SETS AND LOGIC (MHF 3202) - PRACTICE MIDTERM 2

Equivalences

(1) (De Morgan's laws) $\neg (P \land Q)$ is equivalent to $\neg P \lor \neg Q$. $\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$. (2) (Commutative laws) $P \wedge Q$ is equivalent to $Q \wedge P$. $P \lor Q$ is equivalent to $Q \lor P$. (3) (Associative laws) $P \wedge (Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$. $P \lor (Q \lor R)$ is equivalent to $(P \lor Q) \lor R$. (4) (Idempotent laws) $P \wedge P$ is equivalent to P. $P \lor P$ is equivalent to P. (5) (Distributive laws) $P \wedge (Q \vee R)$ is equivalent to $(P \wedge Q) \vee (P \wedge R)$. $P \lor (Q \land R)$ is equivalent to $(P \lor Q) \land (P \lor R)$. (6) (Absorption laws) $P \lor (P \land Q)$ is equivalent to P. $P \wedge (P \vee Q)$ is equivalent to P. (7) (Double Negation law) $\neg \neg P$ is equivalent to P. (8) (Tautology laws) $P \wedge$ (a tautology) is equivalent to P. $P \lor$ (a tautology) is a tautology. \neg (a tautology) is a contradiction. (9) (Contradiction laws) $P \wedge$ (a contradiction) is a contradiction. $P \lor$ (a contradiction) is equivalent to P. \neq (a contradiction) is a tautology. (10) (Quantifier Negation laws) $\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$.

 $\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$.

Question 1. Circle the correct answer.

(1) (1 point)

Let I be an index set. Suppose that for every $i \in I$ we have $A_i \subseteq B_i$. Then $\bigcup_{i \in I} A_i \subseteq \bigcup_{i \in I} B_i$.

True.

False.

Let n be an integer. Then $n^2 - n + 1$ is even.

(2) True.

False.

(3) (1 point)

There are exactly two real numbers x such that $x^2 = x$.

True.

False.

If $A \cap B = \emptyset$ then $A \not\subseteq B$ and $B \not\subseteq A$.

(4) True.

False.

(5) For any real number $x, x^3 > 0$ if and only if x > 0.

True.

False.

Question 2. For integers m and n, let m|n denote that m divides n. Prove that $\{n \in \mathbb{Z} : 12|n\} \subseteq \{n \in \mathbb{Z} : 3|n \lor 4|n\}.$

Question 3. Suppose that \mathcal{F} and \mathcal{G} are non-empty families of sets. Prove that if $\mathcal{F} \subset \mathcal{G}$ then $\bigcap G \subset \bigcap F$.

Question 4. Suppose x and y are real numbers and $x \neq 0$. Prove that $y + \frac{1}{x} = 1 + \frac{y}{x}$ if and only if x = 1 or y = 1.

Question 5. Prove that there is a unique set A such that $A\Delta B = B = B\Delta A$ for every set B.