
Foundations of Mathematics

Fall 2019

ii

Contents

1 Propositional Logic 1
1.1 The basic definitions . 1
1.2 Disjunctive Normal Form Theorem . 3
1.3 Proofs . 4
1.4 The Soundness Theorem . 11
1.5 The Completeness Theorem . 12
1.6 Completeness, Consistency and Independence . 14

2 Predicate Logic 17
2.1 The Language of Predicate Logic . 17
2.2 Models and Interpretations . 19
2.3 The Deductive Calculus . 21
2.4 Soundness Theorem for Predicate Logic . 24

3 Models for Predicate Logic 27
3.1 Models . 27
3.2 The Completeness Theorem for Predicate Logic . 27
3.3 Consequences of the completeness theorem . 31

4 Computability Theory 33
4.1 Introduction and Examples . 33
4.2 Finite State Automata . 34
4.3 Exercises . 37
4.4 Turing Machines . 38
4.5 Recursive Functions . 43
4.6 Exercises . 48

iii

iv CONTENTS

Chapter 1

Propositional Logic

1.1 The basic definitions

Propositional logic concerns relationships between sentences built up from primitive proposition symbols
with logical connectives.

The symbols of the language of predicate calculus are

1. Logical connectives: ¬, & , ∨,→,↔

2. Punctuation symbols: (,)

3. Propositional variables: A0, A1, A2,

A propositional variable is intended to represent a proposition which can either be true or false.
Restricted versions, L , of the language of propositional logic can be constructed by specifying a subset
of the propositional variables. In this case, let PVar(L) denote the propositional variables of L .

Definition 1.1.1. The collection of sentences, denoted Sent(L), of a propositional languageL is defined
by recursion.

1. The basis of the set of sentences is the set PVar(L) of propositional variables of L .

2. The set of sentences is closed under the following production rules:

(a) If A is a sentence, then so is (¬A).

(b) If A and B are sentences, then so is (A & B).

(c) If A and B are sentences, then so is (A∨ B).

(d) If A and B are sentences, then so is (A→ B).

(e) If A and B are sentences, then so is (A↔ B).

Notice that as long as L has at least one propositional variable, then Sent(L) is infinite. When there is
no ambiguity, we will drop parentheses.

In order to use propositional logic, we would like to give meaning to the propositional variables.
Rather than assigning specific propositions to the propositional variables and then determining their
truth or falsity, we consider truth interpretations.

Definition 1.1.2. A truth interpretation for a propositional language L is a function

I : PVar(L)→ {0, 1 } .

1

2 CHAPTER 1. PROPOSITIONAL LOGIC

If I(Ai) = 0, then the propositional variable Ai is considered represent a false proposition under this
interpretation. On the other hand, if I(Ai) = 1, then the propositional variable Ai is considered to
represent a true proposition under this interpretation.

There is a unique way to extend the truth interpretation to all sentences ofL so that the interpretation
of the logical connectives reflects how these connectives are normally understood by mathematicians.

Definition 1.1.3. Define an extension of a truth interpretation I : PVar(L)→ {0, 1 } for a propositional
language to the collection of all sentences of the language by recursion:

1. On the basis of the set of sentences, PVar(L), the truth interpretation has already been defined.

2. The definition is extended to satisfy the following closure rules:

(a) If I(A) is defined, then I(¬A) = 1− I(A).

(b) If I(A) and I(B) are defined, then I(A & B) = I(A) · I(B).

(c) If I(A) and I(B) are defined, then I(A∨ B) = max { I(A), I(B) }.

(d) If I(A) and I(B) are defined, then

I(A→ B) =

(

0 if I(A) = 1 and I(B) = 0,

1 otherwise.
(1.1)

(e) If I(A) and I(B) are defined, then I(A↔ B) = 1 if and only if I(A) = I(B).

Intuitively, tautologies are statements which are always true, and contradictions are ones which are
never true. These concepts can be defined precisely in terms of interpretations.

Definition 1.1.4. A sentenceϕ is a tautology for a propositional languageL if every truth interpretation
I has value 1 onϕ, I(ϕ) = 1. ϕ is a contradiction if every truth interpretation I has value 0 onϕ, I(ϕ) = 0.
Two sentences ϕ and ψ are logically equivalent, in symbols ϕ⇔ ψ, if every truth interpretation I
takes the same value on both of them, I(ϕ) = I(ψ). A sentence ϕ is satisfiable if there is some truth
interpretation I with I(ϕ) = 1.

The notion of logical equivalence is an equivalence relation; that is, it is a reflexive, symmetric
and transitive relation. The equivalence classes given by logical equivalence are infinite for non-trivial
languages (i.e., those languages containing at least one propositional variable). However, if the language
has only finitely many propositional variables, then there are only finitely many equivalence classes.

Notice that if L has n propositional variables, then there are exactly d = 2n truth interpretations,
which we may list as I = { I0, I1, . . . , Id−1 }. Since each Ii maps the truth values 0 or 1 to each of the n
propositional variables, we can think of each truth interpretation as a function from the set {0, . . . , n−1}
to the set {0, 1}. The collection of such functions can be written as {0, 1}n, which can also be interpreted
as the collection of binary strings of length n.

Each sentence ϕ gives rise to a function T Fϕ : I → {0, 1 } defined by T Fϕ(Ii) = Ii(ϕ). Informally,
T Fϕ lists the column under ϕ in a truth table. Note that for any two sentences ϕ and ψ, if T Fϕ = T Fψ
then ϕ and ψ are logically equivalent. Thus there are exactly 2d = 22n

many equivalence classes.

Lemma 1.1.5. The following pairs of sentences are logically equivalent as indicated by the metalogical
symbol⇔:

1. ¬¬A ⇔ A.

2. ¬A∨¬B ⇔ ¬(A & B).

3. ¬A & ¬B ⇔ ¬(A∨ B).

4. A→ B ⇔ ¬A∨ B.

1.2. DISJUNCTIVE NORMAL FORM THEOREM 3

5. A↔ B ⇔ (A→ B) & (B→ A).

Proof. Each of these statements can be proved using a truth table, so from one example the reader may
do the others. Notice that truth tables give an algorithmic approach to questions of logical equivalence.

A B (¬A) (¬B) ((¬A)∨ (¬B)) (A & B) (¬(A & B))

I0 0 0 1 1 1 0 1
I1 1 0 0 1 1 0 1
I2 0 1 1 0 1 0 1
I3 1 1 0 0 0 1 0

↑ ↑

Using the above equivalences, one could assume that ¬ and ∨ are primitive connectives, and define
the others in terms of them. The following list gives three pairs of connectives each of which is sufficient
to get all our basic list:

¬,∨
¬, &

¬,→

In logic, the word “theory” has a technical meaning, and refers to any set of statements, whether
meaningful or not.

Definition 1.1.6. A set Γ of sentences in a language L is satisfiable if there is some interpretation I
with I(ϕ) = 1 for all ϕ ∈ Γ . A set of sentences Γ logically implies a sentence ϕ, in symbols, Γ |= ϕ if for
every interpretation I , if I(ψ) = 1 for all ψ ∈ Γ , then I(ϕ) = 1. A (propositional) theory in a language
L is a set of sentences Γ ⊆ Sent(L) which is closed under logical implication.

Notice that a theory as a set of sentences matches with the notion of the theory of plane geometry
as a set of axioms. In studying that theory, we developed several models. The interpretations play the
role here that models played in that discussion. Here is an example of the notion of logical implication
defined above.

Lemma 1.1.7. { (A & B), (¬C) } |= (A∨ B).

1.2 Disjunctive Normal Form Theorem

In this section we will show that the language of propositional calculus is sufficient to represent every
possible truth function.

Definition 1.2.1.

1. A literal is either a propositional variable Ai or its negation ¬Ai .

2. A conjunctive clause is a conjunction of literals and a disjunctive clause is a disjunction of literals.
We will assume in each case that each propositional variable occurs at most once.

3. A propositional sentence is in disjunctive normal form if it is a disjunction of conjunctive clauses
and it is in conjunctive normal form if it is a conjunction of disjunctive clauses.

Lemma 1.2.2.

(i) For any conjunctive clause C = φ(A1, . . . , An), there is a unique interpretation IC : {A1, . . . , An} →
{0,1} such that IC(φ) = 1.

(ii) Conversely, for any interpretation I : {A1, . . . , An} → {0,1}, there is a unique conjunctive clause CI
(up to permutation of literals) such that I(CI) = 1 and for any interpretation J 6= I , J(CI) = 0.

4 CHAPTER 1. PROPOSITIONAL LOGIC

Proof. (i) Let

Bi =

�

Ai if C contains Ai as a conjunct

¬Ai if C contains ¬Ai as a conjunct
.

It follows that C = B1 & . . . & Bn. Now let IC(Ai) = 1 if and only if Ai = Bi . Then clearly I(Bi) = 1 for
i = 1, 2, . . . , n and therefore IC (C) = 1. To show uniqueness, if J(C) = 1 for some interpretation J , then
φ(Bi) = 1 for each i and hence J = IC .

(ii) Let

Bi =

�

Ai if I(Ai) = 1

¬Ai if I(Ai) = 0
.

Let CI = B1 & . . . & Bn. As above I(CI) = 1 and J(CI) = 1 implies that J = I .
It follows as above that I is the unique interpretation under which CI is true. We claim that CI is

the unique conjunctive clause with this property. Suppose not. Then there is some conjunctive clause
C ′ such that I(C ′) = 1 and C ′ 6= CI . This implies that there is some literal Ai in C ′ and ¬Ai in CI (or
vice versa). But I(C ′) = 1 implies that I(Ai) = 1 and I(CI) = 1 implies that I(¬Ai) = 1, which is clearly
impossible. Thus CI is unique.

Here is the Disjunctive Normal Form Theorem.

Theorem 1.2.3. For any truth function F : {0,1}n→ {0,1}, there is a sentence φ in disjunctive normal
form such that F = T Fφ .

Proof. Let I1, I2, . . . , Ik be the interpretations in {0,1}n such that F(Ii) = 1 for i = 1, . . . , k. For each
i, let Ci = CIi

be the conjunctive clauses guaranteed to hold by the previous lemma. Now let φ =
C1 ∨ C2 ∨ . . . ∨ Ck. Then for any interpretation I ,

T Fφ(I) = 1 if and only if I(φ) = 1 (by definition)

if and only if I(Ci) = 1 for some i = 1, . . . , k

if and only if I = Ii for some i (by the previous lemma)

if and only if F(I) = 1 (by the choice of I1, . . . , Ik)

Hence T Fφ = F as desired.

Example 1.2.4. Suppose that we want a formula φ(A1, A2, A3) such that I(φ) = 1 only for the three
interpretations (0,1, 0), (1,1, 0) and (1, 1,1). Then

φ = (¬A1 & A2 & ¬A3)∨ (A1 & A2 & ¬A3)∨ (A1 & A2 & A3).

It follows that the connectives ¬, &,∨ are sufficient to express all truth functions. By the deMorgan
laws (2,3 of Lemma 2.5) ¬,∨ are sufficient and ¬,∧ are also sufficient.

1.3 Proofs

One of the basic tasks that mathematicians do is proving theorems. This section develops the Proposi-
tional Calculus, which is a system rules of inference for propositional languages. With it one formalizes
the notion of proof. Then one can ask questions about what can be proved, what cannot be proved, and
how the notion of proof is related to the notion of interpretations.

The basic relation in the Propositional Calculus is the relation proves between a set, Γ of sentences
and a sentence B. A more long-winded paraphrase of the relation “Γ proves B” is “there is a proof of B
using what ever hypotheses are needed from Γ ”. This relation is denoted X ` Y , with the following
abbreviations for special cases:

Formal Version: Γ ` {B } {A} ` B ; ` B

Abbreviation: Γ ` B A` B ` B

1.3. PROOFS 5

Let ⊥ be a new symbol that we will add to our propositional language. The intended interpretation
of ⊥ is ‘falsehood,’ akin to asserting a contradiction.

Definition 1.3.1. A formal proof or derivation of a propositional sentence φ from a collection of
propositional sentences Γ is a finite sequence of propositional sentences terminating in φ where each
sentence in the sequence is either in Γ or is obtained from sentences occurring earlier in the sequence
by means of one of the following rules.

1. (Given rule) Any B ∈ Γ may be derived from Γ in one step.

2. (&-Elimination) If (A & B) has been derived from Γ then either of A or B may be derived from Γ
in one further step.

3. (∨-Elimination) If (A∨ B) has been derived from Γ , under the further assumption of A we can
derive C from Γ , and under the further assumption of B we can derive C from Γ , then we can
derive C from Γ in one further step.

4. (→-Elimination) If (A→ B) and A have been derived from Γ , then B can be derived from Γ in one
further step.

5. (⊥-Elimination) If ⊥ has been deduced from Γ , then we can derive any sentence A from Γ in one
further step.

6. (¬-Elimination) If ¬¬A has been deduced from Γ , then we can derive A from Γ in one further step.

7. (&-Introduction) If A and B have been derived from Γ , then (A & B) may be derived from Γ in one
further step.

8. (∨-Introduction) If A has been derived from Γ , then either of (A∨ B), (B∨A) may be derived from
Γ in one further step.

9. (→-Introduction) If under the assumption of A we can derive B from Γ , then we can derive A→ B
from Γ in one further step.

10. (⊥-Introduction) If (A & ¬A) has been deduced from Γ , then we can derive ⊥ from Γ in one
further step.

11. (¬-Introduction) If ⊥ has been deduced from Γ and A, then we can derive ¬A from Γ in one
further step.

The relation Γ ` A can now be defined to hold if there is a formal proof of A from Γ that uses the
rules given above. The symbol ` is sometimes called a (single) turnstile. Here is a more precise, formal
definition.

Definition 1.3.2. The relation Γ ` B is the smallest subset of pairs (Γ , B) from P (Sent)× Sent which
contains every pair (Γ , B) such that B ∈ Γ and is closed under the above rules of deduction.

We now provide some examples of proofs.

Proposition 1.3.3. For any sentences A, B, C

1. ` A→ A

2. A→ B ` ¬B→¬A

3. {A→ B, B→ C} ` A→ C

6 CHAPTER 1. PROPOSITIONAL LOGIC

4. A` A∨ B and A` B ∨ A

5. {A∨ B,¬A} ` B

6. A∨ A` A

7. A` ¬¬A

8. A∨ B ` B ∨ A and A & B ` B & A

9. (A∨ B)∨ C ` A∨ (B ∨ C) and A∨ (B ∨ C) ` (A∨ B)∨ C

10. (A & B) & C ` A & (B & C) and A & (B & C) ` (A & B) & C

11. A & (B ∨ C) ` (A & B)∨ (A & C) and (A & B)∨ (A & C) ` A & (B ∨ C

12. A∨ (B & C) ` (A∨ B) & (A∨ C) and (A∨ B) & (A∨ C) ` A∨ (B & C)

13. ¬(A & B) ` ¬A∨¬B and ¬A∨¬B ` ¬(A & B)

14. ¬(A∨ B) ` ¬A & ¬B and ¬A & ¬B ` ¬(A∨ B)

15. ¬A∨ B ` A→ B and A→ B ` ¬A∨ B

16. ` A∨¬A

We give brief sketches of some of these proofs to illustrate the various methods.

Proof.

1. ` A→ A

1 A Assumption

2 A Given

3 A→ A →-Introduction (1-2)

3. {A→ B, B→ C} ` A→ C

1 A→ B Given

2 B→ C Given

3 A Assumption

4 B →-Elimination 1,3

5 C →-Elimination 2,4

6 A→ C →-Introduction 3-5

1.3. PROOFS 7

4. A` A∨ B and A` B ∨ A

1 A Given

2 A∨ B ∨-Introduction 1

1 A Given

2 B ∨ A ∨-Introduction 1

5. {A∨ B,¬A} ` B

1 A∨ B Given

2 ¬A Given

3 A Assumption

4 A & ¬A & -Introduction 2,3

5 ⊥ ⊥-Introduction 4

6 B ⊥-Elimination 5

7 B Assumption

8 B Given

9 B ∨-Elimination 1-8

6. A∨ A` A

1 A∨ A Given

2 A Assumption

3 A Given

4 A Assumption

5 A Given

6 A ∨-Elimination 1-5

7. A` ¬¬A

1 A Given

2 ¬A Assumption

3 A & ¬A &-Introduction 1,2

4 ⊥ ⊥-Introduction 3

5 ¬¬A ¬-Introduction 1-4

8 CHAPTER 1. PROPOSITIONAL LOGIC

8. A∨ B ` B ∨ A and A & B ` B & A

1 A∨ B Given

2 A Assumption

3 B ∨ A ∨-Introduction 2

4 B Assumption

5 B ∨ A ∨-Introduction 2

6 B ∨ A ∨-Elimination 1-5

1 A & B Given

2 A &-Elimination

3 B &-Elimination

4 B & A &-Introduction 2-3

10. (A & B) & C ` A & (B & C) and A & (B & C) ` (A & B) & C

1 (A & B) & C Given

2 A & B &-Elimination 1

3 A &-Elimination 2

4 B &-Elimination 2

5 C &-Elimination 1

6 B & C &-Introduction 4,5

7 A & (B & C) &-Introduction 3,6

13. ¬(A & B) ` ¬A∨¬B and ¬A∨¬B ` ¬(A & B)

1.3. PROOFS 9

1 ¬(A & B) Given

2 A∨¬A Item 6

3 ¬A Assumption

4 ¬A∨¬B ∨-Introduction 4

5 A Assumption

6 B ∨¬B Item 6

7 ¬B Assumption

8 ¬A∨¬B ∨-Introduction 7

9 B Assumption

10 A & B & -Introduction 5,9

11 ⊥ ⊥-Introduction 1,10

12 ¬A∨¬B Item 5

13 ¬A∨¬B ∨-Elimination 6-12

14 ¬A∨¬B ∨-Elimination 2-13

1 ¬A∨¬B Given

2 A & B Assumption

3 A & -Elimination 2

4 ¬¬A Item 8, 3

5 ¬B Disjunctive Syllogism 1,4

6 B & -Elimination 2

7 ⊥ ⊥-Introduction 5,6

8 ¬(A & B) Proof by Contradiction 2-7

15. ¬A∨ B ` A→ B and A→ B ` ¬A∨ B

1 ¬A∨ B Given

2 A Assumption

3 ¬¬A Item 8, 2

4 B Item 5 1,3

5 A→ B →-Introduction 2-4

10 CHAPTER 1. PROPOSITIONAL LOGIC

1 A→ B Given

2 ¬(¬A∨ B) Assumption

3 ¬¬A & ¬B Item 14, 1

4 ¬¬A &-Introduction 3

5 A ¬-Elimination 4

6 B →-Elimination 1,5

7 ¬B &-Introduction 3

8 B & ¬B &-Introduction 6,7

9 ⊥ ⊥-Introduction 8

10 ¬A∨ B ⊥-Elimination 2-9

16. ` A∨¬A

1 ¬(A∨¬A) Assumption

2 ¬A & ¬¬A Item 14, 1

3 ⊥ ⊥-Introduction 3

4 ¬A∨ A ¬∨-Rule (1-2)

The following general properties about ` will be useful when we prove the soundness and com-
pleteness theorems.

Lemma 1.3.4. For any sentences A and B, if Γ ` A and Γ ∪ {A} ` B, then Γ ` B.

Proof. Γ ∪ {A} ` B implies Γ ` A→ B by→-Introduction. Combining this latter fact with the fact that
Γ ` A yields Γ ` B by→-Elimination.

Lemma 1.3.5. If Γ ` B and Γ ⊆∆, then ∆ ` B.

Proof. This follows by induction on proof length. For the base case, if B follows from Γ on the basis of
the Given Rule, then it must be the case that B ∈ Γ . Since Γ ⊂∆ it follows that B ∈∆ and hence ∆ ` B
by the Given Rule.

If the final step in the proof of B from Γ is made on the basis of any one of the rules, then we may
assume by the induction hypothesis that the other formulas used in these deductions follow from ∆
(since they follow from Γ). We will look at two cases and leave the rest to the reader.

Suppose that the last step comes by→-Elimination, where we have derived A→ B and A from Γ
earlier in the proof. Then we have Γ ` A→ B and Γ ` B. By the induction hypothesis, ∆ ` A and
∆ ` A→ B. Hence ∆ ` B by→-Elimation.

Suppose that the last step comes from &-Elimination, where we have derived A & B from Γ earlier
in the proof. Since Γ ` A & B, by inductive hypothesis it follows that ∆ ` A & B. Hence ∆ ` B by
&-elimination.

Next we prove a version of the Compactness Theorem for our deduction system.

Theorem 1.3.6. If Γ ` B, then there is a finite set Γ0 ⊆ Γ such that Γ0 ` B.

1.4. THE SOUNDNESS THEOREM 11

Proof. Again we argue by induction on proofs. For the base case, if B follows from Γ on the basis of the
Given Rule, then B ∈ Γ and we can let Γ0 = {B}.

If the final step in the proof of B from Γ is made on the basis of any one of the rules, then we may
assume by the induction hypothesis that the other formulas used in these deductions follow from some
finite Γ0 ⊆ Γ . We will look at two cases and leave the rest to the reader.

Suppose that the last step of the proof comes by ∨-Introduction, so that B is of the form C ∨D. Then,
without loss of generality, we can assume that we derived C from Γ earlier in the proof. Thus Γ ` C . By
the induction hypothesis, there is a finite Γ0 ⊆ Γ such that Γ0 ` C . Hence by ∨-Introduction, Γ0 ` C ∨ D.

Suppose that the last step of the proof comes by ∨-Elimination. Then earlier in the proof

(i) we have derived some formula C ∨ D from Γ ,

(ii) under the assumption of C we have derived B from Γ , and

(iii) under the assumption of D we have derived B from Γ .

Thus, Γ ` C ∨ D, Γ ∪ {C} ` B, and Γ ∪ {D} ` B. Then by assumption, by the induction hypothesis, there
exist finite sets Γ0, Γ1, and Γ2 of Γ such that Γ0 ` C ∨ D, Γ1 ∪ {C} ` B and Γ2 ∪ {D} ` B. By Lemma 1.3.5,

(i) Γ0 ∪ Γ1 ∪ Γ2 ` C ∨ D

(ii) Γ0 ∪ Γ1 ∪ Γ2 ∪ {C} ` B

(iii) Γ0 ∪ Γ1 ∪ Γ2 ∪ {D} ` B

Thus by ∨-Elimination, we have Γ0∪ Γ1∪ Γ2 ` B. Since Γ0∪ Γ1∪ Γ2 is finite and Γ0∪ Γ1∪ Γ2 ⊆ Γ , the result
follows.

1.4 The Soundness Theorem

We now determine the precise relationship between ` and |= for propositional logic. Our first major
theorem says that if one can prove something in A from a theory Γ , then Γ logically implies A.

Theorem 1.4.1 (Soundness Theorem). If Γ ` A, then Γ |= A.

Proof. The proof is by induction on the length of the deduction of A. We need to show that if there is a
proof of A from Γ , then for any interpretation I such that I(γ) = 1 for all γ ∈ Γ , I(A) = 1.

(Base Case): For a one-step deduction, we must have used the Given Rule, so that A ∈ Γ . If the
truth interpretation I has I(γ) = 1 for all γ ∈ Γ , then of course I(A) = 1 since A∈ Γ .

(Induction): Assume the theorem holds for all shorter deductions. Now proceed by cases on the
other rules. We prove a few examples and leave the rest for the reader.

Suppose that the last step of the deduction is given by ∨-Introduction, so that A has the form B ∨ C .
Without loss of generality, suppose we have derived B from Γ earlier in the proof. Suppose that I(γ) = 1
for all γ ∈ Γ . Since the proof of Γ ` B is shorter than the given deduction of B ∨ C , by the inductive
hypothesis, I(B) = 1. But then I(B ∨ C) = 1 since I is an interpretation.

Suppose that the last step of the deduction is given by &-Elimination. Suppose that I(γ) = 1 for
all γ ∈ Γ . Without loss of generality A has been derived from a sentence of the form A & B, which has
been derived from Γ in a strictly shorter proof. Since Γ ` A & B, it follows by inductive hypothesis that
Γ |= A & B, and hence I(A & B) = 1. Since I is an interpretation, it follows that I(A) = 1.

Suppose that the last step of the deduction is given by→-Introduction. Then A has the form B→ C .
It follows that under the assumption of B, we have derived C from Γ . Thus Γ ∪ {B} ` C in a strictly
shorter proof. Suppose that I(γ) = 1 for all γ ∈ Γ . We have two cases to consider.

Case 1: If I(B) = 0, it follows that I(B→ C) = 1.

12 CHAPTER 1. PROPOSITIONAL LOGIC

Case 2: If I(B) = 1, then since Γ ∪ {B} ` C ,

it follows that I(C) = 1. Then I(B→ C) = 1. In either case, the conclusion follows.

Now we know that anything we can prove is true. We next consider the contrapositive of the
Soundness Theorem.

Definition 1.4.2. A set Γ of sentences is consistent if there is some sentence A such that Γ 0 A; otherwise
Γ is inconsistent.

Lemma 1.4.3. Γ of sentences is inconsistent if and only if there is some sentence A such that Γ ` A and
Γ ` ¬A.

Proof. Suppose first that Γ is inconsistent. Then by definition, Γ ` φ for all formulas φ and hence Γ ` A
and Γ ` ¬A for every sentence A.

Next suppose that, for some A, Γ ` A and Γ ` ¬A. It follows by &-Introduction that Γ ` A & ¬A. By
⊥-Introduction, Γ ` ⊥. Then by ⊥-Elimination, for each φ, Γ ` φ. Hence Γ is inconsistent.

Proposition 1.4.4. If Γ is satisfiable, then it is consistent.

Proof. Assume that Γ is satisfiable and let I be an interpretation such that I(γ) = 1 for all γ ∈ Γ . Now
suppose by way of contradiction that Γ is not consistent. Then there is some sentence A such that Γ ` A
and Γ ` ¬A. By the Soundness Theorem, Γ |= A and Γ |= ¬A. But then I(A) = 1 and I(¬A) = 1 which is
impossible since I is an interpretation. This contradiction demonstrates that Γ is consistent.

In Section 1.5, we will prove the converse of the Soundness Theorem by showing that any consistent
theory is satisfiable.

1.5 The Completeness Theorem

Theorem 1.5.1. (The Completeness Theorem, Version I) If Γ |= A, then Γ ` A.

Theorem 1.5.2. (The Completeness Theorem, Version II) If Γ is consistent, then Γ is satisfiable.

We will show that Version II implies Version I and then prove Version II. First we give alternate
versions of the Compactness Theorem (Theorem 1.3.6).

Theorem 1.5.3. (Compactness Theorem, Version II). If every finite subset of ∆ is consistent, then ∆ is
consistent.

Proof. We show the contrapositive. Suppose that ∆ is not consistent. Then, for some B, ∆ ` B & ¬B. It
follows from Theorem 1.3.6 that ∆ has a finite subset ∆0 such that ∆0 ` B & ¬B. But then ∆0 is not
consistent.

Theorem 1.5.4. (Compactness Theorem, Version III). Suppose that

(i) ∆=
⋃

n∆n,

(ii) ∆n ⊆∆n+1 for every n, and

(iii) ∆n is consistent for each n.

Then ∆ is consistent.

Proof. Again we show the contrapositive. Suppose that ∆ is not consistent. Then by Theorem 1.5.4,
∆ has a finite, inconsistent subset F = {δ1,δ2, . . . ,δk}. Since ∆=

⋃

n∆n, there exists, for each i ≤ k,
some ni such that δi ∈ ∆i . Letting n = max{ni : i ≤ k}, it follows from the fact that the ∆ j ’s are
inconsistent that F ⊆∆n. But then ∆n is inconsistent.

1.5. THE COMPLETENESS THEOREM 13

Next we prove a useful lemma.

Lemma 1.5.5. For any Γ and A, Γ ` A if and only if Γ ∪ {¬A} is inconsistent.

Proof. Suppose first that Γ ` A. Then Γ ∪ {¬A} proves both A and ¬A and is therefore inconsistent.
Suppose next that Γ ∪ {¬A} is inconsistent. It follows from ¬-Introduction that Γ ` ¬¬A. Then by

¬-Elimination, Γ ` A.

We are already in position to show that Version II of the Completeness Theorem implies Version I.
We show the contrapositive of the statement of Version 1; that is, we show Γ 6` A implies Γ 6|= A. Suppose
it is not the case that Γ ` A. Then by Lemma 1.5.5, Γ ∪ {¬A} is consistent. Thus by Version II, Γ ∪ {¬A}
is satisfiable. Then it is not the case that Γ |= A.

We establish a few more lemmas.

Lemma 1.5.6. If Γ is consistent, then for any A, either Γ ∪ {A} is consistent or Γ ∪ {¬A} is consistent.

Proof. Suppose that Γ ∪ {¬A} is inconsistent. Then by the previous lemma, Γ ` A. Then, for any B,
Γ ∪ {A} ` B if and only if Γ ` B. Since Γ is consistent, it follows that Γ ∪ {A} is also consistent.

Definition 1.5.7. A set ∆ of sentences is maximally consistent if it is consistent and for any sentence A,
either A∈∆ or ¬A∈∆.

Lemma 1.5.8. Let ∆ be maximally consistent.

1. For any sentence A, ¬A∈∆ if and only if A /∈∆.

2. For any sentence A, if ∆ ` A, then A∈∆.

Proof. (1) If ¬A ∈ ∆, then A /∈ ∆ since ∆ is consistent. If A /∈ ∆, then ¬A ∈ ∆ since ∆ is maximally
consistent.

(2) Suppose that ∆ ` A and suppose by way of contradiction that A /∈∆. Then by part (1), ¬A∈∆.
But this contradicts the consistency of ∆.

Proposition 1.5.9. Let ∆ be maximally consistent and define the function I : Sent→ {0,1} as follows.
For each sentence B,

I(B) =

¨

1 if B ∈∆;

0 if B 6∈∆.

Then I is a truth interpretation and I(B) = 1 for all B ∈∆.

Proof. We need to show that I preserves the four connectives: ¬, ∨, & , and→. We will show the first
three and leave the last an exercise.

(¬): It follows from the definition of I and Lemma 1.5.8 that I(¬A) = 1 if and only if ¬A∈∆ if and
only if A /∈∆ if and only if I(A) = 0.

(∨): Suppose that I(A∨ B) = 1. Then A∨ B ∈ ∆. We argue by cases. If A ∈ ∆, then clearly
max{I(A), I(B)} = 1. Now suppose that A /∈ ∆. Then by completeness, ¬A ∈ ∆. It follows from
Proposition 1.3.3(5) that ∆ ` B. Hence B ∈∆ by Lemma 1.5.8. Thus max{I(A), I(B)}= 1.

Next suppose that max{I(A), I(B)} = 1. Without loss of generality, I(A) = 1 and hence A∈∆. Then
∆ ` A∨ B by ∨-Introduction, so that A∨ B ∈∆ by Lemma 1.5.8 and hence I(A∨ B) = 1.

(&): Suppose that I(A & B) = 1. Then A & B ∈ ∆. It follows from &-Elimination that ∆ ` A and
∆ ` B. Thus by Lemma 1.5.8, A∈∆ and B ∈∆. Thus I(A) = I(B) = 1.

Next suppose that I(A) = I(B) = 1. Then A ∈ ∆ and B ∈ ∆. It follows from &-Introduction that
∆ ` A & B and hence A & B ∈∆. Therefore I(A & B) = 1.

We now prove Version II of the Completeness Theorem.

14 CHAPTER 1. PROPOSITIONAL LOGIC

Proof of Theorem 1.5.2. Let Γ be a consistent set of propositional sentences. Let A0, A1, . . . be an enu-
meration of the set of sentences. We will define a sequence ∆0 ⊆∆1 ⊆ . . . and let ∆ =

⋃

n∆n. We will
show that ∆ is a complete and consistent extension of Γ and then define an interpretation I = I∆ to
show that Γ is satisfiable.
∆0 = Γ and, for each n,

∆n+1 =

¨

∆n ∪ {An}, if ∆n ∪ {An} is consistent

∆n ∪ {¬An}, otherwise.

It follows from the construction that, for each sentence An, either An ∈∆n+1 or ¬An ∈∆n+1. Hence
∆ is complete. It remains to show that ∆ is consistent.

Claim 1: For each n, ∆n is consistent.

Proof of Claim 1: The proof is by induction. For the base case, we are given that ∆0 = Γ is consistent.
For the induction step, suppose that ∆n is consistent. Then by Lemma 1.5.6, either ∆n ∪ {An} is
consistent, or ∆n ∪ {¬An} is consistent. In the first case, suppose that ∆n ∪ {An} is consistent. Then
∆n+1 =∆n∪{An} and hence∆n+1 is consistent. In the second case, suppose that∆n∪{An} is inconsistent.
Then ∆n+1 =∆n ∪ {¬An} and hence ∆n+1 is consistent by Lemma 1.5.6.

Claim 2: ∆ is consistent.

Proof of Claim 2: This follows immediately from the Compactness Theorem Version III.

It now follows from Proposition 1.5.9 that there is a truth interpretation I such that I(δ) = 1 for all
δ ∈∆. Since Γ ⊆∆, this proves that Γ is satisfiable.

We note the following consequence of the proof of the Completeness Theorem.

Theorem 1.5.10. Any consistent theory Γ has a maximally consistent extension.

1.6 Completeness, Consistency and Independence

For a given set of sentences Γ , we sometimes identify Γ with the theory Th(Γ) = {B : Γ ` B}. Thus
we can alternatively define Γ to be consistent if there is no sentence B such that Γ ` B and Γ ` ¬B.
Moreover, let us say that Γ is complete if for every sentence B, either Γ ` B or Γ ` ¬B (Note that if Γ
is maximally consistent, it follows that Γ is complete, but the converse need not hold. We say that a
consistent set Γ is independent if Γ has no proper subset ∆ such that Th(∆) = Th(Γ); this means that Γ
is minimal among the sets ∆ with Th(∆) = Th(Γ).

For example, in the language L with three propositional variables A, B, C , the set {A, B, C} is clearly
independent and complete.

Lemma 1.6.1. Γ is independent if and only if, for every B ∈ Γ , it is not the case that Γ \ {B} ` B.

Proof. Left to the reader.

Lemma 1.6.2.

A set Γ of sentences is complete and consistent if and only if there is a unique interpretation I satisfied by Γ .

Proof. Left to the reader.

We conclude this chapter with several examples.

Example 1.6.3. Let L = {A0, A1, . . . }.

1. The set Γ0 = {A0, A0 & A1, A1 & A2, . . . } is complete but not independent.

• It is complete since Γ0 ` An for all n, which determines the unique truth interpretation I
where I(An) = 1 for all n.

1.6. COMPLETENESS, CONSISTENCY AND INDEPENDENCE 15

• It is not independent since, for each n, (A0 & A1 · · · & An+1)→ (A0 & · · · & An).

2. The set Γ1 = {A0, A0→ A1, A1→ A2, . . . } is complete and independent.

• It is complete since Γ0 ` An for all n, which determines the unique truth interpretation I
where I(An) = 1 for all n.

• To show that Γ1 is independent, it suffice to show that, for each single formula An→ An+1, it
is not the case that Γ1 \ {An→ An+1} ` (An→ An+1). This is witnessed by the interpetation I
where I(A j) = 1 if j ≤ n and I(A j) = 0 if j > n.

3. The set Γ2 = {A0 ∨ A1, A2 ∨ A3, A4 ∨ A5, . . . } is independent but not complete.

• It is not complete since there are many different interpretations satisfied by Γ2. In particular,
one interpretation could make An true if and only if n is odd, and another could make An
true if and only if n is even.

• It is independent since, for each n, we can satisfy every sentence of Γ2 except A2n ∨ A2n+1 by
the interpretation I where I(A j) = 0 exactly when j = 2n or j = 2n+ 1.

16 CHAPTER 1. PROPOSITIONAL LOGIC

Chapter 2

Predicate Logic

Propositional logic treats a basic part of the language of mathematics, building more complicated
sentences from simple with connectives. However it is inadequate as it stands to express the richness of
mathematics. Consider the axiom of the theory of Plane Geometry, PG, which expresses the fact that
any two points belong to a line. We wrote that statement formally with two one-place predicates, Pt for
points and Ln for lines, and one two-place predicate, In for incidence as follows:

(∀P,Q ∈ Pt)(∃` ∈ Ln)((PIn`) & (QIn`)).

This axiom includes predicates and quantifies certain elements. In order to test the truth of it,
one needs to know how to interpret the predicates Pt, Ln and In, and the individual elements P, Q, `.
Notice that these elements are “quantified” by the quantifiers to “for every” and “there is . . . such that.”
Predicate logic is an enrichment of propositional logic to include predicates, individuals and quantifiers,
and is widely accepted as the standard language of mathematics.

2.1 The Language of Predicate Logic

The symbols of the language of the predicate logic are

1. logical connectives, ¬, ∨, & ,→,↔;

2. the equality symbol =;

3. predicate letters Pi for each natural number i;

4. function symbols F j for each natural number j;

5. constant symbols ck for each natural number k;

6. individual variables v` for each natural number `;

7. quantifier symbols ∃ (the existential quantifier) and ∀ (the universal quantifer); and

8. punctuation symbols (,).

A predicate letter is intended to represent a relation. Thus each predicate letter P is n-ary for some
n, which means that we write P(v1, . . . , vn). Similarly, a function symbol also is n-ary for some n.

We make a few remarks on the quantifiers:

(a) (∃x)φ is read “there exists an x such that φ holds.”

(b) (∀x)φ is read “for all x , φ holds.”

(c) (∀x)θ may be thought of as an abbreviation for (¬(∃x)(¬θ)).

17

18 CHAPTER 2. PREDICATE LOGIC

Definition 2.1.1. A countable first-order language is obtained by specifying a subset of the predicate
letters, function symbols and constants.

One can also work with uncountable first-order languages, but aside from a few examples in Chapter
4, we will primarily work with countable first-order languages. An example of a first-order language is
the language of arithmetic.

Example 2.1.2. The language of arithmetic is specified by {<,+,×, 0, 1 }. Here < is a 2-place relation,
+ and × are 2-place functions and 0, 1 are constants. Equality is a special 2-place relation that we will
include in every language.

We now describe how first-order sentences are built up from a given language L .

Definition 2.1.3. The set of terms in a language L , denoted Term(L), is recursively defined by

1. each variable and constant is a term; and

2. if t1, . . . , tn are terms and F is an n-place function symbol, then F(t1, . . . , tn) is a term.

A constant term is a term with no variables.

Definition 2.1.4. LetL be a first-order language. The collection ofL -formulas is defined by recursion.
First, the set of atomic formulas, denoted Atom(L), consists of formulas of one of the following forms:

1. P(t1, . . . , tn) where P is an n-place predicate letter and t1, . . . , tn are terms; and

2. t1 = t2 where t1 and t2 are terms.

The set of L -formulas is closed under the following rules

3. Ifφ and θ areL -formulas, then (φ∨θ) is anL -formula. (Similarly, (φ & θ), (φ→ θ), (φ↔ θ),
are L -formulas.)

4. If φ is an L -formula, then (¬φ) is an L -formula.

5. If φ is an L -formula, then (∃v)φ is an L -formula (as is (∀v)φ).

An example of an atomic formula in the language of arithmetic

0+ x = 0.

An example of a more complicated formula in the language, of plane geometry is the statement that
every element either has a point incident with it or is incident with some line.

(∀v)(∃x)((xInv)∨ (vInx)).

A variable v that occurs in a formula φ becomes bound when it is placed in the scope of a quantifier,
that is, (∃v) is placed in front of φ, and otherwise v is free. The concept of being free over-rides the
concept of being bound in the sense that if a formula has both free and bound occurrences of a variable
v, then v occurs free in that formula. The formal definition of bound and free variables is given by
recursion.

Definition 2.1.5. A variable v is free in a formula φ if

1. φ is atomic;

2. φ is (ψ∨ θ) and v is free in whichever one of ψ and θ in which it appears;

3. φ is (¬ψ) and v is free in ψ;

4. φ is (∃y)ψ, v is free in ψ and y is not v.

Example 2.1.6.

1. In the atomic formula x + 5= 12, the variable x is free.

2. In the formula (∃x)(x + 5= 12), the variable x is bound.

3. In the formula (∃x)[(x ∈ ℜ+) & (|x − 5|= 10)], the variable x is bound.

We will refer to an L -formula with no free variables as an L -sentence.

2.2. MODELS AND INTERPRETATIONS 19

2.2 Models and Interpretations

In propositional logic, we used truth tables and interpretations to consider the possible truth of complex
statements in terms of their simplest components. In predicate logic, to consider the possible truth of
complex statements that involve quantified variables, we need to introduce models with universes from
which we can select the possible values for the variables.

Definition 2.2.1. Suppose that L is a first-order language with

(i) predicate symbols P1, P2, . . . ,

(ii) function symbols F1, F2, . . . , and

(iii) constant symbols c1, c2,

Then an L -structure A consists of

(a) a nonempty set A (called the domain or universe of A),

(b) a relation PA
i on A corresponding to each predicate symbol Pi ,

(c) a function FA
i on A corresponding to each function symbol Fi , and

(d) a element cAi ∈ A corresponding to each constant symbol ci .

Each relation PA
i requires the same number of places as Pi , so that PA

i is a subset of Ar for some
fixed r (called the arity of Ri .) In addition, each function FA

i requires the same number of places as Fi ,
so that FA

i : Ar → A for some fixed r (called the arity of R j).

Definition 2.2.2. Given a L -structure A, an interpretation I into A is a function I from the variables
and constants of L into the universe A of A that respects the interpretations of the symbols in L . In
particular, we have

(i) for each constant symbol c j , I(c j) = cAj ,

(ii) for each function symbol Fi , if Fi has parity n and t1, . . . , tn are terms such that I(t1), I(t2), . . . I(tn)
have been defined, then

I(Fi(t1, . . . , tn)) = FA
i (I(t1), . . . , I(tn)).

For any interpretation I and any variable or constant x and for any element b of the universe, let
Ib/x be the interpretation defined by

Ib/x(z) =

¨

b if z = x ,

I(z) otherwise.

Definition 2.2.3. We define by recursion the relation that a structure A satisfies a formula φ via an
interpretation I into A, denoted n A |=I φ:

For atomic formulas, we have:

1. A |=I t = s if and only if I(t) = I(s);

2. A |=I Pi(t1, . . . , tn) if and only if PA
i (I(t1), . . . , I(tn)).

For formulas built up by the logical connectives we have:

3. A |=I (φ ∨ θ) if and only if A |=I φ or A |=I θ ;

4. A |=I (φ & θ) if and only if A |=I φ and A |=I θ ;

20 CHAPTER 2. PREDICATE LOGIC

5. A |=I (φ→ θ) if and only if A 6|=I φ or A |=I θ ;

6. A |=I (¬φ) if and only if A 6|=I φ.

For formulas built up with quantifiers:

7. A |=I (∃v)φ if and only if there is an a in A such that A |=Ia/x
φ;

8. A |=I (∀v)φ if and only if for every a in A, A |=Ia/x
φ.

If A |=I φ for every interpretation I , we will suppress the subscript I , and simply write A |= φ. In
this case we say that A is a model of φ.

Example 2.2.4. LetL (GT) be the language of group theory, which uses the symbols {+, 0 }. A structure
for this language is A= ({0, 1,2 } ,+ (mod 3), 0). Suppose we consider formulas of L (GT) which only
have variables among x1, x2, x3, x4. Define an interpretation I by I(x i)≡ i mod 3 and I(0) = 0.

1. Claim: A 6|=I x1 + x2 = x4.
We check this claim by computation. Note that I(x1) = 1, I(x2) = 2, I(x1 + x2) = I(x1) +mod3
I(x2) = 1+mod3 2= 0. On the other hand, I(x4) = 1 6= 0, so A 6|=I x1 + x2 = x4.

2. Claim: A |= (∃x2)(x1 + x2 = x4)
Define J = I0/x2

. As above check that A |=J x1+ x2 = x4. Then by the definition of the satisfaction
of an existential formula, A |=I (∃x2)(x1 + x2 = x4).

Theorem 2.2.5. For every L -formula φ, for all interpretations I, J, if I and J agree on all the variables
free in φ, then A |=I φ if and only if A |=J φ.

Proof. Left to the reader.

Corollary 2.2.6. If φ is an L -sentence, then for all interpretations I and J, we have A |=I φ if and only
if A |=J φ.

Remark 2.2.7. Thus for L -sentences, we drop the subscript which indicates the interpretation of the
variables, and we say simply A models φ.

Definition 2.2.8. Let φ be an L -formula.

(i) φ is logically valid if A |=I φ for every L -structure A and every interpretation I into A.

(ii) φ is satisfiable if there is some L -structure A and some interpretation I into A such that A |=I φ.

(iii) φ is contradictory if φ is not satisfiable.

Definition 2.2.9. A L -theory Γ is a set of L -sentences. An L -structure A is a model of an L -theory Γ
if and only if A |= φ for all φ in Γ . In this case we also say that Γ is satisfiable.

Definition 2.2.10. For a set of L -formulas Γ and an L -formula φ, we write Γ |= φ and say “Γ implies
φ,” if for all L -structures A and for all L -interpretations I , if A |=I γ for all γ in Γ , then A |=I φ.

Thus if Γ is an L -theory and φ an L -sentence, then Γ |= φ means every model of Γ is also a model
of φ.

The following definition will be useful to us in the next section.

Definition 2.2.11. Given a term t and an L -formula φ with free variable x , we write φ[t/x] to
indicate the result of substituting the term t for each free occurrence of x in φ.

Example 2.2.12. If φ is the formula (∃y)(y 6= x) is the formula, then φ[y/x] is the formula (∃y)(y 6=
y), which we expect never to be true.

2.3. THE DEDUCTIVE CALCULUS 21

2.3 The Deductive Calculus

The Predicate Calculus is a system of axioms and rules which permit us to derive the true statements of
predicate logic without the use of interpretations. The basic relation in the Predicate Calculus is the
relation proves between a set Γ of L formulas and an L -formula φ, which formalizes the concept that
Γ proves φ. This relation is denoted Γ ` φ. As a first step in defining this relation, we give a list of
additional rules of deduction, which extend the list we gave for propositional logic.

Some of our rules of the predicate calculus require that we exercise some care in how we substitute
variables into certain formulas. Let us say that φ[t/x] is a legal substitution of t for x in φ if no free
occurrence of x in φ occurs in the scope of a quantifier of any variable appearing in t. For instance, if
φ has the form (∀y)φ(x , y), where x is free, I cannot legally substitute y in for x , since then y would
be bound by the universal quantifier.

10. (Equality rule) For any term t, the formula t = t may be derived from Γ is one step.

11. (Term Substitution) For any terms t1, t2, . . . , tn, s1, s2, . . . , sn, and any function symbol F , if each
of the sentences t1 = s1, t2 = s2, . . . , tn = sn have been derived from Γ , then we may derive
F(t1, t2, . . . , tn) = F(s1, s2, . . . , sn) from Γ in one additional step.

12. (Atomic Formula Substitution) For any terms t1, t2, . . . , tn, s1, s2, . . . , sn and any atomic formula
φ, if each of the sentences t1 = s1, t2 = s2, . . . , tn = sn, and φ(t1, t2, . . . , tn), have been derived
from Γ , then we may derive φ(s1, s2, . . . , sn) from Γ in one additional step.

13. (∀-Elimination) For any term t, if φ[t/x] is a legal substitution and (∀x)φ has been derived
from Γ , then we may derive φ[t/x] from Γ in one additional step.

14. (∃-Elimination) To show that Γ ∪ {(∃x)φ(x)} ` θ , it suffices to show Γ ∪ {φ(y)}, where y is a
new variable that does not appear free in any formula in Γ nor in θ .

15. (∀-Introduction) Suppose that y does not appear free in any formula in Γ , in any temporary
assumption, nor in (∀x)φ. If φ[y/x] has been derived from Γ , then we may derive (∀x)φ from
Γ in one additional step.

16. (∃-Introduction) If φ[t/x] is a legal substitution and φ[t/x] has been derived from Γ , then we
may derive (∃x)φ from Γ in one additional step.

We remark on three of the latter four rules. First, the reason for the restriction on substitution
in ∀-Elimination is that we need to ensure that t does not contain any free variable that would be
become bound when we substitute t for x in φ. For example, consider the formula (∀x)(∃y)x < y
in the language of arithmetic. Let φ be the formula (∃y)x < y, in which x is free but y is bound.
Observe that if we substitute the term y for x in φ, the resulting formula is (∃y)y < y. Thus, from
(∀x)(∃y)x < y we can derive, for instance, (∃y)x < y or (∃y)c < y , but we cannot derive (∃y)y < y .

Second, the idea behind ∃-Elimination is this: Suppose in the course of my proof I have derived
(∃x)φ(x). Informally, I would like to use the fact that φ holds of some x , but to do so, I need to refer
to this object. So I pick an unused variable, say a, and use this as a temporary name to stand for the
object satisfying φ. Thus, I can write down φ(a). Eventually in my proof, I will discard this temporary
name (usually by ∃-Introduction).

Third, in ∀-Introduction, if we think of the variable y as an arbitrary object, then when we show
that y satisfies φ, we can conclude that φ holds of every object. However, if y is free in a premise in
Γ or a temporary assumption, it is not arbitrary. For example, suppose we begin with the statement

22 CHAPTER 2. PREDICATE LOGIC

(∃x)(∀z)(x+z = z) in the language of arithmetic and suppose we derive (∀z)(y+z = z) by ∃-Elimination
(where y is a temporary name). We are not allowed to apply ∀-Introduction here, for otherwise we
could conclude (∀x)(∀z)(x + z = z), an undesirable conclusion.

Definition 2.3.1. The relation Γ ` φ is the smallest subset of pairs (Γ ,φ) from P (Sent)× Sent that
contains every pair (Γ ,φ) such that φ ∈ Γ or φ is t = t for some term t, and which is closed under the
15 rules of deduction.

As in Propositional Calculus, to demonstrate that Γ ` φ, we construct a proof. The next proposition
exhibits several proofs using the new axiom and rules of predicate logic.

Proposition 2.3.2.

1. (∃x)(x = x).

2. (∀x)(∀y)[x = y → y = x].

3. (∀x)(∀y)(∀z)[(x = y & y = z)→ x = z].

4. ((∀x)θ (x))→ (∃x)θ (x).

5. ((∃x)(∀y)θ (x , y))→ (∀y)(∃x)θ (x , y).

6. (i) (∃x)[φ(x)∨ψ(x)] ` (∃x)φ(x)∨ (∃x)ψ(x)

(ii) (∃x)φ(x)∨ (∃x)ψ(x) ` (∃x)[φ(x)∨ψ(x)]

7. (i) (∀x)[φ(x) &ψ(x)] ` (∀x)φ(x) & (∀x)ψ(x)

(ii) (∀x)φ(x) & (∀x)ψ(x) ` (∀x)[φ(x)∨ψ(x)]

8. (∃x)[φ(x) &ψ(x)] ` (∃x)φ(x) & (∃x)ψ(x)

9. (∀x)φ(x)∨ (∀x)ψ(x) ` (∀x)[φ(x)∨ψ(x)]

10. (∀x)[φ(x)→ψ(f (x))]→ [(∃x)φ(x) → (∃x)ψ(x)].

Proof. 1. (∃x)(x = x)

1 x = x equality rule

2 (∃x) x = x ∃-Introduction 1

2. (∀x)(∀y)[x = y → y = x].

1 x = y temporary assumption

2 x = x equality rule

3 y = x term substitution 1,2

4 x = y → y = x →-Introduction 1-3

5 (∀y)(x = y → y = x) ∀-Introduction 4

6 (∀x)(∀y)(x = y → y = x) ∀-Introduction 5

2.3. THE DEDUCTIVE CALCULUS 23

5. (∃x)(∀y)θ (x , y) ` (∀y)(∃x)θ (x , y).

1 (∃x)(∀y)θ (x , y) given rule

2 (∀y)θ (a, y) ∃-Elimination 1

3 θ (a, y) ∀-Elimination 2

4 (∃x)θ (x , y) ∃-Introduction 3

5 (∀y)(∃x)θ (x , y) ∀-Introduction 4

8. (∃x)[φ(x) &ψ(x)] ` (∃x)φ(x) & (∃x)ψ(x)

1 (∃x)[φ(x) &ψ(x)] given rule

2 φ(a) &ψ(a) ∃-Elimination 1

3 φ(a) &-Elimination 2

4 (∃x)φ(x) ∃-Introduction 3

5 ψ(a) &-Elimination 2

6 (∃x)ψ(x) ∃-Introduction 5

7 (∃x)φ(x) & (∃x)ψ(x) &-Introduction 4,6

9. (∀x)φ(x)∨ (∀x)ψ(x) ` (∀x)[φ(x)∨ψ(x)]

1 (∀x)φ(x)∨ (∀x)ψ(x) given rule

2 (∀x)φ(x) temporary assumption

3 φ(x) ∀-Elimination 2

4 φ(x)∨ψ(x) ∨-Introduction 3

5 (∀x)[φ(x)∨ψ(x)] ∀-Introduction 4

6 (∀x)ψ(x) temporary assumption

7 ψ(x) ∀-Elimination 6

8 φ(x)∨ψ(x) ∨-Introduction 7

9 (∀x)[φ(x)∨ψ(x)] ∀-Introduction 8

10 (∀x)[φ(x)∨ψ(x)] ∨-Elimination 1-9

24 CHAPTER 2. PREDICATE LOGIC

10. (∀x)[φ(x)→ψ(f (x))] ` (∃x)φ(x) → (∃x)ψ(x).

1 (∀x)[φ(x)→ψ(f (x))] given rule

2 (∃x)φ(x) temporary assumption

3 φ(a) ∃-Elimination 2

4 φ(a)→ψ(f (a)) ∀-Elimination 1

5 ψ(f (a)) →-Elimination 3,4

6 (∃x)ψ(x) ∃-Introduction 5

7 (∃x)φ(x) → (∃x)ψ(x) →-Introduction 2-6

2.4 Soundness Theorem for Predicate Logic

Our next goal is to proof the soundness theorem for predicate logic. First we will prove a lemma,
which connects satisfaction of formulas with substituted variables to satisfaction with slightly modified
interpretations of the original formulas.

Lemma 2.4.1. For every L -formula φ, every variable x, every term t, every structure B and every
interpretation I in B, if no free occurrence of x occurs in the scope of a quantifier over any variable
appearing in t, then

B |=I φ[t/x] if and only if B |=Ib/x
φ

where b = I(t).

Proof. Let B= (B, R1, . . . , f1, . . . , b1, . . .) be an L -structure, and let x , t, and I be as above. We claim
that for any term r, if b = I(t), then I(r[t/x]) = Ib/x (r). We prove this claim by induction on the term
r.

• If r = a is a constant, then r[t/x] = a so that I(r[t/x]) = aB = Ib/x(r).

• If r is a variable y 6= x , then r[t/x] = y and Ib/x(y) = I(y), so that I(r[t/x]) = I(y) = Ib/x(r).

• If r = x , then r[t/x] = t and Ib/x(x) = b, so that I(r[t/x]) = I(t) = b = Ib/x(r).

• Now assume the claim holds for terms r1, . . . , rn and let r = f (r1, . . . , rn) for some function symbol
f . Then by induction I(r j[t/x]) = Ib/x(r j) for j = 1,2, . . . , n. Then

r[t/x] = f (r1[t/x], . . . , rn[t/x])

so

Ib/x(r) = f B (Ib/x(r1), . . . , Ib/x(rn))

= f B (I(r1[t/x]), . . . , I(rn[t/x]))
= I(f (r1[t/x], . . . , rn[t/x])
= I(r[t/x]).

To prove the lemma, we proceed by induction on formulas.

• For an atomic formula φ of the form s1 = s2, we have

B |=I φ[t/x]⇔B |=I s1[t/x] = s2[t/x]
⇔ I(s1[t/x]) = I(s2[t/x])
⇔ Ib/x(s1) = Ib/x(s2) (by the claim)

⇔B |=Ib/x
s1 = s2

⇔B |=Ib/x
φ.

2.4. SOUNDNESS THEOREM FOR PREDICATE LOGIC 25

• For an atomic formula φ of the form P(r1, . . . , rn), so that φ[t/x] is P(r1[t/x], . . . , rn[t/x]), we
have

B |=I φ[t/x]⇔B |=I P(r1[t/x], . . . , rn[t/x])

⇔ PB (I(r1[t/x]), . . . , I(rn[t/x]))

⇔ PB (Ib/x(r1), . . . , Ib/x(rn)) (by the claim)

⇔B |=Ib/x
P(r1, . . . , rn)

⇔B |=Ib/x
φ.

• The inductive step for L -formulas is straightforward except for formulas of the form ∀yφ: Let ψ
be ∀yφ, where the Lemma holds for the formula φ. Then

B |=I ψ[t/x]⇔B |=I ∀yφ[t/x]
⇔B |=Ia/y

φ[t/x] (for each a ∈ B)

⇔B |=(Ia/y)b/x
φ (by the inductive hypothesis)

⇔B |=(Ib/x)a/y
φ (for each a ∈ B)

⇔B |=Ib/x
∀yφ

⇔B |=Ib/x
ψ.

Theorem 2.4.2 (Soundness Theorem of Predicate Logic). If Γ ` φ, then Γ |= φ.

Proof. As in the proof of the soundness theorem for propositional logic, the proof is again by induction
on the length of the deduction of φ. We need to show that if there is a proof of φ from Γ , then for any
structureA and any interpretation I intoA , ifA |=I γ for all γ ∈ Γ , thenA |=I φ. The arguments
for the rules from Propositional Logic carry over here, so we just need to verify the result holds for the
new rules.

Suppose the result holds for all formulas obtained in proofs of length strictly less than n lines.

• (Equality rule) Suppose the last line of a proof of length n with premises Γ is t = t for some term
t. SupposeA |=I Γ . Then since I(t) = I(t), we haveA |= t = t.

• (Term substitution) Suppose the last line of a proof of length n with premises Γ is F(s1, . . . , sn) =
F(t1, . . . , tn), obtained by term substitution. Then we must have established s1 = t1, . . . , sn = tn
earlier in the proof. By the inductive hypothesis, we must have Γ |= s1 = t1, . . . Γ |= sn = tn.
Suppose thatA |=I γ for every γ ∈ Γ . Then I(si) = I(t i) for i = 1, . . . n. So

I(F(s1, . . . , sn)) = FA (I(s1), . . . , I(sn))

= FA (I(t1), . . . , I(tn))
I(F(I(s1), . . . , I(sn))

HenceA |=I F(s1, . . . , sn) = F(t1, . . . , tn).

• (Atomic formula substitution) The argument is similar to the previous one and is left to the reader.

• (∀-Elimination) For any term t, if φ[t/x] is a legal substitution and (∀x)φ has been derived from
Γ , then we may derive φ[t/x] from Γ in one additional step.

Suppose that the last line of a proof of length n with premises Γ is φ[t/x], obtained by ∀-
Elimination. Thus, we must have derived ∀xφ(x) earlier in the proof. Let A |=I γ for every
γ ∈ Γ . Then by the inductive hypothesis, we have Γ |= ∀xφ(x), which implies thatA |=Ia/x

φ(x)
for every a ∈ A. If I(t) = b, then since A |=Ib/x

φ(x), by Lemma 2.4.1 we have A |=I φ[t/x].
SinceA and I were arbitrary, we can conclude that Γ |= φ[t/x].

26 CHAPTER 2. PREDICATE LOGIC

• (∃-Elimination) To show that Γ ∪ {(∃x)φ(x)} ` θ , it suffices to show Γ ∪ {φ[y/x]} ` θ , where y is
a new variable that does not appear free in any formula in Γ nor in θ .

Suppose that the last line of a proof of length n with premises Γ is given by ∃-Elimination. Then
Γ ` (∃x)φ(x) in less than n lines and Γ ∪ {φ[y/x]} ` θ in less than n lines. Let A |=I γ for
every γ ∈ Γ . Then by the inductive hypothesis, we have Γ |= (∃x)φ(x), which implies that
A |=Ib/x

φ(x) for some b ∈ A. Let J = Ib/y , so that J(y) = b. It follows that A |=Jb/x
φ(x),

since I = J except on possibly y and y does not appear free in φ. Then by Lemma 2.4.1,
A |=J φ[y/x], and henceA |=J θ . It follows thatA |=I θ , since I = J except on possibly y and
y does not appear free in θ . SinceA and I were arbitrary, we can conclude that Γ∪(∃x)φ(x) |= θ .

• (∀-Introduction) Suppose that y does not appear free in any formula in Γ , in any temporary
assumption, nor in (∀x)φ. If φ[y/x] has been derived from Γ , then we may derive (∀x)φ from Γ
in one additional step.

Suppose that the last line of a proof of length n with premises Γ is (∀x)φ(x), obtained by ∀-
Introduction. Thus, we must have derived φ[y/x] from Γ earlier in the proof (where y satisfies
the necessary conditions described above). LetA |=I γ for every γ ∈ Γ . Since y does not appear
free in Γ , then for any a ∈ A, A |=Ia/y

Γ . For an arbitrary a ∈ A, let J = Ia/y , so that J(y) = a.
By the inductive hypothesis, we have Γ |= φ[y/x], which implies thatA |=J φ[y/x]. Then by
Lemma 2.4.1,A |=Ja/x

φ. Since Ia/x = Ja/x except on possibly y , which does not appear free in
φ, we have A |=Ia/x

φ. As a was arbitrary, we have shown A |=Ia/x
φ for every a ∈ A. Hence

A |=I (∀x)φ(x). SinceA and I were arbitrary, we can conclude that Γ |= (∀x)φ(x).

• (∃-Introduction) If φ[t/x] is a legal substitution and φ[t/x] has been derived from Γ , then we may
derive (∃x)φ from Γ in one additional step.

Suppose that the last line of a proof of length n with premises Γ is (∃x)φ(x), obtained by ∃-
Introduction. Thus, we must have derived φ[t/x] from Γ earlier in the proof, where t is some
term. Let A |=I γ for every γ ∈ Γ . Then I(t) = a for some a ∈ A. Since Γ ` φ[t/x] in less
than n lines, by the inductive hypothesis, it follows thatA |=I φ[t/x]. Then by Lemma 2.4.1,
A |=Ia/x

φ, which implies thatA |=I (∃x)φ(x). SinceA and I were arbitrary, we can conclude
that Γ |= (∃x)φ(x).

Chapter 3

Models for Predicate Logic

3.1 Models

In this chapter, we will prove the completeness theorem for predicate logic by showing how to build a
model for a consistent first-order theory. We will also discuss several consequences of the compactness
theorem for first-order logic and consider several relations that hold between various models of a given
first-order theory, namely isomorphism and elementary equivalence.

3.2 The Completeness Theorem for Predicate Logic

Fix a first-order theoryL . For convenience, we will assume that ourL -formulas are built up only using
¬,∨, and ∃. We will also make use of the following key facts (the proofs of which we will omit):

1. If A is a tautology in propositional logic, then if we replace each instance of each propositional
variable in A with an L -formula, the resulting L -formula is true in all L -structures.

2. For any L -structureA and any interpretation I intoA ,

A |=I (∀x)φ⇔A |=I ¬(∃x)(¬φ).

We will also use the following analogues of results we proved in Chapter 2, the proofs of which are
the same:

Lemma 3.2.1. Let Γ be an L -theory.

1. If Γ is not consistent, then Γ ` φ for every L -sentence φ.

2. For an L -sentence φ, Γ ` φ if and only if Γ ∪ {¬φ} is inconsistent.

3. If Γ is consistent, then for any L -sentence φ, either Γ ∪ {φ} is consistent or Γ ∪ {¬φ} is consistent.

The following result, known as the Constants Theorem, plays an important role in the proof of the
completeness theorem.

Theorem 3.2.2 (Constants Theorem). Let Γ be an L -theory. If Γ ` φ(c) and c does not appear in Γ ,
then Γ ` (∀x)φ(x).

Proof. Given a proof of φ(c) from Γ , let v be a variable not appearing in Γ . If we replace every instance
of c with v in the proof of φ(c), we have a proof of φ(v) from Γ . Then by ∀-Introduction, we have
Γ ` (∀x)φ(x).

Gödel’s completeness theorem can be articulated in two ways, which we will prove are equivalent:

27

28 CHAPTER 3. MODELS FOR PREDICATE LOGIC

Theorem 3.2.3 (Completeness theorem, Version 1). For any L -theory Γ and any L -sentence φ,

Γ |= φ⇒ Γ ` φ.

Theorem 3.2.4 (Completeness theorem, Version 2). Every consistent theory has a model.

We claim that the two versions are equivalent.

Proof of claim. First, suppose that every consistent theory has a model, and suppose further that Γ |= φ.
If Γ is not consistent, then Γ proves every sentence, and hence Γ ` φ. If, however, Γ is consistent, we
have two cases to consider. If Γ ∪ {¬φ} is inconsistent, then by Lemma 3.2.1(2), it follows that Γ ` φ.
In the case that Γ ∪ {¬φ} is consistent, by the second version of the completeness theorem, there is
some L -structureA such thatA |= Γ ∪ {¬φ}, from which it follows thatA |= Γ andA |= ¬φ. But
we have assumed that Γ |= φ, and henceA |= φ, which is impossible. Thus, if Γ is consistent, it follows
that Γ ∪ {¬φ} is inconsistent.

For the other direction, suppose the first version of the completeness theorem holds and let Γ be an
arbitrary L -theory. Suppose Γ has no model. Then vacuously, Γ |= ¬(φ ∨¬φ), where φ is the sentence
(∀x)x = x . It follows from the first version of the completeness theorem that Γ ` ¬(φ∨¬φ), and hence
Γ is inconsistent.

We now turn to the proof of the second version of the completeness theorem. As in the proof of the
completeness theorem for propositional logic, we will use the compactness theorem, which comes in
several forms (just as it did in with propositional logic).

Theorem 3.2.5. Let Γ be an L -theory.

1. For an L -sentence φ, if Γ ` φ, there is some finite Γ0 ⊆ Γ , Γ0 ` φ.

2. If every finite Γ0 ⊆ Γ is consistent, then Γ is consistent.

3. If Γ = ∪nΓn is , Γn ⊆ Γn+1 for every n, and each Γn is consistent, then Γ is consistent.

As in the case of propositional logic, (1) follows by induction on proof length, while (2) follows
directly from (1) and (3) follows directly from (2).

Our strategy for proving the completeness theorem is as follows. Given Γ , we want to extend it
to a maximally consistent collection of L -formulas, like the proof of the completeness theorem for
propositional logic. The problem that we now encounter (that did not occur in the propositional case)
is that it is unclear how to make sentences of the form (∃x)θ .

The solution to this problem, due to Henkin, is to extend the language L to a language L ′ by
adding new constants c0, c1, c2, . . . , which we will use to witness the truth of existential sentences.

Hereafter, let us assume that L is countably infinite (which is not a necessary restriction), so that
we will only need to add countably many new constants to our language. Using these constants, we
will build a model of Γ , where the universe of our model consists of certain equivalence classes on the
set of all L ′ -terms with no variables (the so-called Herbrand universe of L ′). The model will satisfy
a collection ∆ ⊇ Γ that is maximally consistent and Henkin complete, which means that for each L ′
-formula θ (v) with exactly one free variable v, if (∃v)θ (v) is in ∆, then there is some constant c in our
language such that θ (c) is in ∆.

Proof of Theorem 3.2.4. Let φ0,φ1, . . . be an enumeration of all L ′ -sentences. We define a sequence
Γ =∆−1 ⊆∆0 ⊆∆1 ⊆ . . . such that for each n ∈ N,

∆2n =

¨

∆2n−1 ∪ {φn} if ∆2n−1 ∪ {φn} is consistent,

∆2n−1 ∪ {¬φn} otherwise

and

∆2n+1 =

¨

∆2n ∪ {θ (cm)} if φn is of the form (∃v)θ (v) and is in ∆2n,

∆2n otherwise

3.2. THE COMPLETENESS THEOREM FOR PREDICATE LOGIC 29

where cm is the first constant in our list of new constants that has not appeared in ∆2n. Then we define
∆= ∪n∆n.

We now prove a series of claims.
Claim 1: ∆ is complete (that is, for every L ′ -sentence φ, either φ ∈∆ or ¬φ ∈∆).

Proof of Claim 1: This follows immediately from the construction.

Claim 2: Each ∆k is consistent.

Proof of Claim 2: We prove this claim by induction. First, ∆−1 = Γ is consistent by assumption. Now
suppose that ∆k is consistent. If k = 2n for some n, then clearly ∆k is consistent, since if ∆2n−1 ∪ {φn}
is consistent, then we set ∆k = ∆2n−1 ∪ {φn}, and if not, then by Lemma 3.2.1(3), ∆2n−1 ∪ {¬φn} is
consistent, and so we set ∆k =∆2n−1 ∪ {¬φn}.

If k = 2n+ 1 for some n, then if φn is not of the form (∃v)θ(v) or if it is but it is not in ∆2n, then
∆2n+1 = ∆2n is consistent by induction. If φn is of the form (∃v)θ(v) and is in ∆2n, then let c = cm
be the first constant not appearing in ∆2n. Suppose that ∆k =∆2k+1 =∆2n ∪ {θ (c)} is not consistent.
Then by Lemma 3.2.1(2), ∆2n ` ¬θ (c). Then by the Constants Theorem, ∆2n ` (∀x)¬θ (x). But since
φn is the formula (∃v)θ (v) and is in ∆2n, it follows that ∆2n is inconsistent, contradicting our inductive
hypothesis. Thus ∆k =∆2n+1 is consistent.

Claim 3: ∆= ∪n∆n is consistent.

Proof of Claim 3: This follows from the third version of the compactness theorem.

Claim 4: ∆ is Henkin complete (that is, for each L ′ -formula θ(v) with exactly one free variable and
(∃v)θ (v) ∈∆, then θ (c) ∈∆ for some constant c).

Proof of Claim 4: Suppose that (∃v)θ (v) ∈∆. Then there is some n such that (∃v)θ (v) is the formula
φn. Since ∆2n−1 ∪ {φn} ⊆ ∆ is consistent, (∃v)θ(v) ∈ ∆2n. Then by construction, θ(c) ∈ ∆2n+1 for
some constant c.

Our final task is to build a modelA such thatA |=∆, from which it will follow thatA |= Γ (since
Γ ⊆∆). We define an equivalence relation on the Herbrand universe of L ′ (i.e., the set of constant L ′
-terms, or equivalently, the L ′ -terms that contain no variables). For constant terms s and t, we define

s ∼ t⇔ s = t ∈∆.

Claim 5: ∼ is an equivalence relation.

Proof of Claim 5:

• Every sentence of the form t = t must be in ∆ since ∆ is complete, so ∼ is reflexive.

• If s = t ∈∆, then t = s must also be in ∆ since ∆ is complete, so ∼ is symmetric.

• If r = s, s = t ∈∆, then r = t must also be in ∆ since ∆ is complete, so ∼ is transitive.

For a constant term s, let [s] denote the equivalence class of s. Then we define an L ′ -structure as
follows:

(i) A= {[t] : t is a constant term of L ′};

(ii) for each function symbol f of the language L , we define

f A ([t1], . . . , [tn]) = [f (t1, . . . , tn)],

where n is the arity of f ;

30 CHAPTER 3. MODELS FOR PREDICATE LOGIC

(iii) for each predicate symbol P of the language L , we define

PA ([t1], . . . , [tn]) if and only if P(t1, . . . , tn) ∈∆,

where n is the arity of P; and

(iv) for each constant symbol c of the language L ′ , we define

cA = [c].

Claim 6: A = (A, f , . . . , P, . . . , c, . . .) is well-defined.

Proof of Claim 6: We have to show in particular that the interpretation of function symbols and predicate
symbols inA is well-defined. Suppose that s1 = t1, . . . , sn = tn ∈∆ and

f A ([t1], . . . , [tn]) = [f (t1, . . . , tn)]. (3.1)

By our first assumption, it follows that ∆ ` si = t i for i = 1, . . . , n. Then by term substitution,
∆ ` f (s1, . . . , sn) = f (t1, . . . , tn), and so f (s1, . . . , sn) = f (t1, . . . , tn) ∈∆. It follows that

[f (s1, . . . , sn)].= [f (t1, . . . , tn)]. (3.2)

Combining (3.1) and (3.2) yields

f A ([t1], . . . , [tn]) = [f (t1, . . . , tn)] = [f (s1, . . . , sn)] = f A ([s1], . . . , [sn]).

A similar argument shows that the interpretation of predicate symbols is well-defined.

Claim 7: Let I be an interpretation intoA . Then I(t) = [t] for every constant term t.

Proof of Claim 7: We verify this inductively for constant symbols and then for function symbols applied
to constant terms.

• Suppose t is a constant symbol c. Then I(c) = cA = [c].

• Suppose that t is the term f (t1, . . . , tn) for constant symbol f and constant terms t1, . . . , tn, where
I(t i) = [t i] for i = 1, . . . , n. Then

I(f (t1, . . . , tn)) = f A (I(t1), . . . , I(tn)) = f A ([t1], . . . , [tn]) = [f (t1, . . . , tn))].

Claim 8: A |= ∆. We verify this by proving that for every interpretation I into A and every L ′
-sentence φ,A |=I φ if and only if φ ∈∆.

• If φ is s = t for some terms s, t, then

A |=I s = t⇔ I(s) = I(t)
⇔ [s] = [t]
⇔ s ∼ t

⇔ s = t ∈∆.

• If φ is P(t1, . . . , tn) for some predicate symbol P, then

A |=I P(t1, . . . , tn)⇔ PA (I(t1), . . . , I(tn))

⇔ PA ([t1], . . . , [tn])
⇔ P(t1, . . . , tn) ∈∆.

3.3. CONSEQUENCES OF THE COMPLETENESS THEOREM 31

• If φ is ¬ψ for some L ′ -sentence ψ, then

A |=I ¬ψ⇔A 6|=ψ
⇔ψ /∈∆
⇔¬ψ ∈∆.

• If φ is ψ∨ θ for some L ′ -sentences ψ and θ , then

A |=I ψ∨ θ⇔A |=ψ orA |= θ
⇔ψ ∈∆ or θ ∈∆
⇔ψ∨ θ ∈∆.

• If φ is (∃v)θ (v) for some L ′ -formula θ with one free variable v, then

A |=I (∃v)θ (v)⇔A |=Ib/v
θ (v) for some b ∈ A

⇔A |=I θ (c) where b = [c]
⇔ θ (c) ∈∆
⇔ (∃v)θ (v) ∈∆.

SinceA |=∆, it follows thatA |= Γ . Note thatA is an L ′ -structure while Γ is only an L -theory
(as it does not contain any expression involving any of the additional constants). Then letA ∗ be the
L -structure with the same universe asA and the same interpretations of the function symbols and
predicate symbols, but without interpreting the constants symbols that are in L ′ \L (the so-called
reduct ofA). Then clearlyA ∗ |= Γ , and the proof is complete.

3.3 Consequences of the completeness theorem

The same consequences we derived from the Soundness and Completeness Theorem for Propositional
Logic apply now to Predicate Logic with basically the same proofs.

Theorem 3.3.1. For any set of sentences Γ , Γ is satisfiable if and only if Γ is consistent.

Theorem 3.3.2. If Σ is a consistent theory, then Σ is included in some complete, consistent theory.

We also have an additional version of the compactness theorem, which is the most common
formulation of compactness.

Theorem 3.3.3 (Compactness Theorem for Predicate Logic).
An L -theory Γ is satisfiable if and only if every finite subset of Γ is satisfiable.

Proof. (⇒) IfA |= Γ , then it immediately follows thatA |= Γ0 for any finite Γ0 ⊆ Γ .

(⇐) Suppose that Γ is not satisfiable. By the completeness theorem, Γ is not consistent. Then Γ ` φ & ¬φ
for some L -sentence φ. Then by the first formulation of the compactness theorem there is some finite
Γ0 ⊆ Γ such that Γ0 ` φ & ¬φ. It follows that Γ0 is not satisfiable.

We now consider two applications of the compactness theorem, the first yielding a model of arithmetic
with infinite natural numbers and the second yielding a model of the real numbers with infinitesimals.

Example 3.3.4. Let Ł= {+,×,<, 0, 1} be the language of arithmetic, and let Γ = Th(N), the set of L
-sentences true in the standard model of arithmetic. Let us expand L to L ′ by adding a new constant c
to our language. We extend Γ to an L ′ -theory Γ ′ by adding all sentences of the form

ψn : c > 1+ . . .+ 1
︸ ︷︷ ︸

n times

32 CHAPTER 3. MODELS FOR PREDICATE LOGIC

We claim that every finite Γ ′0 ⊆ Γ
′ is satisfiable. Given any finite Γ ′0 ⊆ Γ

′, Γ ′0 consists of at most finitely
many sentences from Γ and at most finitely many sentences of the form ψi . It follows that

Γ ′0 ⊆ Γ ∪ {ψn1
,ψn2

, . . . ,ψnk
}

for some n1, n2, . . . , nk ∈ N, where these latter sentences assert that c is larger than each of the values
n1, n2, . . . , nk. Let n = max{n1, . . . , nk} then let A = (N,+,×,<, 0, 1, n), so that cA = n and hence
A |= Γ ′0. Then by the compactness theorem, there is some L ′ -structureB such thatB |= Γ ′. In the
universe ofB , we have objects that behave exactly like 0,1,2,3, . . . (in a sense we will make precise
shortly), but the interpretation of c in B satisfies cB > n for every n ∈ N and hence behaves like an
infinite natural number. We will write the universe ofB as N∗.

Example 3.3.5. Let L consist of

• an n-ary function symbol F f for every f : Rn→ R;

• an n-ary predicate symbol PA for every A⊆ Rn; and

• a constant symbol cr for every r ∈ R.

Let R be the L -structure with universe R satisfying

• FR
f = f for every function symbol F f ;

• PR
A = A for every predicate symbol PA; and

• cRr = r for every constant symbol cr .

Let us expand L to L ′ by adding a new constant d to our language. We extend Γ to an L ′ -theory Γ ′

by adding all sentences of the form
θr : c0 < d < cr

for r ∈ R>0. As in the previous example, every finite Γ ′0 ⊆ Γ
′ is satisfiable. Hence by the compactness

theorem, Γ ′ is satisfiable. LetA |= Γ . The universe ofA contains a copy of R (in a sense we will make
precise shortly). In addition, dA is infinitesimal object. For every real number inA , 0< dA < r holds.
We will write the universe ofA as R∗.

Now we consider a question that was not appropriate to consider in the context of propositional
logic, namely, what are the sizes of models of a given theory? Our main theorem is a consequence of
the proof of the Completeness Theorem. We proved the Completeness Theorem only in the case of a
countable language L, and we built a countable model (which was possibly finite). By using a little
care (and some set theory), one can modify steps (1) and (2) for an uncountable language to define by
transfinite recursion a theory ∆ and prove by transfinite induction that ∆ has the desired properties.
The construction leads to a model whose size is at most the size of the language with which one started.
Thus we have:

Theorem 3.3.6 (Löwenheim-Skolem Theorem). If Γ is an L -theory with an infinite model, then Γ has
a model of size κ for every infinite κ with |Ł| ≤ κ.

Proof Sketch. First we add κ new constant symbols 〈dα | α < κ〉 to our language L . Next we expand Γ
to Γ ′ by adding formulas that say dα 6= dβ for the different constants:

Γ ′ = Γ ∪
�

¬dα = dβ : α < β < κ
	

.

Since Γ has an infinite model, each finite Γ ′0 ⊆ Γ
′ has a model. Hence by the compactness theorem,

Γ ′ has a model. By the soundness theorem, Γ ′ is consistent. Then use the proof of the completeness
theorem to define a model B ′ of Γ ′ the universe of which has size |B| ≤ κ. Since B ′ |= dα 6= dβ for
α 6= β , there are at least κ many elements. Thus |B| = κ and so Γ ′ has a model B ′ of the desired
cardinality. Let B be the reduct of B ′ obtained by removing the new constant symbols from our
expanded language. ThenB is a model of the desired size for Γ .

Chapter 4

Computability Theory

4.1 Introduction and Examples

There are many different approaches to defining the collection of computable number-theoretic functions.
The intuitive idea is that a function F : N→ N (or more generally F : Nk → N) is computable if there is
an algorithm or effective procedure for determining the output F(m) from the input m. To demonstrate
that a particular function F is computable, it suffices to give the corresponding algorithm.

Example 4.1.1. Basic computable functions include

(i) the successor function S(x) = x + 1,

(ii) the addition function +(x , y) = x + y , and

(iii) the multiplication function ·(x , y) = x · y .

Example 4.1.2. Some slightly more complicated examples of computable functions:

(i) The Division Algorithm demonstrates that the two functions that compute, for inputs a and b,
the unique quotient q = q(a, b) and remainder r = r(a, b), with 0≤ r < a, such that b = qa+ r,
are both computable.

(ii) The Euclidean Algorithm demonstrates that the function gcd(a, b) which computes the greatest
common divisor of a and b is computable. It follows that least common multiple function
lcm(a, b) = (a · b)/gcd(a, b) is also computable

The notion of computability for functions can be extended to subsets of N or relations on Nk for
some k as follows. First, a set A⊆ N is said to be computable if the characteristic function of A, defined
by

χA(n) =

�

1 if n ∈ A

0 if n /∈ A,

is a computable function. Similarly, a relation R ⊆ Nk is said to be computable if its characteristic
function

χA(n1, . . . , nk) =

�

1 if (n1, . . . , nk) ∈ R

0 if (n1, . . . , nk) /∈ R

is computable. These definitions are equivalent to saying that there is an algorithm for testing whether
a given number is in A or whether a given finite sequence (n1, . . . , nk) is in R.

Example 4.1.3. The following are computable:

(i) The set of perfect squares is computable, since given a number n, we can test whether it is a
square by computing m2 for all m≤ n and checking whether m2 = n.

33

34 CHAPTER 4. COMPUTABILITY THEORY

(ii) The relation x | y (“x divides y”) is computable, since by the Division Algorithm, x | y if and
only if the remainder r(x , y) = 0.

(iii) The set of even numbers is computable, since n is even if and only if 2 | n.

(iv) The set of prime numbers is computable, since p is prime if and only if

(∀m< p)[(m 6= 0 & m 6= 1)→ m 6 | p].

Two formalizations of the class of computable functions that will we consider are the collection of
Turing machines and the collection of partial recursive functions.

The first general model of computation that we will consider is the Turing machine, developed
by Alan Turing in the 1930’s. The machine consists of one or more infinite tapes with cells on which
symbols from a finite alphabet may be written, together with heads which can read the contents of a
given cell, write a new symbol on the cell, and move to an adjacent cell. A program for such a machine
is given by a finite set of states and a transition function which describes the action taken in a given
state when a certain symbol is scanned. Possible actions are (1) writing a new symbol in the cell; (2)
moving to an adjacent cell; (3) switching to a new state.

4.2 Finite State Automata

As a warm-up, we will first consider a simplified version of a Turing machine, known as a finite state
automaton. A finite state automaton over a finite alphabet Σ (usually {0,1}) is given by a finite set
of states Q = {q0, q1, . . . , qk} and a transition function δ : Q ×Σ→ Q. There may also be an output
function F : Q×Σ→ Σ. The state q0 is designated as the initial state and there may be a set A⊆Q of
accepting states.

The action of a finite automaton M on input w= a0a1 . . . ak occurs in stages.

• At stage 0, the machine begins in state q0, scans the input a0, and then and transitions to state
s1 = δ(q0, a0), possibly writing b0 = F(q0, a0).

• At stage n, the machine (in state sn) scans an, transitions to state sn+1 = F(sn, an), and possibly
writes bn = F(sn, an).

• After reading ak during stage k, the machine halts in state sk+1. The input word w is accepted by M if
sk+1 ∈ A. If there is an ouput function, then the output word will be written as M(w) = b0 b1 . . . bk.

The language L(M) is the set of words accepted by M . We will sometimes refer to such a collection
as a regular language.

Example 4.2.1. Let M1 be the machine, depicted by the state diagram below, with transition function

δ(qi , j) =

�

q1−i if i = j

qi if i 6= j,

for i = 0,1 and j = 0,1. Thus L(M1) is the set of words which end in a 0.

4.2. FINITE STATE AUTOMATA 35

q0 q1

q0 q1

0

0

11

0

1

01

Example 4.2.2. Let M2 be the machine, depicted by the state diagram below, with transition function

δ(qi , j) =

�

q1−i if j = 0

qi if j = 1,

for i = 0,1. Thus L(M2) is the set of words which contain an even number of 0’s.

q0 q1

q0 q1

0

0

11

0

1

01
Next we consider some finite state automata which compute functions. These are called finiet state

transducers. We want to express natural numbers in reverse binary notation, so that the word a0a1 . . . ak
represents a0 + 2a1 + · · ·+ 2kak.

Example 4.2.3. The successor machine M3 computes S(x) = x +1. State q0 is the carry state and state
q1 is the no-carry state. The edges in the state diagram below are labelled with symbols of the form
i : j, which means that i is an input bit and j is an output bit.

For reasons that will be clear shortly, we require that any number of the form 2n − 1 (normally
represented by a string of the form 1n) to be represented by 1n0. For any other number, adding
additional zeros to the end of its representation will make no difference.

Starting in state q0, the machine outputs (i+1) mod 2 on input i and transitions to state q1−i . From
state q1 on input i, the machine outputs i and remains in state q1. We take the liberty of adding an
extra 0 at the end of the input in order to accommodate the carry.

q0 q1

0:1

0:0, 1:11:0

36 CHAPTER 4. COMPUTABILITY THEORY

More precisely, the transition function and output function of M3 are defined by

δ(qi , j) =

�

q0 if i = 0 & j = 1

q1 if (i = 0 & j = 0)∨ i = 1

and

F(qi , j) =

�

1− j if i = 0

j if i = 1
.

We see that this computes S(x) by the following reasoning. Assume that x ends with 0 (if x
represents the number 2n − 1 for some n, then this terminal 0 is necessary to end up in an accepting
state; if x does not, then the terminal 0 is inconsequential).

We consider two cases:

• Case 1: x contains a 0. Let i be least such that ai = 0. Then M will write i − 1 1’s and remain in
state q0 until arriving at the i-th bit, which is a 0. Then it will output bi = 1 and transition to
state q1. After that it will simply write b j = a j for all j > i.

• Case 2: If x consists of all 1’s, then M will write n 0’s and remain in state q0 until reaching the
extra 0, when M will output a final 1 and transition to q1.

In each case, b1 . . . bn = M(x) is the reverse binary representation of S(x) and we will end up in an
accepting state.

Using the carry and no-carry states, we can also perform addition with a finite state automaton.

Example 4.2.4. The addition machine M4 computes S(x , y) = x + y. Unlike the previous example,
state q0 is the no-carry state and state q1 is the carry state. Moreover, we work with a different input

alphabet: the input alphabet consists of pairs

�

i

j

�

∈ {0,1} × {0,1}. To add two numbers n1 and n2

represented by σ1 and σ2, if σ1 is shorter than σ2, we append 0s to σ1 so that the resulting string has
the same length as σ2. As in the previous example, we will also append an additional 0 to the end of
σ1 and σ2, which is necessary in case that the string representing n1 + n2 is strictly longer than the
strings representing n1 and n2.

The state diagram is given by:

q0 q1

:0()0
0

()0
0 :1

()0
1 :0()0

1 :1 ()1
0 :0()1

0 :1

()1
1 :0

()1
1 :1

The transition function and output function of M3 are defined in the following tables:

δ

�

0

0

� �

0

1

� �

1

0

� �

1

1

�

q0 q0 q0 q0 q1

q1 q0 q1 q1 q1

4.3. EXERCISES 37

F

�

0

0

� �

0

1

� �

1

0

� �

1

1

�

q0 0 1 1 0
q1 1 0 0 1

For any finite state automaton M , the set L(M) of words accepted by M is a computable set.
Moreover, if M computes a function f , then f is also computable. However, many computable sets and
functions cannot be computed by a finite automaton.

Proposition 4.2.5. L = {an bn : n ∈ω} is not a regular set.

Proof. Suppose by way of contradiction that L = L(M) for some FSA M and let k be the number of
states of M . Consider the sequence of states s0, s1, . . . , sk resulting when M reads the input ak. It follows
from the pigeonhole principle that si = s j for some i < j ≤ k. Thus M ends up in the same state si after
reading ai and after reading a j . But this means that M ends up in the same state q after reading ai bi

that it ends up in after reading a j bi . By assumption, M accepts ai bi , so that q is an accepting. However,
M does not accept ai b j , so that q is not accepting. This contradiction shows that L 6= L(M).

Example 4.2.6. The function f (x) = x2 is not computable by a finite state transducer. Suppose that
M computes x2 on input x , where we have appended a sufficient number of 0’s to the end of the input
so that we can output x2 (recall that each input bit yields at most one output bit). In particular, for any
n, M will output 02n1 on input 0n1, since f (2n) = (2n)2 = 22n. Thus, on input 0n1, after reading the
first n+ 1 bits, M needs to examine at least n additional 0’s and write at least n additional 0’s before
it finishes the output with a final 1. Now suppose that M has k states and let n> k+ 1. Let s j be the
state of the machine after reading 0n10 j . Then there must be some i, j ≤ k+ 1 < n such that si = s j .
Furthermore, every time M transitions from state si upon reading a 0, M must output a 0. But the
machine is essentially stuck in a loop and hence can only print another 0 after reading 0n10n when it
needs to print the final 1.

4.3 Exercises

1. Define a finite automaton M such that L(M) is the set of words from {0, 1}∗ such that all blocks
of zeroes have length a multiple of three.

2. Define a finite automaton M such that L(M) is the set of words from {0,1}∗ such that every
occurence of 11 is followed by 0.

3. Show that there is no finite automaton M such that L(M) is the set of words with an equal number
of 1’s and 0’s.

4. Define a finite automaton M on the alphabet {0, 1, 2} such that M(w) is the result of erasing all
0’s from w.

5. Define a finite automaton M such that M(w) = 3 ·w where w is a natural number expressed in
reverse binary form.

6. Show that if L1 and L2 are regular languages, then L1 ∪ L2 is a regular language.

7. Show that if L is a regular language, then L∗ is a regular language.

Hint: Use a non-deterministic FSA.

8. Show that the set {1n : n is a square} is not a regular language.

38 CHAPTER 4. COMPUTABILITY THEORY

4.4 Turing Machines

A Turing machine is a simple model of a computer that is capable of computing any function that can
be computed. It consists of these items:

1. a finite state control component with a finite number of read/write heads; and

2. a finite number of unbounded memory tapes (one or more for the input(s), one for the output,
and the rest for scratchwork), each of which is divided into infinitely many consecutive squares
in which symbols can be written.

Furthermore, it must satisfy these conditions:

1. there is a specified initial state q0 and a specified final qH , or halting, state; and

2. each read/write head reads one cell of each tape and either moves one cell to the left (L), moves
one cell to the right (R), or stays stationary (S) at each stage of a computation.

The notion of Turing machine is formalized in the following definition.

Definition 4.4.1. A k-tape Turing machine M for an alphabet Σ consists of

(i) a finite set Q = {q0, . . . , qn} of states;

(ii) an alphabet Σ;

(iii) a transition function δ : Q×Σk → Σk × {L,R,S}k;

(iv) q0 ∈Q is the start state; and

(v) qH ∈Q is the halting or final state.

A move of M in a given state qi , scanning the symbols a1, . . . , ak on the k tapes, whereδ(qi , a1, . . . , ak) =
(q j , b1, . . . , bk, D1, . . . , Dk), consists of the following actions:

1. switching from state qi to state q j;

2. writing bi (and thus erasing ai) on tape i; and

3. moving the head on tape i in the direction Di .

A computation always begins with

(i) the machine in state q0;

(ii) some finite input on each of the input tapes; and

(iii) each of the input heads scanning the first symbol on each of the input tapes.

The configuration of a machine at a given stage of a computation consists of

(i) the current state of the machine;

(ii) the contents of each tape; and

(iii) the location of each of the heads on each tape.

M machine halts after n moves if it transitions to the halting state in the n-th stage of the computation.
A machine M accepts a word w, denoted M(w)↓, if the machine halts (i.e. ends up in the halting state)
when given the input w. In this case, we say M halts on the input w. Otherwise, we say that M diverges
on input w, denoted M(w)↑.

It is an essential feature of Turing machines that they may fail to halt on some inputs. This gives rise
to the partial computable function fM which has domain {w : M(w) ↓}. That is, fM (w) = y if and only
if M halts on input w and y appears on the output tape when M halts, meaning that the output tape
contains y surrounded by blanks on both sides. (For the sake of elegance, we may insist that the first
symbol of y is scanned at the moment of halting.) Sometimes we will write the value fM (w) as M(w).

4.4. TURING MACHINES 39

Example 4.4.2. We define a Turing machine M1 that computes x + y . There are two input tapes and
one output tape. The numbers x and y are written on separate input tapes in reverse binary form. M
has the states: the initial state q0, a carry state q1 and the halting state qH . The two input tapes are read
simultaneously in the form a/b. We need to consider blanks squares as symbols # in case one input is
longer and/or there is a carry at the end. The behavior of M1 is summed up in the following table.

State Read Write Move New State
q0 0/0 0 R q0

q0 0/# 0 R q0

q0 #/0 0 R q0

q0 0/1 1 R q0

q0 1/0 1 R q0

q0 1/# 1 R q0

q0 #/1 1 R q0

q0 1/1 0 R q1

q0 #/# # S qH

q1 0/0 1 R q0

q1 0/# 1 R q0

q1 #/0 1 R q0

q1 0/1 0 R q1

q1 1/0 0 R q1

q1 1/# 0 R q1

q1 #/1 0 R q1

q1 1/1 1 R q1

q1 #/# 1 S qH

Example 4.4.3. We roughly describe a Turing machine M2 that computes x · y. Again there are
two input tapes and one output tape. The idea is that if y =

∑

i∈I 2i for some finite I ⊆ N, then
x · y =

∑

i∈I 2i · x . For each i, 2i · x has the form of i 0’s followed by x . For example, if x = 1011
(thirteen), then 4 · x = 001011 (fifty-two).

To multiply 1011 by 100101 we add

20 · 13+ 23 · 13+ 25 · 13= 1011+ 0001011+ 000001011.

We begin in state q0 with x and y each written on one of the input tapes (tapes 1 and 2) in reverse
binary notation, and all three reader heads lined up. We first add a terminal 0 to the end of y , which is
necessary to ensure that our computation will halt.

Suppose there are k initial 0’s in y . For each such 0, we replace it with a #, write a 0 on tape 3 in
the corresponding cell, move the heads above tapes 2 and 3 one cell to the right, and stay in state q0.

When we encounter the first 1 of y , we replace this 1 with a # and transition to a state qC in which
we copy x to tape 3 (the output tape), beginning in the i-th cell of this tape. As the contents of tape
1 are being copied onto tape 3, we also require that head above tape 2 moves in the same directions
as the head above tapes one and three until we encounter the first # on tape one. (One can verify
that the heads above tapes 2 and 3 will always be lined up). We then transition to a state in which we
reset the position of the tape 1 head to scanning the first bit of x , and then the tape 2 head is scanning
the leftmost bit in y that has not been erased (i.e. replaced with a #). As above, we require that the
tape 3 head moves in the same directions as the tape 2 head during this phase (which will ensure that
we begin copying x in the correct place on the tape if the next bit of y happens to be a 1. We then
transition back to state q0 and continue as before.

Suppose that the next bit of y that is equal to 1 is the i-th bit of y. Then we start the addition by
adding the first bit of x to the i-th bit of the output tape. We note that we may need to utilize a carry

40 CHAPTER 4. COMPUTABILITY THEORY

state during the addition. When we reach the # at the end of y , the computation is complete, and we
transition to the halting state. For an example of the product 7 . . . 8 = 7 · 8 = 56, see the supplementary
document

Like finite state automata, Turing machines can be represented a state diagram.

Example 4.4.4. There is a Turing machine that accepts every string in the set {an bncn | n > 0} over
the alphabet Σ= {a, b, c, 0,#}.

Here we will use the “0” as a special marking symbol, although we can do without it (and use “a”
instead). The following state diagram gives a Turing machine which accepts this every string in the
above set.

q0 q1

……

……

a a a a b b b b c c c c

q2q3

a,# a,R
#,R

a,# a,R

#

#

0,R

1

2

b,# b,R
#,L

b,0 b,R
0,L

c,# c,R
c,0 c,R

0,R

#,# #,S
#,SqH

#,R

q4

Observe that q4 functions as a reject state. Any input not listed on any of the edges will cause a
transition to state q4. To see that this Turing machine accepts the desired set, see the supplementary
document for an example with input aaaabbbbcccc.

Example 4.4.5. We define a Turing machine M that computes the function f (x) = |x | (the length of a
string x). There are two tapes, the input tape and the output tape. The input tape is read-only but we
allow writing on the output tape. Let the input alphabet be Σ = {a}. Let α/β indicate that the machine
is currently reading α on the input tape and β on the output tape. Similarly D1/D2 indicates that the
head on the input tape moves in direction D1 while the head on the output tape moves in direction D2.
The idea is to add one to the output tape after reading each symbol of the input tape. State q1 arises
when we need to add one to the output by carrying. State q2 simply brings the output tape back to the
first bit. Certain transitions are omitted from the table since they lead to divergent computation (we
will assume that incorrect inputs will immediately cause a transition to a reject state). For example, we
only get to state q1 when we have read a on the first tape and we continute to read that a, so that the
input #/0 is not a legal input when we have reached state q1.

The following table describes the behavior of the three main states.

4.4. TURING MACHINES 41

state read write move new state
q0 a/# a/1 R/S q0

q0 a/0 a/1 R/S q0

q0 a/1 a/0 S/R q1

q0 #/0 #/0 S/S qH

q0 #/1 #/0 S/S qH

q0 #/# #/0 S/S qH

q1 a/# a/1 S/L q2

q1 a/0 a/1 S/L q2

q1 a/1 a/0 S/R q1

q2 a/# a/# R/R q0

q2 a/0 a/0 S/L q2

q2 a/1 a/1 S/L q2

We now prove some general facts about certain kinds of languages that are central to the study of
Turing machines.

For a fixed alphabet Σ, a language is simply a set L ⊆ Σ∗ (recall that Σ∗ is the collection of all finite
sequences of elements of Σ).

Definition 4.4.6. A language L is said to be Turing semicomputable if there is a Turing machine M such
that L = {w : M(w)↓}. L is a Turing computable language if the characteristic function of L is Turing
computable.

Example 4.4.7. Here is a simple Turing machine M such that M(w)↓ if and only if w contains a 0. In
state q0, M moves right and remains in state q0 upon reading a 1 or a blank. M immediately halts upon
reading a 0.

Proposition 4.4.8. Every Turing computable language is also Turing semicomputable.

Proof. Let M be a Turing machine that computes the characteristic function of L. We modify M to define
a machine M ′ as follows. First we introduce new states qA and qB. Replace any transition that goes to
the halting state qH with a transition that goes the the state qA. For the qA state, add two transitions. If
the output tape reads 1, then transition to the halting state qH . If the output tape reads 0, then move
the output tape head one cell to the right and transition to state qB. In state qB, move the output tape
head one cell to the left and return to state qA. Then M ′(w) will halt if and only if M(w) = 1 and will
endlessly alternate between states qA and qB if and only if M(w) = 0.

Proposition 4.4.9. L is Turing computable if and only if both L and its complement are Turing semicom-
putable.

Proof. First observe that if L ⊆ Σ∗ is Turing computable, then Σ∗ \ L is Turing computable. Indeed, if M
computes the characteristic function of L, then define M ′ to be the machine that behaves exactly like
M except that for i = 0,1 whenever M writes i on its output tape, M ′ writes 1− i on its output tape.
It follows from Proposition 4.4.8 that if L is Turing computable, then both L and its complement are
semicomputable.

Now suppose that L = {w : M0(w)↓} and that Σ∗ \ L = {w : M1(w)↓} for two Turing machines M0
and M1. We define a Turing machine M such that the function fM computed by M is the characteristic
function of L. Suppose for the sake of simplicity that M0 and M1 each have one input tape and have no
output tape. Then M will have one input tape, two scratch tapes, and one output tape. The states of M
will include pairs (q, q′) where q is a state of M0 and q′ is a state of M1. Given w on the input tape of
M , M will begin by copying w onto each of the scratch tapes and transitioning to the pair (q0, q′0) of
initial states of M0 and M1. On the first scratch tape, M will simulate M0, while on the second scratch
tape, M will simulate M1. Eventually M will enter a state of one of the two forms: (qH , r), where qH is
the halting state of M0 and r is a non-halting state of M1, or (q, q′H), where q′H is the halting state of M1
and q is a non-halting state of M0.

42 CHAPTER 4. COMPUTABILITY THEORY

• If M enters a state of the form (qH , r), this means that the machine M0 has halted on w, and
hence w ∈ L. M will thus write a 1 on its output tape and transition to its halting state.

• If M enters a state of the form (q, q′H), this means that the machine M1 has halted on w, and
hence w /∈ L. M will thus write a 0 on its output tape and transition to its halting state.

Note that M will never enter the state (qH , q′H), since M0 and M1 can never accept the same word. It
thus follows that M computes the characteristic function of L.

Given two Turing machines M0 and M1, we write M0(x) ' M1(x) to mean that (i) M0(x)↓ if and
only if M1(x)↓ and (ii) M0(x)↓ implies that M0(x) = M1(x).

Theorem 4.4.10. Fix a finite alphabetΣ = {0, 1, q, #,∗, L, R, S, H,↓}. There is a universal Turing machine
U : Σ∗×Σ∗→ Σ∗ such that, for any Turing machine M : {0, 1}∗→ {0, 1}∗, there exists wM ∈ Σ∗ such that,
for all inputs x ∈ {0,1}∗, U(wM , x)' M(x).

We will only sketch the main ideas in the proof of Theorem 4.4.10. To simplify matters, we will use
the following lemma.

Lemma 4.4.11. Let M be a k-tape Turing machine for some k > 1. Then there is a single-tape Turing
machine M ′ such that M(x)' M ′(x) for all x ∈ Σ∗.

Before beginning the proof, we want to consider further the notion of a Turing machine configuration.
Suppose that M is a single-tape Turing machine working on the alphabet Σ = {0,1} with states
q0, q1, . . . , qk. The computation of M(w) on an input w is accomplished in a series of steps which may
be given by a configuration. The configuration ua ∗ qi ↓ bv indicates that M is in state qi , that the word
uabv is written on the tape and that the head is located at the symbol b; here u and v are words in the
language {0, 1}∗. The next configuration of M in the computation may be determined by looking at the
transition δ(qi , b). This configuration indicates the current state of M , the symbols written on the tape
(for any squares which have been used), and the position of the pointer.

Proof of Theorem 4.4.10. (Sketch) We define a universal Turing machine with two input tapes, a scratch
tape, and an output tape. For each machine M , we would like to define a word wM ∈ Σ∗ that encodes
all of the information of M . We will let wM be the entire transition table of M written as one long string
in the alphabet Σ∗, with a ∗ separating each entry on a given row of a table and ∗∗ separating each row
of the table. The string q0 will stand for the initial state, qH will stand for the halting state, and all
other states will be coded by a q followed by a finite string of 1s (q1, q11, q111, etc.)

Now, given the code wM for a machine M , to compute U(wM , x) (i.e. M(x)), U proceeds by writing
the initial configuration of M with input x on its scratch tape. Suppose, for example that x = 000.
Then U will write

q0 ↓ 000

where the ↓ specifies that the reader head is above the first 0 on the input tape of M . To proceed, U simply
consults the transition table wM written on its first input tape and writes the resulting configuration
of M after one move on its scratch tape. Continuing the example from above, if the first move of M
is to change to state q1, replace the first 0 of x with a 1 and move the head one cell to the right, the
resulting configuration will be

1 ∗ q1 ↓ 00

Continuing in this way, if M(x)↓, then U will eventually come to a stage in which a halting configuration
is written on its scratch tape. In this halting configuration, the value y = M(x) will be written, and
so U can simply copy this value y to its output tape and transition to its own halting state. Lastly, if
M(x)↑, then U(wM , x)↑.

It is important to note that our use of the alphabet Σ in the definition of a universal Turing machine is
not strictly necessary. For instance, we can also define a universal Turing machine U : {0, 1}∗×{0, 1}∗→
{0, 1}∗ by representing each of the symbols in Σ as a unique binary string. Some caution is necessary to

4.5. RECURSIVE FUNCTIONS 43

make sure the coding is unambiguous. We will not discuss the details of such a coding here, but we will
assume that for each Turing machine M , there is some unique wM ∈ {0,1}∗ that codes M . Moreover,
we will assume that every x ∈ {0, 1}∗ codes some Turing machine, which we will write as Mx . (We will
justify these assertions in Chapter 7 when we discuss Gödel numbering.)

Programs nearly always have bugs, so they may not do want we want them to do. The problem of
determining whether a given Turing machine M halts on input string w is the Halting Problem. Let us
define the halting set to be H = {(x , y) ∈ {0, 1}∗×{0, 1}∗ : Mx (y)↓}. Observe that H is semicomputable:
(x , y) ∈ H if and only if U(x , y)↓. By contrast, we have the following.

Theorem 4.4.12. The Halting Problem is not computable.

Proof. We will show that the complement of H is not semicomputable, so that by Proposition 4.4.9, H
is not computable. Suppose by way of contradiction that there is a Turing machine M such that, for all
x , y ∈ {0, 1}∗,

M(x , y)↓ ⇐⇒ Mx(y)↑.

We can define a Turing machine N so that N(w)' M(w, w). Then

N(w)↓ ⇐⇒ Mw(w)↑.

But this Turing machine N must have some code e. So for all w,

Me(w)↓ ⇐⇒ Mw(w)↑.

The contradiction arises when w= e.

Thus there exists a set which is semicomputable but not computable.

4.5 Recursive Functions

In this section, we define the primitive recursive and the (partial) recursive functions and show that
they are all Turing computable. Each function f maps from Nk to N for some fixed k (the arity of f).

Definition 4.5.1. The collection of primitive recursive functions is the smallest collection F of functions
from Nk to N for each k > 0 that includes the following initial functions

1. the constant function c(x) = 0,

2. the successor function s(x) = x + 1,

3. the projection functions pk
i (x1, . . . , xk) = xk for each k ∈ N and i = 1, . . . , k,

and are closed under the following schemes for defining new functions:

(4) (composition) if f : Nk → N and gi : N j → N for i = 1, . . . , k (where j, k > 0) are in F , then the
function h : N j → N defined by

h(x1, . . . , x j) = f (g1(x1, . . . , x j), . . . , gk(x1, . . . , x j))

is in F , and

(5) (primitive recursion) if g : Nk → N and h : Nk+2→ N are in F , then the function f : Nk+1→ N
defined by

f (0, x1, . . . , xk) = g(x1, . . . , xk)
f (n+ 1, x1, . . . , xk) = h(n, x1, . . . , xk, f (n, x1, . . . , xk))

is in F .

44 CHAPTER 4. COMPUTABILITY THEORY

Example 4.5.2.

1. For any constant c ∈ N, the function h(x) = c is primitive recursive. The proof is by induction on
c. For c = 0, this follows from the fact that the initial function c(x) = 0 is primitive recursive.
Supposing that g(x) = c is primitive recursive and using the fact that s(x) = x + 1 is primitive
recursive, we can use composition to conclude that h(x) = s(g(x)) = g(x)+1 = c+1 is primitive
recursive.

2. For any k and any c, the constant function f : Nk → N with f (x1, . . . , xk) = c is primitive
recursive. We have h(x) = c by (1) and we have pk

1(x1, . . . , xk) = x1 as a basic function, so that
f (x1, . . . , xk) = h(pk

1(x1, . . . , xk)) = h(x1) = c is also primitive recursive.

3. The addition function f (x , y) = x + y is primitive recursive. Let g(y) = p1
1(y) and h(x , y, z) =

c(p3
3(x , y, z)). Then f is given by

f (0, y) = g(y) = y

f (n+ 1, y) = h(n, y, f (n, y)) = f (n, y) + 1.

4. The predecessor function f (x) = x .−1 =

¨

x − 1, if x > 0

0, if x = 0
is primitive recursive. Let g(x) = c(x)

and h(x , y) = p2
1(x , y). Then f is given by

f (0) = g(y) = 0

f (n+ 1) = h(n, f (n)) = n.

5. The truncated subtraction function f (x , y) =

¨

y .− x , if x ≤ y

0, otherwise
is primitive recursive. Let

g(y) = p1
1(y) and h(x , y, z) = z .− 1. Then f is given by

f (0, y) = g(y) = y

f (n+ 1, y) = h(n, y, f (n, y)) = f (n, y) .− 1.

6. The function sg=

¨

0, if x = 0

1, if x > 0
is clearly primitive recursive.

7. The multiplication function f (x , y) = x · y is primitive recursive. Let g(x) = c(x) = 0 and let
h(x , y, z) = p3

3(x , y, z) + p3
2(x , y, z). Then f is given by

f (0, y) = g(y) = 0

f (n+ 1, y) = h(n, y, f (n, y)) = f (n, y) + y.

We can extend the collection of primitive recursive functions to the collection of partial recursive
functions by adding one additional scheme for defining new functions from previously defined ones. It
is this scheme that allows for the possibility that a function be undefined on a given input. Given a
function f : Nk → N, if f is defined on input (x1, . . . , xk), we write f (x1, . . . , xk)↓; if f is undefined on
(x1, . . . , xk), we write f (x1, . . . , xk)↑.

Definition 4.5.3. The collection of partial recursive functions is the smallest collection F of functions
from Nk to N for each k > 0 that includes the primitive recursive functions and is closed under the
following scheme:

4.5. RECURSIVE FUNCTIONS 45

(6) (unbounded search) if g : Nk+1→ N is in F , then the function f : Nk → N defined by

f (x1, . . . , xk) = the least n such that g(n, x1, . . . , xk) = 0 and g(i, x1, . . . , xk)↓ for i = 0, . . . n
(and f (x1, . . . , xk)↑ otherwise)

is in F .

We will refer to total recursive functions simply as recursive functions.
We say that f is defined from the total function g by bounded search if f (n, x) equals the least i < n

such that g(i, x) = 0 and otherwise f (n, x) = n. Certainly if g is a recursive function, then f will be
recursive function. We note that if we add a scheme of bounded search to the collection of primitive
recursive functions, we do not add any new functions.

Lemma 4.5.4. If g is primitive recursive and f is defined from g by bounded search, then f is primitive
recursive.

Proof. We have f (0, x) = 0 and for each n,

f (n+ 1, x) =

¨

f (n, x) if g(f (n, x), x) = 0

n+ 1 otherwise
.

The collection of partial recursive functions is equivalent to the collection of Turing computable
functions, in the sense that every partial recursive function can be computed by a Turing machine, and
every Turing computable function is partial recursive. We will prove one direction of this equivalence.

Theorem 4.5.5. Every partial recursive function can be computed by a Turing machine.

Proof. The proof is by induction on the family of partial recursive functions. For the base case, it is
clear that the initial functions are Turing computable. We now verify that the schemes of composition,
primitive recursion, and unbounded search yield Turing computable functions when applied to Turing
computable functions.

Composition. For simplicity let f (x) = h(g(x)) where h is computable by machine Mh and g is
computable by machine Mg . Assume without loss of generality that each machine uses one input tape
and one output tape and that the sets of states of the two machines are disjoint. We define a machine
M f that computes f with six tapes:

1. the input tape;

2. a scratch tape to serve as the input tape of g;

3. a scratch tape to serve as the output tape of g;

4. a scratch tape to serve as the input tape for h;

5. a scratch tape to serve as the output tape of h; and

6. an output tape.

M will have the states of g and h together plus a few new states to handle the transfer from Mg to Mh.
The transition function for Mg will be changed so that instead of halting when the output g(x) is ready,
M will go into a subroutine which copies from the g-output tape to the h-input tape and then hands
over the controls to Mh. The halting states of M will be the halting states of Mh.

Primitive Recursion. For simplicity let f (0, x) = g(x) and f (n + 1, x) = h(n, x , f (n, x)). Let Mg
compute g and let Mh compute h. Assume without loss of generality that each machine uses one input
tape and one output tape and that the sets of states of the two machines are disjoint. We define a
machine M that computes f (n, x) with nine tapes:

46 CHAPTER 4. COMPUTABILITY THEORY

1. the input tape for n;

2. the input tape for x;

3. a scratch tape to serve as the input tape for g;

4. a scratch tape to serve as the output tape of g;

5. a tape to keep track of the ongoing value of m< n;

6. a tape to keep track of the ongoing value of f (m, x);

7. a scratch tape to serve as the input tape for h;

8. a scratch tape to serve as the output tape of h(m, x , f (m, x)); and

9. an output tape.

M will have the states of g and h together plus a few new states to handle the transfer from Mg to Mh
and the ongoing recursion. The transition function for Mg will be changed so that instead of halting
when the output g(x) is ready, M will copy the value g(x) onto tape (6), write m= 0 onto tape (5),
and then hand over control to Mh. The inputs for Mh are found on tapes (2), (5) and (6). Mh uses
these to compute h(m, x , f (m, x)) = f (m+ 1, x). When Mh is ready to halt and give its output, M does
the following:

(i) M compares m from tape (5) with n from tape (1); if n = m+1, then the value on tape (8) equals
the desired f (n, x), so M copies this to tape (9) and halts.

(ii) Otherwise, M erases tape (6) and then copies the value from tape (8) onto tape (6).

(iii) Then M adds one to the value of m on tape (5), erases tapes (7) and (8) and hands control back
to Mh again.

Unbounded Search. For simplicity let f (x) = the least n such that g(n, x)↓ = 0 and for all i ≤ n g(i, x)↓.
Let Mg compute g using one input tape and one output tape.

We define a machine M that computes f (x) with five tapes:

1. the input tape for x;

2. a tape for the ongoing value of n;

3. a scratch tape to serve as the input tape for g;

4. a tape to keep track of the ongoing value of g(n, x); and

5. an output tape.

M will have the states of g plus a few new states to handle the the ongoing computations of g(n, x). M
begins by writing n= 0 on tape (2) and handing control to Mg . The transition function for Mg will be
changed so that instead of halting when the output g(x) is ready, M will do the following:

(i) Compare the value g(n, x) from tape (4) with 0. If g(n, x) = 0, then the value n on tape (2)
equals the desired f (x), so M copies this to tape (5) and halts.

(ii) Otherwise, M increments the value of n on tape (2), erases tapes (3) and (4) and hands control
back to Mg again.

4.5. RECURSIVE FUNCTIONS 47

For the other direction, we need to associate to each Turing machine a natural number. We will
consider now the problem of coding words on a finite alphabet Σ = {a1, . . . , ak} into words over {0, 1}∗
and then into natural numbers.

For the first part, we can code the word w = ai1 ai2 · · · ain into the string 0i
110i21 · · ·0in1. For the

second part, we can code the word v = i0 · · · in ∈ {0, 1}∗ by the reverse binary natural number i0 · · · in1.
Note that this will work for an arbitrary finite alphabet and even for the potentially infinite alphabet N.
Let < w> be the natural number code for the word w.

It is clear that we can use a Turing machine to compute the code < w> for a string w ∈ {1, 2, . . . , k}∗
by going into state qi when reading each symbol (i) and then writing i 0’s followed by a 1 and returning
to state q0.

For the other direction, given a binary number 0r10r21 · · ·0rk 1, we can compute a sequence n0 =
n, r0, n1, r1, . . . , nk, rk as follows. Recall the primitive recursive functions Q(a, b), the quotient when a
is divided by b and the corresponding remainder R(a, b), and note that b divides a if the remainder is
0. Now let r0 be the least r such that 2r+1 does not divide n and then let n1 =Q(n, 2r0)− 1. After this,
let ri+1 = (least r)R(ni , 2

r+1) 6= 0 and let ni+1 = Q(ni , 2
ri)− 1. Thus the function which computes ri

from n and i is computable.
For example, if n= 03105101, then r0 = 3, n1 = 05101, r1 = 5, n2 = 01, r2 = 1, n3 = 0.
Then we may use the universal Turing machine U to provide an enumeration {Me : e ∈ ω} of all

Turing computable functions by letting Me be the machine whose program may be coded by the natural
number e. Then the proof of Theorem 4.4.10 also proves the following.

Proposition 4.5.6. For natural numbers s, e, w, let F(s, e, w) be the natural number which codes the sth
configuration in the computation of Me on input word coded by w. Let M s

e (w) be the output given by Me if
the computation halts by stage s. Then

1. The function F is primitive recursive.

2. The set {(e, s, w) : M s
e(w) ↓} is primitive recursive.

3. The set {e, s, w, v) : M s
e(w) is the string coded by v} is primitive recursive.

If we consider Turing computable functions on natural numbers, then we have primitive recursive
functions coding the string 1n into < 1n >= (01)n1 and back again, so the result above holds for natural
numbers v and w.

Now given any Turing computable function Me, Me(w) may be computed by searching for the least
s such that M s

e(w) ↓ and then the least v ≤ s such that M s
e(w) = v.

Since we can code finite sequences as strings and hence as natural numbers, the equivalence of
Turing computable functions from Nk → N easily follows. This completes the proof that any Turing
computable function is recursive, and hence verifies this case of Church’s Thesis, as described below.

All of the formalizations of the intuitive notion of a computable number-theoretic function has given
rise to the same collection of functions. For this and other reasons, the community of mathematical
logicians have come to accept the Church-Turing thesis, which is the claim that the collection of Turing
computable functions is the same as the collection of intuitively computable functions. In practice, the
Church-Turing thesis has two main consequences:

(1) if we want to show that a given problem cannot be solved by any algorithmic procedure, it suffices
to show that solutions to the problem cannot be computed by any Turing computable functions;

(2) to show that a given function is computable, it suffices to give an informal description of an
effective procedure for computing the values of the function.

Given the equivalence of the various notions of computable function, we will hereafter refer to
the formal notions as computable functions and partial computable functions (as opposed to recursive
functions and partial recursive functions).

We now recast the earlier definitions of computability and semi-computability in terms of natural
numbers and introduce a new notion, namely, computable enumerability.

48 CHAPTER 4. COMPUTABILITY THEORY

Definition 4.5.7. Let A⊆ N.

1. A is said to be primitive recursive if the characteristic function χA is primitive recursive.

2. A is said to be computable if the characteristic function χA is computable.

3. A is said to be semi-computable if there is a partial computable function φ such that A= dom(Φ).

4. A is said to be computably enumerable if there is some computable function f such that A= ran(f).
That is, A can be enumerated as f (0), f (1), f (2),

Example 4.5.8. The set of even numbers is primitive recursive since its characteristic function may be
defined by f (0) = 1 and f (n+ 1) = 1− f (n).

Example 4.5.9. Define the functions Q and R as follows. Let Q(a, b) be the quotient when b is
divided by a + 1 and let R(a, b) be the remainder, so that b = Q(a, b) · (a + 1) + R(a, b). Then both
Q and R are primitive recursive. That is, Q(a, b) is the least i ≤ b such that i · (a + 2) ≥ b and
R(a, b) = b−Q(a, b) · (a+ 1).

Example 4.5.10. The relation x | y (x divides y) is primitive recursive, since x | y if and only if
(∃q < y + 1) x · q = y .

Example 4.5.11. The set of prime numbers is primitive recursive and the function P which enumerates
the prime numbers in increasing order is also primitive recursive. To see this, note that p > 1 is prime
if and only if (∀x < p)[x | p → p = 1]. Now we know that for any prime p, there is another prime
q > p with q < p!+1. By one of the exercises, the factorial function is primitive recursive. Then we can
recursively define P by P(0) = 2 and, for all i,

P(i + 1) = (least x < P(i + 1)!+ 1) x is prime.

We conclude this chapter with the following result.

Theorem 4.5.12. A is computably enumerable if and only if A is semicomputable.

Proof. Suppose first that A is computably enumerable. If A= ;, then certainly A is semicomputable, so
we may assume that A= rng(f) for some computable function f . Now define the partial computable
function φ by φ(x) = (least n) f (n) = x for x ∈ N. Then A= dom(φ), so that A is semicomputable.

Next suppose that A is semicomputable and let φ be a partial computable function so that A =
dom(φ). If A is empty, then it is computably enumerable. If not, select a ∈ A and define the computable
function f by

f (2s · (2m+ 1)) =

¨

m, if φ(m)↓ in < s steps,

a, otherwise.

Then A= rng(f), so that A is computably enumerable.

4.6 Exercises

1. Define a Turing machine M such that M(w) = ww for any word w ∈ {a, b}∗. (For example,
M(aab) = aabaab.)

2. Define a Turing machine M such that M(u, v) halts exactly when u = v for u, v ∈ {a, b}∗. (M
begins with u on one input tape and with v on a second input tape. There might be a scratchwork
tape.)

3. Define a Turing machine M which halts on input (u, v) if and only if u≤ v (in the lexicographic
order on alphabet {a, b, c}.

4.6. EXERCISES 49

4. Define a Turing machine M such that M(1n) = n, that is, M converts a string of n 1’s into the
reverse binary form of n.

5. Show that function F(a, b) = LC M(a, b) is primitive recursive.

6. Show that the factorial function is primitive recursive.

7. Show that the general exponentiation function f (x , y) = y x is primitive recursive.

8. S ⊆ Nk is said to be Σ0
1 if there is a computable relation R such that S(x1, . . . , xk) ⇐⇒

(∃y)R(y, x1, . . . , xk). Prove that S is Σ0
1 if and only if S is semi-computable.

9. Suppose that f is a (total) recursive function and let g(x , y) =
∏

i<y f (x , i). Show carefully that
g is also recursive. Use this to show that the function f (n) = n! is recursive.

10. 13 Suppose that f : N → Nis a (total) recursive one-to-one function. Show that f −1 is also
recursive.

50 CHAPTER 4. COMPUTABILITY THEORY

