\qquad Date \qquad

Instructions: For each question, neatly write a solution and circle your answer.

1. Let $f(x)=\left\{\begin{array}{ll}3 x-\frac{3}{2}, & x \leq 1 \\ \frac{x^{2}+3 x-10}{x^{2}+x-6}, & x>1\end{array}\right.$. Is $f(x)$ continuous at $x=1$? Justify your answer.
(1) $f(1)=3 \cdot 1-\frac{3}{2}=3-\frac{3}{2}=\frac{3}{2}$
(2)

$$
\left.\begin{array}{l}
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} 3 x-\frac{3}{2}=3 \cdot 1-\frac{3}{2}=\frac{3}{2} \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}+3 x-10}{x^{2}+x-6}=\frac{1+3-10}{1+1-6}=\frac{-6}{-4}=\frac{3}{2}
\end{array}\right\}=\frac{3}{2}
$$

(3) $f(1) \stackrel{?}{=} \lim _{x \rightarrow 1} f(x) \Rightarrow \frac{3}{2} \stackrel{\sqrt{3}}{2}$ Yes
2. Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}-4 x+9}{3 x^{2}+7 x-3}$.

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-4 x+9}{3 x^{2}+7 x-3}=\lim _{x \rightarrow \infty} \frac{1-\frac{4}{x}+\frac{9}{x^{2}}}{3+\frac{7}{x}-\frac{3}{x^{2}}}
$$

$$
=\frac{1-0+0}{3+0-0}=\frac{1}{3}
$$

