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Preliminaries

An axiom system is a collection of statements taken as true.
Using these axioms, we then deduce mathematical theorems.

If we can prove a theorem Thm from an axiom system T, we write

T ` Thm

If an additional axiom Ax is needed to prove Thm, we write

T + Ax ` Thm or T ` Ax −→ Thm



Motivation

Suppose we are working in a weak axiom system B that proves
Thm1 but not Thm2:

B ` Thm1 B 6` Thm2

If we use an additional axiom Ax1 and show

B+ Ax1 ` Thm2,

we can say that Thm2 requires more “strength” to prove.

This is not a precise measurement of logical strength.
Ax1 may be too powerful to give any useful insight in how to
properly compare Thm1 and Thm2.
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Improving this measure

Since B+ Ax1 ` Thm2, then

B ` Ax1 −→ Thm2

Suppose we can show B+ Thm2 ` Ax1; that is,

B ` Thm2 −→ Ax1.

We call this reversing Thm2 to Ax1 and we conclude that Ax1
and Thm2 are provably equivalent over B.

B ` Ax1 ←→ Thm2
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Improving this measure

Let’s consider another theorem Thm3.

Suppose we find another axiom Ax2 and show

B ` Ax2 ←→ Thm3

What can we say about the relationship between Thm1, Thm2,
and Thm3?

For the relationship between Thm2 and Thm3, we need the
comparison of Ax1 and Ax2.
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Reverse Mathematics

Goal: Determine which set existence axioms are needed to prove
familiar theorems.

Method: Prove results of the form

RCA0 ` Thm and RCA0 ` Ax←→ Thm

where:

I RCA0 is a weak axiom system,

I Ax is a set existence axiom, and

I Thm is a familiar non-set theoretic theorem.



What’s the point?

Work in reverse mathematics can:

I categorize the logical strength of theorems in a precise
manner.

I distinguish between different proofs of theorems.

I provide insight into the foundation of mathematics.

I utilize and contribute to disciplines of mathematical logic –
including computability theory, proof theory, models of
arithmetic, etc.



Second Order Arithmetic Z2

Language:
Natural number variables: x , y , z Set variables: X , Y , Z

Axioms:

I Arithmetic axioms of N:
(0, 1, +, ×, =, and < behave as usual)

I The second order induction scheme:

(ϕ(0)∧ ∀n (ϕ(n)→ ϕ(n + 1)))→ ∀n (ϕ(n)),

where ϕ is any formula in Z2.

I Set comprehension:

∃X∀n (n ∈ X ←→ ϕ(n))

where ϕ(n) is any formula of Z2 in which X does not occur
freely.
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Subsystems of Second Order Arithmetic

A subsystem of second order arithmetic is an axiom system
consisting of the arithmetic axioms, the induction and
comprehension schemas restricted to certain formulas, or has
theorems of Z2 as axioms.

There are five subsystems of particular interest, each with an
increasing strength of set comprehension:

RCA0 WKL0 ACA0 ATR0 Π1
1-CA0

In reverse mathematics, RCA0 is (usually) chosen as the base
system, the weakest subsystem we will work in. The other four
subsystems are given by amending RCA0 with additional set
existence axioms.



Some notation

Formulas of Z2 can be categorized into two forms.

I Formulas that do not quantify over sets (called arithmetic)
I Σ0

0 formulas are constructed from atomic formulas and
bounded quantifiers.

I Σ0
k formulas: ∃n1∀n2 . . . ∃nkθ, where θ ∈ Σ0

0

I Π0
k formulas: ∀n1∃n2 . . . ∀nkθ, where θ ∈ Σ0

0

I Formulas that do quantify over sets:
I Σ1

k formulas: ∃X1∀X2 . . . ∃Xkϕ, where ϕ is arithmetic

I Π1
k formulas: ∀X1∃X2 . . . ∀Xkϕ, where ϕ is arithmetic



Recursive Comprehension and RCA0

RCA0 is the subsystem of Z2 whose axioms are:

I Arithmetic axioms of N

I Σ0
1 induction

(ϕ(0)∧ ∀n (ϕ(n)→ ϕ(n + 1)))→ ∀n (ϕ(n)),
where ϕ is any Σ0

1 formula

I Recursive comprehension
If ϕ ∈ Σ0

1 and ψ ∈ Π0
1, then

∀n (ϕ(n)↔ ψ(n))→ ∃X∀n (n ∈ X ↔ ϕ(n))



Coding

The language of Z2 can only express statements about natural
numbers and sets of natural numbers.

However, we can encode mathematics using these tools.

I Elements of countable collections of objects can be identified
with natural numbers.

I RCA0 is able to prove the arithmetic necessary for pairing
functions.

I Functions and countable sequences correspond to sets of
pairs.

I RCA0 can encode the integers, rational numbers, real
numbers, countable Abelian groups, continuous real-valued
functions, and many other mathematical objects.



Coding

The language of Z2 can only express statements about natural
numbers and sets of natural numbers.

However, we can encode mathematics using these tools.

I Elements of countable collections of objects can be identified
with natural numbers.

I RCA0 is able to prove the arithmetic necessary for pairing
functions.

I Functions and countable sequences correspond to sets of
pairs.

I RCA0 can encode the integers, rational numbers, real
numbers, countable Abelian groups, continuous real-valued
functions, and many other mathematical objects.



Coding

The language of Z2 can only express statements about natural
numbers and sets of natural numbers.

However, we can encode mathematics using these tools.

I Elements of countable collections of objects can be identified
with natural numbers.

I RCA0 is able to prove the arithmetic necessary for pairing
functions.

I Functions and countable sequences correspond to sets of
pairs.

I RCA0 can encode the integers, rational numbers, real
numbers, countable Abelian groups, continuous real-valued
functions, and many other mathematical objects.



Coding

The language of Z2 can only express statements about natural
numbers and sets of natural numbers.

However, we can encode mathematics using these tools.

I Elements of countable collections of objects can be identified
with natural numbers.

I RCA0 is able to prove the arithmetic necessary for pairing
functions.

I Functions and countable sequences correspond to sets of
pairs.

I RCA0 can encode the integers, rational numbers, real
numbers, countable Abelian groups, continuous real-valued
functions, and many other mathematical objects.



What can RCA0 prove?

Theorem: The following are provable in RCA0.

(1) The system Q,+,−, ·, 0, 1,< is an ordered field.

(2) The intermediate value theorem: If f is continuous on [0, 1]
and f (0) < 0 < f (1), then there exists an x such that
0 < x < 1 and f (x) = 0.

(3) If f : N→ 2, then there is an infinite set X such that f is
constant on X .

(4) Every finite graph with maximum degree 2 and no cycles of
odd length is bipartite (i.e. can be 2-colored).

(5) Van der Waerden’s theorem: For any c and k there exists n
such that if f : n→ c then there is a homogenous arithmetic
progression of length k .



Weak König’s Lemma

Weak König’s Lemma

Statement: Big skinny trees are tall.

More formally: If T is an infinite tree in which each node is
labeled 0 or 1, then T contains an infinite path.

The subsystem WKL0 is RCA0 plus weak König’s lemma.

There is an infinite computable binary tree with no infinite
computable path, so RCA0 6`WKL0.
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Some Reverse Mathematics!

Theorem: (RCA0) The following are equivalent:

(1) WKL0

(2) If f and g are one-to-one functions from N to N and
Range(f ) ∩ Range(g) = ∅, then there exists a set X such that
Range(f ) ⊂ X and X ∩ Range(g) = ∅.

(3) Every continuous function on [0, 1] attains a supremum.

(4) The Heine-Borel theorem for [0, 1].

(5) If every finite subgraph of G can be 2-colored, then G can be
2-colored.

The “standard trick” to show that Thm reverses to WKL0 is to
use (2); that is, show that RCA0 + Thm can find a separating set
of two arbitrary injections with disjoint ranges.
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Arithmetical Comprehension

ACA0 is RCA0 plus the arithmetical comprehension scheme:

For any arithmetical formula ϕ(n), then

∃X∀n (n ∈ X ←→ ϕ(n))

Equivalently, the set {n ∈ N | ϕ(n)} exists.

Aside: One may want to consider the subsystem Σ0
1-CA0, given by

replacing recursive comprehension with Σ0
1 comprehension in RCA0.

However, RCA0 ` ACA0 ←→ Σ0
1 comprehension, so Σ0

1-CA0 would
be equivalent to ACA0.
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Mathematics in ACA0

Theorem: (RCA0) The following are equivalent:

(1) ACA0

(2) If f : N→ N is one-to-one, then Range(f ) exists.

(3) Every Cauchy sequence converges.

(4) The Bolzano-Weierstraß theorem: Every bounded sequence of
real numbers contains a convergent subsequence.

(5) König’s lemma: Every finitely branching infinite tree has an
infinite path.

General rule of thumb: ACA0 suffices for undergraduate math.
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An example

Theorem: (RCA0) The following are equivalent:

(1) ACA0

(2) Suppose H is a hypergraph with finite edges presented as a
sequence of characteristic functions. If every finite partial
hypergraph of H has a proper 2-coloring, then H has a proper
2-coloring.

The idea of the proof:
(1)→(2): For every m, there is a least 2-coloring of the vertices
v0, . . . , vm that can be extended to a proper 2-coloring of every
finite partial hypergraph. Nesting these least 2-colorings yields a
2-coloring of all of H that is arithmetically definable.
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The reversal: 2-coloring implies ACA0

Given an arbitrary injection f , we want to construct H so that a
proper 2-coloring of H encodes the range of f .

Example: Suppose f (0) = 1, f (2) = 0, and 2 6∈ Range(f ).
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Arithmetical Transfinite Recursion

ATR0 is the subsystem given by adding to RCA0 axioms that allow
for iteration of arithmetical comprehension along any well-ordering.

A tool for proofs:
Theorem: (ATR0) If ψ(X ) is a Σ1

1 formula that is only satisfied by
well-ordered sets, then there is a well-ordering β such that ψ(X )
implies X < β.

Theorem: (RCA0) The following are equivalent:

(1) ATR0

(2) If α and β are well-orderings, then α 6 β or β 6 α.

(3) Lusin’s separation theorem: Any two disjoint analytic sets can
be separated by a Borel set.

(4) Every countable reduced Abelian p-group has an Ulm
resolution.



Π1
1 comprehension
Π1
1-CA0 is RCA0 plus the Π1

1 comprehension scheme:

We can assert the existence of the set

{n ∈ N | ψ(n)},

where ψ is a Π1
1 formula.

Theorem: (RCA0) The following are equivalent:

(1) Π1
1-CA0

(2) If 〈Tn〉n∈N is a sequence of trees in N<N, then there is a
function f : N→ 2 such that f (n) = 1 if and only if Tn

contains an infinite path.

(3) Every countable Abelian group is the direct sum of a divisible
group and a reduced group.

To reverse Thm to Π1
1-CA0, the usual trick is to first show

RCA0 ` Thm→ ACA0, then show ACA0 ` Thm→ Π1
1-CA0.
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