$$
\begin{aligned}
& f(x)=\frac{\ln x}{x}[1,3] \\
& f^{\prime}(x)=\frac{x \cdot \frac{1}{x}-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}
\end{aligned}
$$

critical \#s:

$$
f(1)=\frac{\ln \mid}{1}=0<\min
$$

$$
\begin{array}{lcc}
1-\ln x=0 & x^{2}=0 & f(e)=\frac{\ln e}{e}=\frac{1}{e} \leftarrow \max \\
\ln x=1 & x=0 & f(3)=\frac{\ln 3}{3} \\
x=e & \text { i } & \\
& \begin{array}{l}
\text { not in } \\
\text { interval }
\end{array} &
\end{array}
$$

Why is $\frac{1}{e}>\frac{\ln 3}{3}$?
$f^{\prime}(x)$
$\Rightarrow e$ is a local max

Since e is a local max, $f(e)$ will be greater than the numbers around it (such as $f(3)$). So, $\frac{1}{e}>\frac{\ln 3}{3}$

