SETS AND LOGIC (MHF 3202) - PRACTICE MIDTERM 1

Equivalences

(1) (De Morgan's laws) $\neg (P \land Q)$ is equivalent to $\neg P \lor \neg Q$. $\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$. (2) (Commutative laws) $P \wedge Q$ is equivalent to $Q \wedge P$. $P \lor Q$ is equivalent to $Q \lor P$. (3) (Associative laws) $P \wedge (Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$. $P \lor (Q \lor R)$ is equivalent to $(P \lor Q) \lor R$. (4) (Idempotent laws) $P \wedge P$ is equivalent to P. $P \lor P$ is equivalent to P. (5) (Distributive laws) $P \wedge (Q \vee R)$ is equivalent to $(P \wedge Q) \vee (P \wedge R)$. $P \lor (Q \land R)$ is equivalent to $(P \lor Q) \land (P \lor R)$. (6) (Absorption laws) $P \lor (P \land Q)$ is equivalent to P. $P \wedge (P \vee Q)$ is equivalent to P. (7) (Double Negation law) $\neg \neg P$ is equivalent to P. (8) (Tautology laws) $P \wedge$ (a tautology) is equivalent to P. $P \lor$ (a tautology) is a tautology. \neg (a tautology) is a contradiction. (9) (Contradiction laws) $P \wedge$ (a contradiction) is a contradiction. $P \lor$ (a contradiction) is equivalent to P. \neq (a contradiction) is a tautology. (10) (Conditional law) $P \to Q$ is equivalent to $\neg P \lor Q$.

Question 1. Circle the correct answer.

(1) (1 point)

Is the following valid reasoning?

"If I answer this question correctly, I will get a point. Therefore I will get a point."

True.

False.

(2) (1 point)

Is the formula $(P \lor Q) \land \neg Q$ equivalent to $P \land \neg Q$?

True.

False.

(3) (1 point)

Is the emptyset the truth set for the statement P(x) saying "x is an even prime number." in the universe of natural numbers?

True.

False.

(4) (1 point)

Let A, B, C be sets. Is the following equality true?

 $A \setminus B \ \cup \ B \setminus C = A \setminus C$

True.

False.

(5) (1 point)

Is there more than one free variable in the following statement? $w \in \{x: x = 2k + 1\}$

True.

False.

Question 2. (10 points) Use a truth table to verify the Absorption law $P \lor (P \land Q)$ is equivalent to P.

Question 3. (15 point) Let A, B, C be sets. Use logical equivalences to show that $(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C).$

Question 4. (15 points) Make a truth table for the formula

 $((P \to Q) \land (Q \to R)) \to (P \to R).$

Decide whether the formula above is a tautology, contradiction, or neither.

Question 5.

- (a) (2 points) Analyze the logical form of the following statement: Both having a fever and having a headache are sufficient conditions for George to go to the doctor.
- (b) (3 points) Translate the following statement into idiomatic English.

 $\exists x \forall y P(x, y),$

where P(x, y) means "x is a parent of y".