Extremely Amenable Groups and Structural Ramsey Theory

Francis Adams

October 31, 2012
1 Extremely Amenable Groups
Outline

1 Extremely Amenable Groups

2 Fraïssé Theory
Outline

1. Extremely Amenable Groups
2. Fraïssé Theory
3. Structural Ramsey Theory
Outline

1 Extremely Amenable Groups
2 Fraïssé Theory
3 Structural Ramsey Theory
4 Extremely Amenable Subgroups of S_∞
Outline

1. Extremely Amenable Groups
2. Fraïssé Theory
3. Structural Ramsey Theory
4. Extremely Amenable Subgroups of S_∞
5. Examples
Outline

1. Extremely Amenable Groups
2. Fraïssé Theory
3. Structural Ramsey Theory
4. Extremely Amenable Subgroups of S_{∞}
5. Examples
6. References
A topological group is a group G with a topology that makes multiplication and inversion continuous.

An action of G on a topological space X is continuous if it is continuous as a map $G \times X \to X$.

We will assume throughout that G, X are Hausdorff and X is compact.
Continuous G-flows

Call a continuous action of G on X a G-flow.

Definition

A group G is called extremely amenable if every G-flow X has a fixed point; that is, some $x \in X$ such that for all $g \in G$ $g \cdot x = x$.
Non-examples of Extremely Amenable Groups

Example

Let G be a non-trivial, compact group and let G act on itself by left translation. This is a G-flow with no fixed point. In fact it is a free G-flow, meaning the only thing that fixes anything is the identity. This means that no compact group is extremely amenable.
Non-examples of Extremely Amenable Groups

Example

Let G be a non-trivial, compact group and let G act on itself by left translation. This is a G-flow with no fixed point. In fact it is a free G-flow, meaning the only thing that fixes anything is the identity. This means that no compact group is extremely amenable.

Theorem

(Veech) Every locally compact group G has a free G-flow.

Thus, no locally compact group is extremely amenable.
Examples of Extremely Amenable Groups

1. (Gromov-Milman) $U(H)$, the unitary group of the infinite dimensional, separable Hilbert Space (strong operator).

2. (Pestov) $\text{Aut}(\langle \mathbb{Q}, < \rangle)$ (pointwise convergence).

3. (Giordano-Pestov) $\text{Iso}(U)$, the isometries of the Urysohn space (pointwise convergence).

4. (Furstenberg-Weiss, Glasner) $L([0, 1], \mathbb{T})$, the measurable maps from the unit interval to the unit circle under pointwise multiplication (convergence in measure).
Structures

- Let L be a countable language of relation symbols $\{R_i\}_{i \in I}$ with arity $n(i) \geq 1$ and function symbols $\{f_j\}_{j \in J}$ with arity $m(j) \geq 0$.

- An L-structure is $\mathcal{A} = \langle A, \{R_i^A\}_{i \in I}, \{f_j^A\}_{j \in J} \rangle$ where
 - $A \neq \emptyset$ is a set, the universe of \mathcal{A}.
 - For each i, $R_i^A \subseteq A^{n(i)}$ is a $n(i)$-ary relation on A.
 - For each j, $f_j^A : A^{m(j)} \to A$ is a $m(j)$-ary function on A.

- B is a substructure of \mathcal{A} if $B \subseteq A$, B is closed under each f_j^A and the functions and relations of B are those of \mathcal{A} restricted to B.

Examples

References
Homomorphisms

Given two L-structures \mathcal{A}, \mathcal{B}, a map $\pi : A \to B$ is a homomorphism if

- $R^A_i(a_1, \ldots, a_{n(i)}) \iff R^B_i(\pi(a_i), \ldots, \pi(a_{n(i)}))$
- $\pi(f^A_j(a_1, \ldots, a_{m(j)})) = f^B_j(\pi(a_i), \ldots, \pi(a_{m(j)}))$

We will be particularly interested in the automorphism groups of structures, $\text{Aut}(\mathcal{A})$.
More on Structures

- A structure is countable if its universe is countable, and similarly for any other cardinality.
- A structure is locally finite if every finitely generated substructure is actually finite.
- A structure is ultrahomogeneous if every isomorphism between two finitely generated substructures extends to an automorphism of the whole structure.

Example

For $L = \{<\}$, the structure $\langle \mathbb{Q}, < \rangle$ is countable, locally finite, and ultrahomogeneous.
Classes of Structures

Let \mathbf{K} be a class of L-structures.

- \mathbf{K} has the Hereditary Property (HP) if for $\mathcal{B} \in \mathbf{K}$ and any finitely generated $\mathcal{C} \leq \mathcal{B}$ (\mathcal{C} embeds into \mathcal{B}), then $\mathcal{C} \in \mathbf{K}$.
- \mathbf{K} has the Joint Embedding Property (JEP) if for $\mathcal{B}, \mathcal{C} \in \mathbf{K}$, there is a $\mathcal{D} \in \mathbf{K}$ such that $\mathcal{B}, \mathcal{C} \leq \mathcal{D}$.
- \mathbf{K} has the Amalgamation Property (AP) if for $\mathcal{B}, \mathcal{C}, \mathcal{D} \in \mathbf{K}$, and embeddings $f : \mathcal{B} \to \mathcal{C}$, $g : \mathcal{B} \to \mathcal{D}$, there is an $\mathcal{E} \in \mathbf{K}$ and embeddings $r : \mathcal{C} \to \mathcal{E}$, $s : \mathcal{D} \to \mathcal{E}$ such that $r \circ f = s \circ g$.

Example

The class of finite linear orders, \mathbf{LO}, satisfies HP, JEP, and AP.
The Age of a Structure

Definition

For an L-structure \mathcal{A}, the age of \mathcal{A}, denoted $\text{Age}(\mathcal{A})$, is the collection of finitely generated L-structures embeddable into \mathcal{A}.

- $\text{Age}(\mathcal{A})$ always satisfies HP and JEP.
- If \mathcal{A} is ultrahomogeneous, then it also satisfies AP.
- If \mathcal{A} is countable, then $\text{Age}(\mathcal{A})$ has only countably many isomorphism types.
- We will call a class of structures countable if it only has countably many isomorphism types.

Example

$\text{Age}(\langle \mathbb{Q}, < \rangle) = \text{LO}$.
Fraïssé’s Theorem

Theorem

Fix a countable language L. Let \mathbf{K} be a nonempty, countable class of finitely generated L-structures satisfying HP, JEP, and AP. Then there is a unique (up to isomorphism) countable, ultrahomogeneous structure \mathcal{A}, called the Fraïssé limit of \mathbf{K}, such that $\mathbf{K} = \text{Age}(\mathcal{A})$.

So a countable, ultrahomogeneous structure is the Fraïssé limit of its age.

Example

Since $\text{Age}(\langle \mathbb{Q}, < \rangle) = \mathbf{LO}$, we have $\text{Flim}(\mathbf{LO}) = \langle \mathbb{Q}, < \rangle$.
Fraïssé classes and structures

Definition

For a language L, a Fraïssé class in L is a class of finite L-structures which

- is countable
- contains structures of arbitrarily high finite cardinality
- satisfies HP, JEP, and AP

Definition

A Fraïssé structure in L is a countably infinite, locally finite, ultrahomogeneous structure.
So the map $\mathbf{K} \rightarrow Flim(\mathbf{K})$ is a bijection between Fraïssé classes and Fraïssé structures (up to isomorphism type) and has as its inverse the map $\mathcal{A} \rightarrow Age(\mathcal{A})$.
Finite Ramsey Theorem

Theorem

For $a, b, k \in \omega$ with $a \leq b$, there is a $c \in \omega$ such that if $|S| \geq c$, then for any k-coloring of $[S]^a$, there is a $T \subseteq S$ such that $|T| = b$ and $[T]^a$ is monochromatic.

This is denoted for all $a \leq b, k \in \omega$, there is a $c \in \omega$ such that $c \rightarrow (b)^a_k$.
Since a finite subset of ω is a finite linear order, what does this theorem say about the class of finite linear orders, LO?

Theorem

For any $A, B \in \text{LO}$, $A \leq B$ and any $k \in \omega$, there is a $C \in \text{LO}$ such that any k-coloring of the substructures of C isomorphic to A, there is a $B_0 \subseteq C$ isomorphic to B such that B_0 is homogeneous.
Fix L and let A, B, C be L-structures.

- If $A \leq B$, let $\binom{B}{A} = \{A_0 : A_0 \subseteq B \text{ and } A_0 \cong A\}$
- For $A \leq B \leq C$, $k \in \omega$, say $C \rightarrow \binom{B}{A}_k^A$ if for any k-coloring of $\binom{C}{A}$, there is a homogeneous $B_0 \in \binom{C}{B}$, meaning $\binom{B_0}{A}$ is monochromatic.

Definition

A class of finite L-structures \mathcal{K} has the Ramsey Property if \mathcal{K} satisfies HP and for $A \leq B, k \in \omega$, there is a $C \in \mathcal{K}$ where $B \leq C$ and $C \rightarrow \binom{B}{A}_k^A$.
Examples of the Ramsey Property

Example

For $L = \{<\}$, \textbf{LO} has the Ramsey Property, by Ramsey’s Theorem.

Example

For $L = \{<, E\}$, let \textbf{OG} be the class of finite ordered graphs $\mathcal{A} = \langle A, <^A, E^A \rangle$ where $<^A$ is a linear order and E^A is irreflexive and symmetric. (Nešetřil-Rödl) \textbf{OG} has the Ramsey Property.
Examples of the Ramsey Property

Example

- Let F be a finite field, and $L = \{+, f_\alpha : \alpha \in F\}$. Then vector spaces over F are L-structures.
- Let \mathbf{V}_F be the class of all finite dimensional vector spaces over F.
- (Graham-Leeb-Rothschild) \mathbf{V}_F has the Ramsey Property.
The topological group S_∞ is the group of permutations of ω topologized as a Polish subgroup of ω^ω.

It has a left-invariant compatible metric:

$$d(x, y) = \begin{cases}
0 & x = y \\
2^{-n} & \text{if } x \neq y \text{ and } n \text{ is least such that } x(n) \neq y(n)
\end{cases}$$

The basic open sets are of the form $[\sigma|n]$, the permutations agreeing with σ up to n.

S_∞
Closed Subgroups of S_∞

- For a countable structure \mathcal{A}, $Aut(\mathcal{A})$ is isomorphic to a closed subgroup of S_∞.
- And in fact, for any closed $G \leq S_\infty$, there is a countable structure \mathcal{A}_G such that $Aut(\mathcal{A}_G) \cong G$.
- By the construction of \mathcal{A}_G, it is seen to be ultrahomogeneous.
Let L be a language with a distinguished binary relation symbol \prec.

- An order structure for L is a structure \mathcal{A} where $\prec^\mathcal{A}$ is a linear order.
- An order class is a class \mathbf{K} of L-structures where every $\mathcal{A} \in \mathbf{K}$ is an order structure.
Theorem

(Kechris-Pestov-Todorcevic) Let $G \leq S_\infty$ be closed. Then G is extremely amenable iff $G = \text{Aut}(\mathcal{A})$ where \mathcal{A} is the Fraïssé limit of a Fraïssé order class with the Ramsey Property.

Corollary

Let $\{<\} \subseteq L$ be a language and \mathcal{K} a Fraïssé order class in L. Let $\mathcal{F} = \text{Flim}(\mathcal{K})$, so \mathcal{F} is a Fraïssé order structure. Then $G = \text{Aut}(\mathcal{F})$ is extremely amenable iff \mathcal{K} has the Ramsey Property.
Since \mathbf{LO} is a Fraïssé order class with the Ramsey Property with $\langle \mathbb{Q}, < \rangle$ as its Fraïssé limit, we have that $\text{Aut}(\langle \mathbb{Q}, < \rangle)$ is extremely amenable.
Let G be the class of all finite graphs. This is a Fraïssé class with Fraïssé limit R, the Rado graph, also known as the random graph.

Now look at OG, the class of all finite ordered graphs, a Fraïssé order class.

We’ll call $Flim(OG) = OR$ the random ordered graph.

OR is the random graph along with a linear order $<OR$ isomorphic to \mathbb{Q}.

Since OG has the Ramsey Property (by N-R), $Aut(OR)$ is extremely amenable.
Vector Spaces

- For a finite field F we have \mathcal{V}_F, the class of finite vector spaces over F.
- This is a Fraïssé class over $L_0 = \{+, f_\alpha : \alpha \in F\}$.
- We can define an ordering on a vector space \mathcal{V} by ordering $F = \{0 = a_0 < a_1 < \ldots < a_r\}$ and ordering a basis of \mathcal{V}, $B = \{b_0 < \ldots < b_s\}$ and ordering \mathcal{V} antilexicographically.
- An ordering obtained this way is called a natural ordering.
Let OV_F be the Fraïssé order class over $L = \{+, f_\alpha : \alpha \in F, <\}$ of finite vector spaces over F with a natural ordering.

$Flim(OV_F) = OV_F = \langle V_F, +, f_\alpha, <_{OV_F} \rangle$, where $<_{OV_F}$ is an appropriate linear ordering.

We’ll call OV_F the \aleph_0-dimensional vector space over F with the canonical ordering.

OV_F has the Ramsey Property, so $Aut(OV_F)$ is extremely amenable.
For a metric space \((X, d)\), we can define a structure over \(L_0 = \{R_q\}_{q \in \mathbb{Q}}\) by \(\mathcal{X} = \langle X, \{R^X_q\}_{q \in \mathbb{Q}} \rangle\) where \((x, y) \in R^X_q \iff d(x, y) < q\).

Let \(M_\mathbb{Q}\) be the class of finite metric spaces with rational distances.

This is a Fraïssé class with Fraïssé limit \(U_0\), the rational Urysohn space: the unique, universal, countable, ultrahomogeneous, rational metric space.

The completion of \(U_0\) is the Urysohn space \(U\), the unique, universal, ultrahomogeneous Polish space.
Let $\text{OM}_\mathbb{Q}$ be the class of ordered finite metric spaces with rational distances.

This is a Fraïssé order class with Fraïssé limit OU_0, the ordered rational Urysohn space.

Since $\text{OM}_\mathbb{Q}$ has the Ramsey Property (N), $\text{Aut}(\text{OM}_\mathbb{Q})$ is extremely amenable.
