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Reverse mathematics

Reverse mathematics uses a hierarchy of axioms of second order
arithmetic to measure the strength of theorems.

The language has variables for natural numbers and sets of natural
numbers.

The base system, RCAy, includes
» arithmetic axioms of N (4, -, work as expected)
» an induction scheme restricted to Z(l) formulas, and

» recursive comprehension:
sets with computable characteristic functions exists



ACA,

The system ACAq adds to RCAg the comprehension scheme for
arithmetically definable sets:

IXVn(n € X < (n))

where P (n) is a formula whose quantifiers are restricted to natural
numbers and in which X does not occur freely.

Theorem: The following are provably equivalent over RCAg.

(1) ACAp

(2) If g is an injective mapping from N to N, then
Range(g) ={n:dmg(m) = n} exists.

(3) Every bounded sequence of real numbers has a convergent
subsequence.

(4) Every countable commutative ring has a maximal ideal.

(5) Konig's lemma: Every infinite, finitely branching tree has an
infinite path.



WKLy

The system WKL adds Weak Konig's Lemma to RCA.

Weak Konig's Lemma: If T C 2<Nis an infinite tree, then T has
an infinite path.

Theorem: The following are provably equivalent over RCAg.

(1) WKLo

(2) If f and g are injective functions from N into N and

Range(f) N Range(g) = 0, then there is a set X such that
Range(f) € X and X N Range(g) = 0.

(3) Every covering of a compact metric space by a sequence of
open sets has a finite subcovering.

(4) Every continuous real-valued function on [0, 1] is Riemann
integrable.

(5) Every countable commutative ring has a prime ideal.



Hypergraphs

A hypergraph consists of a set of vertices V ={v; | i € N} and a
collection of edges E. Edges of a hypergraph may contain any
amount of vertices, finite or infinite.

The edges may be presented in different ways, depending on the
cardinality of the edges.



Hypergraphs

A hypergraph consists of a set of vertices V ={v; | i € N} and a
collection of edges E. Edges of a hypergraph may contain any
amount of vertices, finite or infinite.

The edges may be presented in different ways, depending on the
cardinality of the edges.

If an edge is finite, it may be encoded by a single number. If all
edges are finite, then E may be either a set or a sequence of the
codes for the edges.

Finite edges and infinite edges can be represented by a sequence of
characteristic functions (x;);en, where x;(n) =1 if and only if v, is
in the /" edge.



Representations of finite edges

For hypergraph with finite edges, changing the representation of
the edges requires different set comprehension.

Set of codes of the edges
RCA, ACAq
Sequence of codes of the edges

RCA, ACA,

Sequence of characteristic functions

Working in ACAg or any stronger system, we may assume the
edges are presented in any manner.

In the absence of arithmetical comprehension, the presentation
choice matters.



Coloring finite edges

A vertex coloring of a hypergraph is proper if no edge with more
than one vertex is monochromatic.

Theorem: (RCAg) For k > 2, the following are equivalent.

(1) WKLo

(2) Let G be a graph. If every partial graph of of G has a proper
k-coloring, then G has a proper k-coloring. (Hirst [4])

(3) Let H be a hypergraph with a sequence of finite edges. For
k > 2, if every finite partial hypergraph of H has a proper
k-coloring, then H has a proper k-coloring.

Statement (3) generalizes statement (2) to the hypergraph setting,
for hypergraphs with sequences (or sets) of finite edges.



Coloring finite edges

A vertex coloring of a hypergraph is strong if the coloring is
injective on each edge.

Theorem: (RCAg) The following are equivalent.
(1) WKLo

(2) Let H be a hypergraph with any edge representation. If for
some k every finite partial hypergraph of H has a strong
k-coloring, then H has a strong k -coloring.

(3) Let H be a hypergraph with a set of finite sets for edges. If
every finite partial hypergraph of H has a strong 3-coloring,
then H has a strong k-coloring for some k.

(4) Let H be a hypergraph with a sequence of finite sets for

edges. If every finite partial hypergraph of H has a strong
2-coloring, then H has a strong k-coloring for some k.



Coloring finite edges

Vertex colorings of hypergraphs do differ from graphs.

Theorem: (RCAp) For k > 2, the following are equivalent.

(1) ACAo

(2) Let H be a hypergraph with finite edges presented as a
sequence of characteristic functions. If every finite partial

hypergraph of H has a proper k-coloring, then H has a proper
k-coloring.

Theorem: (RCAg) For k > 2, the following are equivalent.
(1) WKLo
(2) Let G be a graph with finite edges presented as a sequence of

characteristic functions. If every finite partial graph of G has
a proper k-coloring, then H has a proper k-coloring.



Coloring infinite edges

Finite vertex colorings of hypergraph with infinite edges are not
arithmetically definable.

Theorem: (RCAg) Fix k > 2. The following are equivalent.
(1) TTI3-CAg, the comprehension scheme for TT} definable sets.

(2) If (H;)ien is a sequence of hypergraphs, then there is a
function f : N — 2 such that f(i/) =1 if and only if H; has a
proper k-coloring.



Conflict-free colorings

A vertex coloring is called conflict-free if each edge contains a
color that appears only once in that edge.

Every conflict-free coloring is proper. While hypergraphs with
infinite edges may have a finite proper coloring, a finite
conflict-free coloring may not exist.

The M-graph (the Matroshka graph) is the hyergraph with vertex
set N and edges {E; : j € N}, where E; = {k :j < k}.

Every finite partial subhypergraph of the M-graph has a
conflict-free 2-coloring.

However, RCAg can prove that no finite coloring of the M-graph is
conflict-free. See section 4 of [2] and section 1 of [1].



Enumerated hypergraphs

An enumerated hypergraph is a set V C N of vertices and a
sequence (ej)jen of enumerations of edges such that
e : N — V U{#] for each i.

The vertices of the edge represented by e; are those v € V such
that dne;j(n) = v.

Edges of a hypergraph presented by a characteristic function
corresponds to computable sets.

The edges of an e-hypergraph correspond to computably
enumerable sets.



Enumerated hypergraphs

Constructing a hypergraph with edges presented by characteristic
function when given an e-hypergraph, or vice versa, requires
different amounts of set comprehension.

Sequence of characteristic functions

RCA, lT ACA,

Sequence of enumeration functions



Enumerated hypergraphs

Constructing a hypergraph with edges presented by characteristic
function when given an e-hypergraph, or vice versa, requires
different amounts of set comprehension.

Sequence of characteristic functions

RCA, lT ACA,

Sequence of enumeration functions

This provides a motivation to investigate colorings of
e-hypergraphs and comparing to the previous results.



Coloring e-hypergraphs

Theorem: (RCA() The following are equivalent:

(1) WKLy.

(2) Let H be an e-hypergraph. If every e-hypergraph fragment of
H has a strong k-coloring, then H has a strong k-coloring.

(3) Let H be an e-hypergraph. If every e-hypergraph fragment of
H has a strong 2-coloring, then H has a strong k-coloring for
some k.

Theorem: (RCAg) The following are equivalent.
(1) ACA
(2) Let H be a e-hypergraph such that the size of each edge is

bounded by some function. If for some k every fragment of H
has a proper k-coloring, then H has a proper k-coloring.

(3) Statement (2) with “proper” replaced by “conflict-free.”



At most b edges

A hypergraph with edges represented by a sequence of
characteristic functions (X;);en has at most b edges if for any b+ 1
functions there are indices i and j such that for all n x;(n) = x;(n).

Theorem: (RCAg) Suppose H is a hypergraph with at most b
edges. There is a finite sequence ng, . .., n, with k < b such that
every edge of H occurs exactly once in the list Xn, ..., Xn,-



At most b edges

A hypergraph with edges represented by a sequence of
characteristic functions (X;);en has at most b edges if for any b+ 1
functions there are indices i and j such that for all n x;(n) = x;(n).

Theorem: (RCAg) Suppose H is a hypergraph with at most b
edges. There is a finite sequence ng, . .., n, with k < b such that
every edge of H occurs exactly once in the list Xn, ..., Xn,-

An e-hypergraph with a sequence of edge enumerations (e;);cn has
at most b edges if for any collection of b+ 1 enumerations there
are indices / and j such that Ym3n(e;(m) = ej(n) A ej(m) = e;(n)).

Theorem: (RCAg) The following are equivalent.
(1) /%9, the induction scheme for £3 formulas.

(2) Let H be an e-hypergraph with at most b disjoint edges.
There is a finite sequence ng, . . ., n, with k < b such that
every edge of H occurs exactly once in the list ey, ..., ep,.



At most b edges

Theorem: (RCAg) The following are equivalent.
(1) /%9, the induction scheme for £3 formulas.

(2) Let H be an e-hypergraph with at most b disjoint edges.
There is a finite sequence ng, ..., nx with kK < b such that
every edge of H occurs exactly once in the list ey, ..., ep,.

Question: Does the equivalence still hold is the edges are not
necessarily disjoint?

Response: If so, it is not obvious.



An open problem

Conjecture: (RCAg) The following are equivalent.
(1) BTIY: Let ¥ be a T3 formula. For any fixed v,

Vx < udyd(x,y) — IvVx < udy < vip(x, y)

(2) Let H be an e-hypergraph with at most b edges. There is a
finite sequence ng, ..., nx with k < b such that every edge of
H occurs exactly once in the list e, ..., ep,.
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