SETS AND LOGIC (MHF 3202) - PRACTICE MIDTERM 2

Equivalences

(1) (De Morgan's laws)
$\neg(P \wedge Q)$ is equivalent to $\neg P \vee \neg Q$.
$\neg(P \vee Q)$ is equivalent to $\neg P \wedge \neg Q$.
(2) (Commutative laws)
$P \wedge Q$ is equivalent to $Q \wedge P$.
$P \vee Q$ is equivalent to $Q \vee P$.
(3) (Associative laws)
$P \wedge(Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$.
$P \vee(Q \vee R)$ is equivalent to $(P \vee Q) \vee R$.
(4) (Idempotent laws)
$P \wedge P$ is equivalent to P.
$P \vee P$ is equivalent to P.
(5) (Distributive laws)
$P \wedge(Q \vee R)$ is equivalent to $(P \wedge Q) \vee(P \wedge R)$.
$P \vee(Q \wedge R)$ is equivalent to $(P \vee Q) \wedge(P \vee R)$.
(6) (Absorption laws)
$P \vee(P \wedge Q)$ is equivalent to P. $P \wedge(P \vee Q)$ is equivalent to P.
(7) (Double Negation law)
$\neg \neg P$ is equivalent to P.
(8) (Tautology laws)
$P \wedge$ (a tautology) is equivalent to P.
$P \vee$ (a tautology) is a tautology.
\neg (a tautology) is a contradiction.
(9) (Contradiction laws)
$P \wedge$ (a contradiction) is a contradiction.
$P \vee$ (a contradiction) is euqivalent to P.
$\neq($ a contradiction $)$ is a tautology.
(10) (Quantifier Negation laws)
$\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$.
$\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$.

Question 1. Circle the correct answer.
(1) (1 point)

Let I be an index set. Suppose that for every $i \in I$ we have $A_{i} \subseteq B_{i}$. Then $\bigcup_{i \in I} A_{i} \subseteq \bigcup_{i \in I} B_{i}$.

True.
False.

Let n be an integer. Then $n^{2}-n+1$ is even.
(2)

True.
False.
(3) (1 point)

There are exactly two real numbers x such that $x^{2}=x$.
True.
False.

If $A \cap B=\emptyset$ then $A \nsubseteq B$ and $B \nsubseteq A$.
(4) True.

False.
(5) For any real number $x, x^{3}>0$ if and only if $x>0$.

True.
False.
Question 2. For integers m and n, let $m \mid n$ denote that m divides n. Prove that $\{n \in \mathbb{Z}: 12 \mid n\} \subseteq\{n \in \mathbb{Z}: 3|n \vee 4| n\}$.

Question 3. Suppose that \mathcal{F} and \mathcal{G} are non-empty families of sets. Prove that if $\mathcal{F} \subset \mathcal{G}$ then $\bigcap G \subset \bigcap F$.
Question 4. Suppose x and y are real numbers and $x \neq 0$. Prove that $y+\frac{1}{x}=1+\frac{y}{x}$ if and only if $x=1$ or $y=1$.
Question 5. Prove that there is a unique set A such that $A \Delta B=B=B \Delta A$ for every set B.

