₀, given by replacing recursive comprehension with Σ_1^0 comprehension in RCA₀.

However, $RCA_0 \vdash ACA_0 \longleftrightarrow \Sigma_1^0$ comprehension, so Σ_1^0 -CA₀ would be equivalent to ACA₀.

Mathematics in ACA₀

Theorem: (RCA₀) *The following are equivalent:* (1) ACA₀

- (2) If $f : \mathbb{N} \to \mathbb{N}$ is one-to-one, then Range(f) exists.
- (3) Every Cauchy sequence converges.
- (4) The Bolzano-Weierstraß theorem: Every bounded sequence of real numbers contains a convergent subsequence.
- (5) König's lemma: Every finitely branching infinite tree has an infinite path.

Mathematics in ACA₀

Theorem: (RCA₀) *The following are equivalent:* (1) ACA₀

- (2) If $f : \mathbb{N} \to \mathbb{N}$ is one-to-one, then Range(f) exists.
- (3) Every Cauchy sequence converges.
- (4) The Bolzano-Weierstraß theorem: Every bounded sequence of real numbers contains a convergent subsequence.
- (5) König's lemma: Every finitely branching infinite tree has an infinite path.

General rule of thumb: ACA_0 suffices for undergraduate math.

An example

Theorem: (RCA₀) *The following are equivalent:* (1) ACA₀

(2) Suppose H is a hypergraph with finite edges presented as a sequence of characteristic functions. If every finite partial hypergraph of H has a proper 2-coloring, then H has a proper 2-coloring.

An example

Theorem: (RCA₀) *The following are equivalent:* (1) ACA₀

(2) Suppose H is a hypergraph with finite edges presented as a sequence of characteristic functions. If every finite partial hypergraph of H has a proper 2-coloring, then H has a proper 2-coloring.

The idea of the proof:

 $(1) \rightarrow (2)$: For every *m*, there is a least 2-coloring of the vertices v_0, \ldots, v_m that can be extended to a proper 2-coloring of every finite partial hypergraph. Nesting these least 2-colorings yields a 2-coloring of all of *H* that is arithmetically definable.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Given an arbitrary injection f, we want to construct H so that a proper 2-coloring of H encodes the range of f.

Arithmetical Transfinite Recursion

 ${\sf ATR}_0$ is the subsystem given by adding to ${\sf RCA}_0$ axioms that allow for iteration of arithmetical comprehension along any well-ordering.

A tool for proofs:

Theorem: (ATR₀) If $\psi(X)$ is a Σ_1^1 formula that is only satisfied by well-ordered sets, then there is a well-ordering β such that $\psi(X)$ implies $X < \beta$.

Theorem: (RCA₀) *The following are equivalent:* (1) ATR₀

- (2) If α and β are well-orderings, then $\alpha \leq \beta$ or $\beta \leq \alpha$.
- (3) Lusin's separation theorem: Any two disjoint analytic sets can be separated by a Borel set.
- (4) Every countable reduced Abelian *p*-group has an Ulm resolution.

Π_1^1 comprehension

 $\Pi^1_1\text{-}\mathsf{CA}_0$ is RCA_0 plus the Π^1_1 comprehension scheme:

We can assert the existence of the set

 $\{n \in \mathbb{N} \mid \psi(n)\},\$

where ψ is a Π_1^1 formula.

Theorem: (RCA₀) The following are equivalent: (1) Π_1^1 -CA₀

- (2) If $\langle T_n \rangle_{n \in \mathbb{N}}$ is a sequence of trees in $\mathbb{N}^{<\mathbb{N}}$, then there is a function $f : \mathbb{N} \to 2$ such that f(n) = 1 if and only if T_n contains an infinite path.
- (3) Every countable Abelian group is the direct sum of a divisible group and a reduced group.

To reverse **Thm** to Π_1^1 -CA₀, the usual trick is to first show $RCA_0 \vdash \text{Thm} \rightarrow ACA_0$, then show $ACA_0 \vdash \text{Thm} \rightarrow \Pi_1^1$ -CA₀.

An abbreviated list of references

- Caleb Davis, Jeffry L. Hirst, Jake Pardo, and Tim Ransom, *Reverse Mathematics and colorings of hypergraphs*, Archive for Mathematical Logic 58 (2018), 575–585. DOI 10.1007/s00153-018-0654-z.
- Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181–196, DOI 10.1090/conm/106/1057822. MR1057822
- [3] Saharon Shelah, Primitive recursive bounds for van der Waerden numbers, Journal of the American Mathematical Society 1 (1988), no. 3, 683–683, DOI 10.1090/s0894-0347-1988-0929498-x.
- [4] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009. DOI 10.1017/CBO9780511581007.