CURRICULUM VITA

Dixi Wang

University of Florida Department of Mathematics Little Hall 358, Gainesville, FL 32603

Phone: (425) 499-1173 Email: <u>dixiwang@ufl.edu</u>

EDUCATION

08/2019 – graduating 05/2024	 Ph.D. in Mathematics University of Florida, Gainesville, Florida Advisor: Cheng Yu Fields: Partial Differential Equations, Fluid Dynamics, Mathematical Theory of Deep learning Dissertation: "Vanishing Viscosity Limit and Learning Operators of Weak Solutions to the Navier-Stokes Equations"
09/2017-07/2019	<i>M.Phil. in Mathematics</i> The Chinese University of Hong Kong, Hong Kong, China Advisor: Renjun Duan
08/2013-07/2017	 Fields: Partial Differential Equations, Kinetic Theory B.S. in Mathematics, Computational and Applied Mathematics Stream The Chinese University of Hong Kong, Hong Kong, China

RESEARCH INTERESTS

Nonlinear Partial Differential Equations, Fluid Dynamics, Mathematical Foundations of Deep Learning, Statistical Learning Theory.

PUBLICATIONS AND PREPRINTS

- Wang, D., and Yu, C. "Deep learning techniques for identifying weak solutions to the Navier-Stokes equations", preprint, 2023.
- Wang, D., Yu, C., and Zhao, X., "Inviscid limit of the inhomogeneous incompressible Navier-Stokes equations under the weak Kolmogorov hypothesis in ℝ³", Dyn. Partial Differ. Equ. 19 (2022), no. 3, 191–206.

AWARDS AND FELLOWSHIPS

- Eleanor Ewing Ehrlich in Teaching Award, University of Florida, 2022
- Graduate School Fellowship, University of Florida, 2019-2022
- Undergraduate Full Scholarship, The Chinese University of Hong Kong, 2013-2017

PRESENTATIONS

- PDE seminar, The Chinese University of Hong Kong, June 2023.
- *Workshop on Nonlinear PDEs: Stability Analysis and Multiscale Applications*, University of Pittsburgh, 21-23 April 2023.

TEACHING EXPERIENCE

University of Florida

Teaching Assistant, Fall 2019 – Fall 2023 Courses: Calculus 1, 2 and 3, Computational Linear Algebra

The Chinese University of Hong Kong

Instructor, Summer 2018 Course: Ordinary Differential Equations

Teaching Assistant, Fall 2017 – Spring 2019 Courses: Calculus 1 and 2, Linear Algebra, Probability

TECHNICAL SKILLS

Programming Languages: Python, MATLAB **Tech Stack and Tools**: PyTorch, TensorFlow