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Abstract. A subset S of an integral domain R is called a semidomain if the pairs (S,+) and (S, ·)
are semigroups with identities; additionally, we say that S is additively reduced provided that S
contains no additive inverses. Given an additively reduced semidomain S and a torsion-free monoid

M , we denote by S[M ] the semidomain consisting of polynomial expressions with coefficients in S

and exponents in M ; we refer to these objects as additively reduced monoid semidomains. We study
the factorization properties of additively reduced monoid semidomains. Specifically, we determine

necessary and sufficient conditions for an additively reduced monoid semidomain to be a bounded

factorization semidomain, a finite factorization semidomain, and a unique factorization semidomain.
We also provide large classes of semidomains with full and infinity elasticity. Throughout the paper we

provide examples aiming to shed some light upon the arithmetic of additively reduced semidomains.

1. Introduction

It is well known that the polynomial extension of a unique factorization domain (UFD) is also a
unique factorization domain. In particular, the integral domain Z[x] is a UFD. In contrast, it is not
hard to find nonzero nonunit elements in the multiplicative monoid N0[x]∗, the monoid of polynomials
with nonnegative coefficients, having multiple factorizations (see, for instance, [19]), even though the
multiplicative monoid N is a unique factorization monoid. In other words, the property of having unique
factorization does not ascend from N0 to its polynomial extension N0[x]. This makes the factorization
properties of N0[x] much more interesting than those of Z[x]. As a matter of fact, the arithmetic
of N0[x] and its valuations has been the subject of various articles. In [6], Campanini and Facchini
investigated the arithmetic and ideal structure of N0[x], while Brunotte [5] studied the factors with
positive coefficients of a given polynomial with no positive roots. In addition, Baeth and Gotti [3]
briefly explored the factorization properties of the multiplicative monoid N0[r]∗ with r ∈ Q>0.

A subset S of an integral domain R is called a semidomain if the pairs (S,+) and (S, ·) are semigroups
with identities; additionally, we say that S is additively reduced provided that S contains no additive
inverses. Given an additively reduced semidomain S and a cancellative, commutative, and torsion-free
monoid M , we denote by S[M ] the additively reduced semidomain consisting of polynomial expressions
with coefficients in S and exponents in M ; we refer to these objects as additively reduced monoid
semidomains. Clearly, N0[x] is an additively reduced monoid semidomain, perhaps the simplest one. But
N0[x] is not the only additively reduced monoid semidomain that has been investigated before. Motivated
by potential applications in control theory, Barnard et al. [4] analyzed the relationship between the pairs
of conjugate roots of a polynomial f ∈ R≥0[x] and the divisors of f with positive coefficients, while Cesarz
et al. [7] investigated the elasticity and delta set of R≥0[x]. Moreover, Ponomarenko [22] studied the
factorization properties of semigroup semirings, a class of semirings strictly containing that of additively
reduced semidomains.
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The purpose of the present paper is to investigate the arithmetic of additively reduced monoid semido-
mains, and our work is structured as follows. In Section 2, we introduce the necessary background to
follow our exposition. Our first results are presented in Section 3, where we provide necessary and suf-
ficient conditions for an additively reduced monoid semidomain to be atomic and to satisfy the ACCP.
Then, in Section 4, we focus on the bounded and finite factorization properties. Specifically, we show
that an additively reduced monoid semidomain S[M ] is a BFS (resp., an FFS) if and only if S is a BFS
(resp., an FFS) and M is a BFM (resp., an FFM). Section 5 is devoted to the study of the factoriality
properties of additively reduced monoid semidomains. Here we prove that an additively reduced monoid
semidomain S[M ] is a UFS (resp., an LFS, an HFS) if and only if M is the trivial group and S is a
UFS (resp., an LFS, an HFS). We conclude providing large classes of semidomains with full and infinite
elasticity.

2. Background

We now review some of the standard notation and terminology we shall be using later. Reference
material on factorization theory and semiring theory can be found in the monographs [13] and [15],
respectively. We let N, Z,Q, and R denote the sets of positive integers, integers, rational numbers, and
real numbers, respectively, and we set N0 := {0}∪N. In addition, given r ∈ R and S ⊆ R, we set S>r :=
{s ∈ S | s > r}. We define S≥r in a similar way. For m,n ∈ N0, we set Jm,nK := {k ∈ Z | m ≤ k ≤ n}.
For q ∈ Q>0, there exist unique n, d ∈ N such that q = d−1n and gcd(n, d) = 1; we refer to n and d as
the numerator and denominator of q and denote them by n(q) and d(q), respectively.

2.1. Monoids and Factorizations. Throughout this paper, a monoid is defined to be a semigroup
with identity that is cancellative and commutative and, unless we specify otherwise, we will use multi-
plicative notation for monoids. For the rest of the section, let M be a monoid. We let U (M) denote the
group of units (i.e., invertible elements) of M . Additionally, we let Mred denote the quotient monoid
M/U (M). We say that M is reduced provided that the group of units of M is trivial; in this case, we
identify Mred with M . On the other hand, the monoid M is torsion-free if for all x, y ∈M and n ∈ N, we
have that xn = yn implies that x = y. Given a subset S of M , we let 〈S〉 denote the smallest submonoid
of M containing S. Also, we denote by G (M) the unique (up to isomorphism) abelian group satisfying
that if an abelian group contains a homomorphic image of M then it has to contain a homomorphic
image of G (M); this group is called the Grothendieck group of M .

For elements b, c ∈M , we say that b divides c in M if there is b′ ∈M such that c = bb′; in this case,
we write b |M c, dropping the subscript whenever M is the multiplicative monoid of the natural numbers.
On the other hand, two elements b, c ∈ M are associates, which we denote by b 'M c, provided that
b = u · c for some u ∈ U (M). A submonoid N of M is divisor-closed in M if for every b ∈ N and c ∈M
the relation c |M b implies that c ∈ N . Let S be a nonempty subset of M . While we say that d ∈M is
a common divisor of S given that d divides all elements of S, we say that a common divisor d of S is
a greatest common divisor of S provided that d is divisible by all common divisors of S. Moreover, a
common divisor of S is a maximal common divisor if every greatest common divisor of S/d is a unit of
M . We denote by gcdM (S) (resp., mcdM (S)) the set consisting of all greatest common divisors (resp.,
maximal common divisors) of S. We say that M is a GCD-monoid (resp., an MCD-monoid) on the
condition that every nonempty and finite subset of M has a greatest common divisor (resp., maximal
common divisor).

An element a ∈ M is called an atom if for every b, c ∈ M the equality a = bc implies that either
b ∈ U (M) or c ∈ U (M); we denote by A (M) the set of atoms of M . We say that M is atomic provided
that every element in M \U (M) can be written as a finite product of atoms. It is easy to verify that M
is atomic if and only if Mred is atomic. On the other hand, a subset I of M is an ideal of M provided
that IM ⊆ I. An ideal I of M is principal if I = xM for some x ∈ M . We say that M satisfies the
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ascending chain condition on principal ideals (ACCP) if every increasing sequence of principal ideals of
M (under inclusion) eventually terminates. It is not hard to see that if a monoid satisfies the ACCP
then it is atomic.

Suppose now that the monoid M is atomic. We denote by Z(M) the free (commutative) monoid
on A (Mred) whose elements we call factorizations. Given a factorization z = a1 · · · a` ∈ Z(M), where
a1, . . . , a` ∈ A (Mred), it is said that ` is the length of z. We let |z| denote the length of a factorization
z ∈ Z(M). Let π : Z(M) → Mred be the unique (monoid) homomorphism fixing the set A (Mred). For
every element x ∈M , the following sets associated to x play a crucial role in the study of factorizations:

(2.1) ZM (x) := π−1(xU (M)) ⊆ Z(M) and LM (x) := {|z| : z ∈ ZM (x)} ⊆ N0.

The subscript in (2.1) is dropped when there seems to be no risk of confusion. Following [18], the monoid
M is called a finite factorization monoid (FFM ) if Z(x) is finite for every x ∈ M , and M is called a
bounded factorization monoid (BFM ) if L(x) is finite for all x ∈ M . It is evident that every FFM is
a BFM and, by [13, Corollary 1.3.3], every BFM satisfies the ACCP. Following [26], we say that M is
a half-factorial monoid (HFM ) provided that |L(x)| = 1 for every x ∈ M . Moreover, a monoid M is
called factorial or a unique factorization monoid (UFM ) if |Z(x)| = 1 for all x ∈ M . It is clear that
a UFM is an HFM and also that an HFM is a BFM. Finally, we follow the terminology in [8] and say
that M is a length-factorial monoid (LFM ) if for every x ∈ M and z, z′ ∈ Z(x), the equality |z| = |z′|
implies that z = z′. It is obvious that if a monoid is a UFM then it is an LFM.

2.2. Semirings and Semidomains. A semiring S is a (nonempty) set endowed with two binary
operations denoted by ‘·’ and ‘+’ and called multiplication and addition, respectively, such that the
following conditions hold:

• (S, ·) is a commutative semigroup with an identity element denoted by 1;

• (S,+) is a monoid with its identity element denoted by 0;

• b · (c+ d) = b · c+ b · d for all b, c, d ∈ S;

• 0 · b = 0 for all b ∈ S.

We sometimes write bc instead of b · c for elements b, c in a semiring S. We would like to emphasize
that a more general notion of a ‘semiring’ does not usually assume the commutativity of the underlying
multiplicative semigroup, but these algebraic objects are not of interest in the scope of this article.

If R and S are semirings then a function σ : R → S is a semiring homomorphism if, for all b, c ∈ R,
the following conditions hold:

• σ(bc) = σ(b)σ(c);

• σ(b+ c) = σ(b) + σ(c);

• σ(1) = 1.

• σ(0) = 0;

We say that σ is a semiring isomorphism provided that σ is injective and surjective. On the other hand,
a subset S′ of a semiring S is a subsemiring of S if (S′,+) is a submonoid of (S,+) that contains 1 and
is closed under multiplication. Clearly, every subsemiring of S is a semiring.

Definition 2.1. A semidomain is a subsemiring of an integral domain.

Let S be a semidomain. We say that (S \ {0}, ·) is the multiplicative monoid of S, and we denote it
by S∗. Following standard notation from ring theory, we refer to the units of the multiplicative monoid
S∗ simply as units, and we refer to the units of (S,+) as invertible elements without risk of ambiguity;
we let S× denote the group of units of S, while we let U (S) denote the additive group of invertible
elements of S. We denote the set of atoms of the multiplicative monoid S∗ as A (S) instead of A (S∗).
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Also, for b, c ∈ S such that b and c are associates in S∗, we write b 'S c (instead of b 'S∗ c). Similarly,
for b, c ∈ S such that b divides c in S∗, we write b |S c (instead of b |S∗ c).

Lemma 2.2. [17, Lemma 2.2] For a semiring S, the following conditions are equivalent.

(a) The multiplication of S extends to G (S) turning G (S) into an integral domain.

(b) S is a semidomain.

Given a semidomain S, we let F (S) denote the field of fractions of G (S). On the other hand, we say
that a semidomain S is atomic (resp., satisfies the ACCP) if its multiplicative monoid S∗ is atomic (resp.,
satisfies the ACCP). In addition, we say that S is a BFS, FFS, HFS, LFS, or UFS provided that S∗ is a
BFM, FFM, HFM, LFM, or UFM, respectively. Observe that when S is an integral domain, we recover
the usual definitions of a UFD, a BFD, an FFD, and an HFD, which are now established notions in
factorization theory.

Following [2], a subsemiring of the positive cone of R (under the standard multiplication and addition)
is called a positive semiring. The fact that the underlying additive monoids of positive semirings are
reduced makes them more tractable. In the recent paper [2], the reader can find several examples
of positive semirings. Note that the class of additively reduced semidomains clearly contains that of
positive semirings.

2.3. Monoid Semirings. Given a semiring S and a torsion-free monoid M (written additively), con-
sider the set S[M ] consisting of all maps f : M → S satisfying that the set {m ∈ M | f(m) 6= 0} is
finite. We shall conveniently represent an element f ∈ S[M ] by

f =
∑
m∈M

f(m)xm =

n∑
i=1

f(mi)x
mi,

where the exponents m1, . . . ,mn are the elements of M whose image under f is nonzero. Addition
and multiplication in S[M ] are defined as for polynomials, and we call the elements of S[M ] polynomial
expressions. Under these operations, S[M ] is a commutative semiring, which we call the monoid semiring
of M over S or, simply, a monoid semiring.

Lemma 2.3. Let S be a semidomain, and let M be a torsion-free monoid. Then S[M ] is a semidomain
and

S[M ]× =
{
sxm | s ∈ S× and m ∈ U (M)

}
.

Proof. By virtue of [14, Theorem 8.1], we have that G (S)[M ] is an integral domain and, clearly, S[M ] is
a subsemiring of G (S)[M ]. Hence S[M ] is a semidomain. The last part of our lemma is easy to verify;
we leave this task to the reader. �

If S is a semidomain then we say that S[M ] is a monoid semidomain. Observe that S[M ] is additively
reduced provided that S is additively reduced. Since the monoid M is torsion-free (and cancellative),
M admits a total order compatible with its monoid operation ([14, Corollary 3.4]). For n ∈ N, we say
that

f = s1x
m1 + · · ·+ snx

mn ∈ S[M ]∗

is written in canonical form when si 6= 0 for every i ∈ J1, nK and m1 > · · · > mn. Observe that there is
only one way to write f in canonical form. As for polynomials, we call deg(f) := m1 the degree of f and
c(f) := s1 the leading coefficient of f . Additionally, we say that Supp(f) := {m1, . . . ,mn} is the support
of f , and f is called a monomial (resp., binomial, trinomial) if |Supp(f)| = 1 (resp., |Supp(f)| = 2,
|Supp(f)| = 3).
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3. Atomicity and the ACCP

In this section, we study under which circumstances an additively reduced monoid semidomain sat-
isfies the properties of being atomic and the ACCP.

Given a semidomain S, we say that a nonzero polynomial in S[x] is indecomposable if it cannot be
written as a product of two non-constant polynomials in S[x]. In [17] and [23], it was shown that
indecomposable polynomials play an important role in the ascent of atomicity from a semidomain S to
its polynomial extension S[x]. Next we introduce a generalization of the notion of indecomposability to
the context of monoid semidomains.

Definition 3.1. Given a monoid semidomain S[M ], we say that a nonzero polynomial expression
f ∈ S[M ] is monolithic if f = gh implies that either g or h is a monomial in S[M ].

While there are monolithic polynomials that are not indecomposable (e.g., x2 + x3 ∈ N0[x]), inde-
composable polynomials are clearly monolithic. Our next lemma sheds some light upon the role that
monolithic polynomial expressions will play in this section.

Lemma 3.2. Let S be an additively reduced semidomain, and let M be a torsion-free monoid. Every
nonzero nonunit polynomial expression in S[M ] factors into monolithic polynomial expressions.

Proof. Let f =
∑n
i=1 six

mi be a nonzero nonunit polynomial expression in S[M ] written in canonical
form, so si 6= 0 for every i ∈ J1, nK and m1 > · · · > mn. We proceed by induction on n. If n = 1
then f is monolithic. Suppose now that all nonzero nonunit polynomial expressions whose support have
cardinality strictly less than n factors into monolithic polynomial expressions. If f is not monolithic
then f = gh, where neither g nor h is a monomial. Observe that since S is additively reduced, we have
that max(|Supp(g)|, |Supp(h)|) < |Supp(f)|, from which our argument follows inductively. �

Now we are in a position to provide a necessary and sufficient condition for an additively reduced
monoid semidomain to be atomic.

Theorem 3.3. Let S be an additively reduced semidomain, and let M be a torsion-free monoid. Then
S[M ] is atomic if and only if S and M are both atomic and

mcd (s1, . . . , sn)×mcd (m1, . . . ,mn) 6= ∅
for any monolithic polynomial expression f = s1x

m1 + · · ·+ snx
mn ∈ S[M ] written in canonical form.

Proof. Suppose that S[M ] is atomic. Observe that the multiplicative monoid N = {sxm | s ∈
S∗ and m ∈ U (M)} is a divisor-closed submonoid of S[M ]∗, so it is atomic. Since S∗red

∼= Nred, we can
conclude that S is atomic. Similarly, the multiplicative monoid H = {sxm | s ∈ S× and m ∈ M} is a
divisor-closed submonoid of S[M ]∗, so it is atomic. This implies that M is also atomic as Mred

∼= Hred.
Now let f = s1x

m1 + · · · + snx
mn ∈ S[M ] be a monolithic polynomial expression written in canonical

form. Without loss of generality, assume that f is not a monomial of S[M ] (so, in particular, f 6∈ S[M ]×).
Write f = g1 · · · gt, where gj ∈ A (S[M ]) for every j ∈ J1, tK. Since f is monolithic, there is no loss in
assuming that g1, . . . , gt−1 are all monomials. Let s =

∏
gi∈N gi and y =

∏
gi 6∈N gi, where the empty

product is considered to be equal to 1. It is easy to see that c(s) ∈ mcd(s1, . . . , sn) and that we can write
y = s′xmgt for some s′ ∈ S× and m ∈ mcd(m1, . . . ,mn). Hence mcd(s1, . . . , sn)×mcd(m1, . . . ,mn) 6= ∅.

As for the reverse implication, let us start by noticing that if a ∈ A (S) (resp., a ∈ A (M)) then
a ∈ A (S[M ]) (resp., xa ∈ A (S[M ])). Now let f =

∑n
i=1 six

mi ∈ S[M ] be a nonzero nonunit element
written in canonical form. Since S and M are both atomic, there is no loss in assuming that n > 1. By
Lemma 3.2, we can write f = g1 · · · gk, where gj is monolithic for each j ∈ J1, kK. Now fix j ∈ J1, kK.
Thus,

gj =

l∑
i=1

s′ix
m′i = mcd(s′1, . . . , s

′
l)x

mcd(m′1,...,m
′
l)hj
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for some hj ∈ A (S[M ]). By our initial observation, we have that gj ∈ 〈A (S[M ])〉 for every j ∈ J1, kK.
Therefore S[M ] is atomic. �

The next result follows readily from Theorem 3.3.

Corollary 3.4. Let S be an additively reduced semidomain, and let M be a torsion-free monoid. Then
S[M ]∗ is an atomic MCD-monoid if and only if S∗ and M are both atomic MCD-monoids.

Theorem 3.3 and Corollary 3.4 depend on the fact that the semidomain S is additively reduced. We
now discuss an example (introduced in [11]) in which generalizations of Theorem 3.3 and Corollary 3.4
to the context of general semidomains utterly fail.

Example 3.5. Fix a prime number p, and let (pn)n∈N be a sequence consisting of all prime numbers
different from p ordered increasingly. Now set Mp := 〈p−np−1n | n ∈ N〉, which is an additive submonoid
of (Q≥0,+), and take M = Mp × Mp. It is known that M is an atomic torsion-free monoid (see
[11, page 9]). In fact, it is easy to see that A (Mp) = {p−np−1n | n ∈ N}, which implies that Mp is
atomic; consequently, M is also atomic by [11, Proposition 3.1]. An elementary argument can be used
to verify that each nonzero element m ∈Mp has a unique representation in the form

m = m′ +

n∑
i=1

ci
pipi

,

where m′ ∈ Q≥0 with d(m′) = pk for some k ∈ N0 and 0 ≤ ci ≤ pi− 1 for each i ∈ J1, nK. Consequently,
Mp is an MCD-monoid which, in turn, implies that M is also an MCD-monoid. Now consider the
monoid semidomain F [M ], where F is a finite field of characteristic p. Since there is a ring isomorphism
F [x;Mp × Mp] ∼= F [y;Mp] × F [z;Mp] induced by the assignment x(a,b) 7→ yazb, we can write the
elements of F [M ] as polynomial expressions in two variables. It is known that every nonunit factor of
f = y + z + yz in F [M ] has the form (

y
1

pk + z
1

pk + y
1

pk z
1

pk

)t
for some k ∈ N0 and t ∈ N (see [11, page 9]). Consequently, not only is F [M ] non-atomic, but also no
atom of F [M ] divides f .

We now turn our attention to the ACCP, a property closely related to that of being atomic.

Theorem 3.6. Let S be an additively reduced semidomain, and let M be a torsion-free monoid. Then
S[M ] satisfies the ACCP if and only if S and M satisfy both the ACCP.

Proof. Suppose that S[M ] satisfies the ACCP. Since S∗ is a submonoid of S[M ]∗ such that S× = S[M ]×∩
S, we have that S satisfies the ACCP. On the other hand, the multiplicative monoidM1 = {xm | m ∈M}
(which is clearly isomorphic to M) is also a submonoid of S[M ]∗ satisfying that M×1 = S[M ]× ∩M1.
Consequently, M satisfies the ACCP. Conversely, suppose that S and M satisfy both the ACCP, and
consider the multiplicative monoid M2 = {sxm | s ∈ S∗ and m ∈ M}. Clearly, M2 is a divisor-closed
submonoid of S[M ]∗. Moreover, it is easy to see that

S× ⊆M×2 = S[M ]× =
{
sxm | s ∈ S× and m ∈ U (M)

}
.

Let (skx
mkM2)k∈N be an ascending chain of principal ideals of M2. Since the ascending chain (skS)k∈N

of principal ideals of S eventually stabilizes, there exists n ∈ N such that si 'S sn for every i ≥ n.
Since S× ⊆ M×2 , there is no loss in assuming that sn = s1 for every n ∈ N. Observe now that the
ascending chain (mkM)k∈N of principal ideals of M stabilizes, which implies that (skx

mkM2)k∈N also
stabilizes by Lemma 2.3. Hence M2 satisfies the ACCP. By way of contradiction, assume that there
exists an ascending chain σ = (fkS[M ])k∈N of principal ideals of S[M ] such that σ does not stabilize.
If ft is a monomial for some t ∈ N then σ would stabilize because M2 is a divisor-closed submonoid of
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S[M ]∗ that satisfies the ACCP. As a consequence, we may assume that fk is not a monomial for any
k ∈ N. Note that (|Supp(fk)|)k∈N is a non-increasing sequence of natural numbers, which implies that
we can also assume that |Supp(f1)| = |Supp(fk)| for every k ∈ N. Hence, for every k ∈ N, we have
fk = fk+1(sk+1x

mk+1) for some sk+1 ∈ S∗ and mk+1 ∈ M . Observe that sk+1x
mk+1 6∈ S[M ]× for any

k ∈ N. Since sk+1x
mk+1 6∈M×2 for any k ∈ N, we have that σ∗ = (c(fk)xdeg(fk)M2)k∈N is an ascending

chain of ideals of M2 that does not stabilize. This contradiction proves that our hypothesis is untenable.
Therefore S[M ] satisfies the ACCP. �

In Theorem 3.6, the assumption that S is additively reduced is not superfluous as F [Q] does not satisfy
the ACCP for any field F by [14, Theorem 14.17]. On the other hand, we can combine theorems 3.3
and 3.6 to yield atomic semidomains that do not satisfy the ACCP as the following example illustrates.

Example 3.7. Take r ∈ Q∩ (0, 1) with n(r) ≥ 2, and consider the additive monoid Sr := 〈rn | n ∈ N0〉.
By [9, Corollary 4.4], the monoid Sr is atomic and does not satisfy the ACCP. Moreover, it was argued
in [17, Example 3.2] that Sr is an MCD-monoid. By theorems 3.3 and 3.6, the semidomain N0[Sr] is
atomic and does not satisfy the ACCP.

Remark 3.8. Given an additive submonoid M of Q≥0, consider the additive monoid E(M) := 〈em |
m ∈ M〉, which is free on the set S′ = {em | m ∈ M} by the Lindemann-Weierstrass Theorem stating
that, for distinct algebraic numbers α1, . . . , αn, the set {eα1 , . . . , eαn} is linearly independent over the
algebraic numbers. Observe that E(M) is closed under multiplication and, consequently, it is a positive
semiring. This construction has been used in the literature to construct semidomains with prescribed
factorization properties (see, for instance, [3, Example 4.15] and [2, Proposition 4.1]). Observe that the
arithmetic of positive semirings of the form E(M) can be better understood in the scope of the present
paper since E(M) ∼= N[M ] (as semirings).

4. The Bounded and Finite Factorization Properties

This section is devoted to the study of the bounded and finite factorization properties in the context
of additively reduced monoid semidomains. We start with a well-known and useful characterization of
BFMs.

Definition 4.1. Given a monoid M , a function ` : M → N0 is a length function of M if it satisfies the
following two properties:

(i) `(u) = 0 if and only if u ∈ U (M);

(ii) `(bc) ≥ `(b) + `(c) for every b, c ∈M .

The following result is well known.

Proposition 4.2. [18, Theorem 1] A monoid M is a BFM if and only if there is a length function
` : M → N0.

We are now in a position to characterize the additively reduced monoid semidomains that are BFSs.

Theorem 4.3. Let S be an additively reduced semidomain, and let M be a torsion-free monoid. Then
S[M ] is a BFS if and only if S is a BFS and M is a BFM.

Proof. Suppose that S[M ] is a BFS. As before, consider the multiplicative submonoid N = {sxm |
s ∈ S∗ and m ∈ U (M)} of S[M ] that satisfies that Nred

∼= S∗red. By Lemma 2.3, we have that
N× = S[M ]×∩N . Consequently, the monoidN is a BFM by virtue of [13, Corollary 1.3.3] which, in turn,
implies that S is a BFS. Similarly, the multiplicative submonoid H = {sxm | s ∈ S× and m ∈ M} of
S[M ] is a BFM as H× = S[M ]×∩H. Since Mred

∼= Hred, we have that M is a BFM. Conversely, suppose
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that S is a BFS and M is a BFM. Then there exist length functions `c : S∗ → N0 and `e : M → N0. Let
us argue that the function ` : S[M ]∗ → N0 given by

` (f) = `c (c (f)) + `e (deg (f)) + |Supp (f) | − 1

is also a length function. By Lemma 2.3, we have that f ∈ S[M ] is a unit if and only if f = sxm, where
s ∈ S× and m ∈ U (M). Hence `(f) = 0 if and only if f ∈ S[M ]× as the reader can easily verify. For
f, g ∈ S[M ]∗ we see that

`(fg) = `c(c(fg)) + `e(deg(fg)) + |Supp (fg)| − 1

≥ `c(c(f)) + `c(c(g)) + `e(deg(f)) + `e(deg(g)) + |Supp (f)|+ |Supp (g)| − 2

= `(f) + `(g),

where the inequality follows from `c and `e being both length functions along with the fact that the
inequality |Supp(fg)| ≥ |Supp(f)| + |Supp(g)| − 1 holds. Therefore the map ` is a length function of
S[M ]∗, which implies that S[M ] is a BFS by Proposition 4.2. �

From the corresponding definitions, we see that an additively reduced FFS is a BFS. However,
there are numerous examples in the literature illustrating that the reverse implication fails (e.g. [2,
Example 6.4] and [17, Example 4.5]). We now provide a new example of an additively reduced BFS
that is not an FFS.

Example 4.4. The semidomain S = N0∪Q≥2 is a BFS that is not an FFS (see [2, Example 6.4]). Now
let

R = Int(N, S) := {f ∈ Q[x] | f(N) ⊆ S} .
It is easy to check that R is an additively reduced semidomain. Since S ⊆ R and R× = S× = {1}, the
semidomain R is not an FFS by [13, Theorem 1.5.6]. For every element f ∈ R∗ \R×, set

L(f) :=
{
` ∈ N | f = g1 · · · g`, where gi ∈ R∗ \R× for each i ∈ J1, `K

}
.

Suppose towards a contradiction that there exists f ∈ R∗ \R× such that |L(f)| =∞. Since S is a BFS,
we have that deg(f) ≥ 1. There is no loss in assuming that f has no zeros in the interval [1,deg(f) + 3];
otherwise, we can pick another interval I = [k + 1, k + deg(f) + 3] for some k ∈ N such that f has
no zeros in I. By a similar reasoning, we may assume that f(n) 6= 1 for any n ∈ J1,deg(f) + 3K. Set

m :=
∑deg(f)+3
n=1 max L(f(n)), which is well defined since S is a BFS, and let g1 · · · g` ∈ L(f) such that

` > m. Observe that, for each n ∈ N, we have f(n) = g1(n) · · · g`(n), which implies that there exists
j ∈ J1, `K such that

gj(1) = gj(2) = · · · = gj(deg(f) + 2) = 1.

Since deg(gj) ≤ deg(f), we have that gj = 1, a contradiction. Consequently, for every f ∈ S∗ \ S×,
there exists nf ∈ N such that |L(f)| ≤ nf . This, in turn, implies that R is atomic. Since L(f) ⊆ L(f),
it is clear that the semidomain R is a BFS.

For the rest of the section, we focus on the finite factorization property.

Definition 4.5. Let g be an element of a torsion-free abelian group G (which is additively written),
and let Ng be the set of positive integers n such that the equation nx = g has a solution in G. We say
that g ∈ G is of type (0, 0, . . .) provided that Ng is finite. On the other hand, we say that g ∈ G is of
height (0, 0, . . .) if Ng is a singleton (i.e., Ng = {1}).

Theorem 4.6. Let S be an additively reduced semidomain, and let M be a torsion-free monoid. Then
S[M ] is an FFS if and only if S is an FFS and M is an FFM.
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Proof. Suppose that S[M ] is an FFS. Again, consider the multiplicative submonoid N = {sxm | s ∈
S∗ and m ∈ U (M)}. Since N× = S[M ]×, the monoid N is an FFM by [13, Theorem 1.5.6] which,
in turn, implies that S∗ is an FFM as S∗red

∼= Nred. Similarly, consider the multiplicative submonoid
H = {sxm | s ∈ S× and m ∈ M}. Since H× = S[M ]×, the monoid H is an FFM. From the fact that
Mred

∼= Hred, we conclude that M is also an FFM.
For the rest of the proof, we assume that a polynomial expression in S[M ] is always written in

canonical form. Now to tackle the reverse implication, suppose that S∗ and M are both FFMs. By
way of contradiction, assume that S[M ] is not an FFS. By [13, Proposition 1.5.5], there exists f :=∑n
i=0 six

mi ∈ S[M ] such that f has infinitely many divisors in S[M ] that are pairwise non-associates.

Let g :=
∑t
j=0 s

′
jx
m′j be an arbitrary divisor of f in S[M ]. Observe that, for every j ∈ J0, tK, there

exists i ∈ J0, nK such that m′j |M mi. Moreover, the inequality t ≤ n holds. Since M is an FFM, for
some r ∈ J0, nK, there exists a sequence

σ =

(
g(k) :=

r∑
`=0

s
(k)
` xm

(k)
`

)
k∈N

of pairwise non-associates divisors of f in S[M ] satisfying that m
(k)
` 'M m

(1)
` for every k ∈ N and every

` ∈ J0, rK. Since S∗ is an FFM, we may assume that s
(k)
0 'S s(1)0 for every k ∈ N; because the elements

of σ are pairwise non-associates, we may further assume that s
(k)
0 = s

(1)
0 for every k ∈ N. Now let

γ =

(
h(k) :=

tk∑
`=0

c
(k)
` xo

(k)
`

)
k∈N

such that f = g(k)h(k) for every k ∈ N. Since the underlying set of the sequence γ is an infinite subset
of divisors of f in S[M ] that are pairwise non-associates, we can assume without loss of generality that

tk = t1 = t and o
(k)
` 'M o

(1)
` for every k ∈ N and every ` ∈ J0, tK. Clearly, we have c

(k)
0 = c

(1)
0 for each

k ∈ N. Also, there is no loss in assuming that the equality m
(k)
i + o

(k)
j = m

(1)
i + o

(1)
j holds for every

k ∈ N, each i ∈ J0, rK, and each j ∈ J0, tK. Hence, for each k ∈ N, there exists uk ∈ U (M) such that

Supp
(
g(k)

)
=

{
m+ uk

∣∣∣∣m ∈ Supp
(
g(1)

)}
and Supp

(
h(k)

)
=

{
m− uk

∣∣∣∣m ∈ Supp
(
h(1)

)}
.

Thus σ∗ =
(
x−ukg(k)

)
k∈N is a sequence of pairwise non-associates divisors of f in S[M ] with the same

support and leading coefficient, namely Supp(g(1)) and c(g(1)), respectively. Let M ′ be the submonoid
of M generated by the set S′ := Supp(f) ∪ Supp(g(1)) ∪ Supp(h(1)), and consider the monoid domain
R = F [M ′], where F is a field containing S. Since every nonzero element of the Grothendieck group of
a finitely generated torsion-free (cancellative) monoid is of type (0, 0, . . .), we have that R is an FFD by
virtue of [20, Proposition 3.24]. Observe that f , x−ukg(k), and xukh(k) are elements of R for every k ∈ N,
which implies that there exist i, j ∈ N with i 6= j such that g(i) 'R g(j). Since deg(g(i)) = deg(g(j)) and
c(g(i)) = c(g(j)), we obtain that g(i) = g(j), a contradiction. Therefore S[M ] is an FFS. �

A monoid M is called a strong finite factorization monoid (SFFM ) if each nonzero element of M has
only finitely many divisors (counting associates)1. It is easy to see that a monoid M is an SFFM if and
only if it is an FFM and |U (M)| <∞. Following this definition, we say that a semidomain S is a strong
finite factorization semidomain (SFFS ) provided that S∗ is an SFFM. In Lemma 2.3, we established
that, for a semidomain S and a torsion-free monoid M , the inequality |S[M ]×| < ∞ holds if and only
if |S×| < ∞ and |U (M)| < ∞. Consequently, we obtain the following result as an easy corollary of
Theorem 4.6.

1The notion of strong finite factorization was introduced by Anderson and Mullins in [1].
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Corollary 4.7. Let S be an additively reduced semidomain, and let M be a torsion-free monoid. Then
S[M ] is an SFFS if and only if S is an SFFS and M is an SFFM.

In theorems 4.3 and 4.6, the assumption that S is additively reduced is not superfluous as, again, F [Q]
does not satisfy the ACCP for any field F by [14, Theorem 14.17]. We conclude this section providing a
large class of finite factorization semidomains, but first let us introduce a definition: a positive semiring
P is well-ordered if P contains no decreasing sequence.

Proposition 4.8. Let P be a well-ordered positive semiring. Then P is an FFS.

Proof. Suppose towards a contradiction that there exists an element b ∈ P ∗ such that b has infinitely
many non-associates (multiplicative) divisors. Then there exists an increasing sequence (bn)n∈N con-
sisting of non-associates divisors of b, which means that the underlying set of the decreasing sequence
(bb−1n )n∈N is a subset of P . This contradicts the fact that P is well-ordered. By [13, Proposition 1.5.5],
P is an FFS. �

5. Factoriality Properties

An additively reduced HFS is an FFS. However, the reverse implication does not hold in general.
Consider the following example.

Example 5.1. The semidomain S := N0[
√

6] is not half-factorial by [7, Theorem 3.1]. On the other

hand, it is not hard to verify that if b′ + c′
√

6 |S b + c
√

6, where b + c 6= 0, then b′ + c′ ≤ b + c, which
implies that S is an FFS by virtue of [13, Proposition 1.5.5].

Recall that a monoid M is a length-factorial monoid (an LFM ) if for all b ∈M and z, z′ ∈ Z(b), the
equality |z| = |z′| implies z = z′. We say that a semidomain S is a length-factorial semidomain (an
LFS ) if its multiplicative monoid S∗ is an LFM. It is evident that every UFS is an LFS. However, it
is not clear whether the reverse implication holds (see [17, Question 5.7]). It is known that an integral
domain is an LFS if and only if it is a UFS ([12, Corollary 2.11]).

In this section, we prove that an additively reduced monoid semidomain S[M ] is not factorial (resp.,
half-factorial, length-factorial), unless M is the trivial group and S is factorial (resp., half-factorial,
length-factorial). We also provide large classes of semidomains with full and infinity elasticity. Through-
out this section, we assume that, in an additively reduced monoid semidomain, a polynomial expression
is always written in canonical form.

Theorem 5.2. Let S be an additively reduced semidomain, and let M be a torsion-free monoid. The
following statements hold.

(1) S[M ] is a UFS if and only if S is a UFS and M is the trivial group.
(2) S[M ] is an LFS if and only if S is an LFS and M is the trivial group.
(3) S[M ] is an HFS if and only if S is an HFS and M is the trivial group.

Proof. Let us start by proving statements (1) and (2). The reverse implications of both statements hold
trivially. Now assume that S[M ] is an LFS. Suppose towards a contradiction that there exists a nonzero
m ∈M , and consider the polynomial expressions

f1 = xm + 1, f2 = x3m + 1, f3 = x2m + xm + 1, and f4 = x4m + x2m + 1

in S[M ]. Since M is torsion-free, we have that fi and fj are not associates in S[M ] for i 6= j. Clearly,
the equality f1f4 = f2f3 holds. Since f1 and f2 are binomials and f1(0) = f2(0) = 1, the polynomial
expressions f1 and f2 are irreducibles in S[M ]. On the other hand, observe that |L(f3)| = 1. Indeed,
either f3 is irreducible in S[M ] or f3 is a product of two irreducible binomials. Similarly, we have
|L(f4)| = 1. We argue that L(f3) = L(f4). If we can write f3 as a product of two irreducible binomials
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in S[M ] then none of the factors is an associate of xm+ 1 in S[M ] as the reader can easily verify and, in
this case, we can also write f4 as a product of two irreducible binomials in S[M ] using a straightforward
substitution. Conversely, suppose that

(5.1) (s1x
m1 + s2x

m2) (s3x
m3 + s4x

m4) ∈ Z(f4),

where s1, s2, s3, s4 ∈ S∗ and m1,m2,m3,m4 ∈ M . From Equation (5.1), we obtain that s2s4 = 1 and
m2 + m4 = 0. Consequently, there is no loss in assuming that s2 = s4 = 1 and m2 = m4 = 0. This,
in turn, implies that m1 = m3 = 2m. Hence we have f4 = (s1x

2m + 1)(s3x
2m + 1), which implies that

f3 = (s1x
m + 1)(s3x

m + 1) for s1, s3 ∈ S∗. Observe that neither s1x
m + 1 nor s3x

m + 1 is an associate
of xm + 1 in S[M ]. Thus L(f3) = L(f4), and we can conclude that the polynomial expression

x5m + x4m + x3m + x2m + xm + 1 ∈ S[M ]

has two different factorizations of the same length, which contradicts that S[M ] is an LFS. Therefore
M is the trivial group which, in turn, implies that S is an LFS. If, additionally, the semidomain S[M ]
is a UFS then S is also a UFS. We can conclude that statements (1) and (2) hold.

To tackle the nontrivial implication of statement (3), suppose that S[M ] is an HFS, and assume
towards a contradiction that there exists a nonzero m ∈M . Consider the polynomial expressions

f1 = x4m + x2m + xm + 1, f2 = x6m + x5m + x3m + 1,

f3 = xm + 1, f4 = x2m + 1, and f5 = x7m + 2x4m + 1

in S[M ]. Again, since M is torsion-free, we have that fi and fj are not associates in S[M ] for i 6= j. As
the reader can easily check, the equality f1f2 = f3f4f5 holds. On the other hand, we already established
that polynomial expressions similar to f3 and f4 are irreducibles in S[M ]. Next we argue that f1 and
f2 are also irreducibles in S[M ].

Case 1: f1 = x4m + x2m + xm + 1. By way of contradiction, suppose that f1 reduces in S[M ]. Since
f1 is not divisible in S[M ] by any nonunit monomial, f1 factors in S[M ] either as a binomial times a
trinomial, or into two binomials, yielding the following two subcases.

Case 1.1: f1 = (s1x
m1 + s2x

m2)(s3x
m3 + s4x

m4 + s5x
m5) with coefficients s1, s2, s3, s4, s5 ∈ S∗ and

exponents m1,m2,m3,m4,m5 ∈M . From this decomposition, we obtain the following equations:

m1 +m3 = 4m, m2 +m5 = 0, m2 +m3 = 2m, and m1 +m5 = m,

which generate the contradiction 4m = 3m.

Case 1.2: f1 = (s1x
m1 + s2x

m2)(s3x
m3 + s4x

m4) with coefficients s1, s2, s3, s4 ∈ S∗ and exponents
m1,m2,m3,m4 ∈M . From this decomposition, we obtain the following equations:

m1 +m3 = 4m, m2 +m4 = 0, and m1 +m4 +m2 +m3 = 3m,

which is evidently a contradiction.
As a consequence, we may conclude that the polynomial expression f1 is irreducible in S[M ]. To

show that f2 is irreducible in S[M ], we proceed similarly.

Case 2: f2 = x6m + x5m + x3m + 1. By way of contradiction, suppose that f2 reduces in S[M ]. Since
f2 is not divisible in S[M ] by any nonunit monomial, f2 factors in S[M ] either as a binomial times a
trinomial, or into two binomials, yielding the following two subcases.

Case 2.1: f2 = (s1x
m1 + s2x

m2)(s3x
m3 + s4x

m4 + s5x
m5) with coefficients s1, s2, s3, s4, s5 ∈ S∗ and

exponents m1,m2,m3,m4,m5 ∈M . From this decomposition, we obtain the following equations:

m1 +m3 = 6m, m2 +m5 = 0, m2 +m3 = 5m, and m1 +m5 = 3m,

which generate the contradiction 6m = 8m.
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Case 2.2: f2 = (s1x
m1 + s2x

m2)(s3x
m3 + s4x

m4) with coefficients s1, s2, s3, s4 ∈ S∗ and exponents
m1,m2,m3,m4 ∈M . From this decomposition, we obtain the following equations:

m1 +m3 = 6m, m2 +m4 = 0, and m1 +m4 +m2 +m3 = 8m,

which is evidently a contradiction.
Since the polynomial expressions f1 and f2 are irreducibles in S[M ], the element

x10m + x9m + x8m + 3x7m + 2x6m + 2x5m + 2x4m + x3m + x2m + xm + 1 ∈ S[M ]

has a factorization of length 2 (i.e., f1f2) and a factorization of length at least 3 (i.e., f3f4f5). Con-
sequently, the semidomain S[M ] is not an HFS. This contradiction proves that M is the trivial group
which, in turn, implies that S is an HFS. �

Based on Theorem 5.2, one might think that an additively reduced HFS is a UFS, but this is not the
case.

Example 5.3. Let D = Z[M ], where M = 〈(1, n) | n ∈ N〉 ⊆ N2
0. Clearly, the (cancellative and

commutative) monoid M is torsion-free, which implies that D is an integral domain by [14, Theorem 8.1].
Let S = {f ∈ N0[M ] | f(0) > 0}. Since S is a multiplicatively closed subset of D containing 1, we can
consider the localization of D at S, which we denote by S−1D. Set R = (N0[M ] × S)/ ∼, where ∼ is
the equivalence relation on N0[M ]× S defined by (f, g) ∼ (f ′, g′) if and only if fg′ = gf ′ for (f, g) and
(f ′, g′) in N0[M ]× S. We let f/g denote the equivalence class of (f, g). Define the following operations
in R:

f

g
· f
′

g′
=
ff ′

gg′
and

f

g
+
f ′

g′
=
fg′ + gf ′

gg′
.

It is routine to verify that these operations are well defined and that (R,+, ·) is an additively reduced

semiring2. Let ϕ : R→ S−1D be a function given by ϕ(f/g) = f/g, where f/g represents the equivalence
class of (f, g) as an element of S−1D. It is easy to see that ϕ is a well-defined semiring homomorphism.
Since ϕ is injective, R is an additively reduced semidomain.

It is known that M is an HFM that is not a UFM (see [9, Example 4.23]). Consequently, the
semidomain R is not a UFS. Next we show that R is an HFS. Since all the elements of M that are not
atoms are divisible by (1, 1) and x(1,1)/1 is irreducible in R, the semidomain R is atomic. Now let f/g
be a nonzero nonunit element of R. Since f/g 'R f , there is no loss in assuming that g = 1. Write
f = ckx

mk + · · ·+ c1x
m1 , where mk > · · · > m1 > (0, 0) in the lexicographic order. Let

z =

(
f1
g1

)
· · ·
(
fn
gn

)
and z′ =

(
f ′1
g′1

)
· · ·
(
f ′m
g′m

)
be two different factorizations of f/1 in R, and suppose towards a contradiction that n 6= m. Observe
that if f ′/g′ is an atom of R then writing f ′ = dlx

ol + · · · + d1x
o1 with ol > · · · > o1 > (0, 0) in

the lexicographic order, we have that o1 ∈ A (M) because all non-atoms of M are divisible by (1, 1).
Consequently, the element m1 ∈ M has two factorizations of lengths n and m, which contradicts that
M is an HFM. Therefore R is an additively reduced HFS that is not a UFS.

For an atomic monoid M , the elasticity of a nonunit x ∈M , denoted by ρ(x), is defined as

ρ(x) =
sup L(x)

inf L(x)
.

By convention, we set ρ(u) = 1 for every u ∈ U (M). It is easy to see that, for all x ∈M , we have that
ρ(x) ∈ Q≥1 ∪ {∞}. The elasticity of the monoid M is defined to be

ρ(M) := sup{ρ(x) | x ∈M}.

2The localization of semirings is presented in greater generality in [15, Chapter 11].
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The set of elasticities of M is denoted by R(M) := {ρ(x) | x ∈M}, and M is said to have full elasticity
provided that R(M) = (Q ∪ {∞}) ∩ [1, ρ(M)]. Observe that a monoid M is an HFM if and only if
ρ(M) = 1 (resp., |R(M)| = 1). So, we can think of monoids having full and infinite elasticity as being as
far as they can possibly be from being an HFM. In fact, the elasticity was first studied by Steffan [24] and
Valenza [25] with the purpose of measuring the deviation of an atomic monoid from being half-factorial.

Next we show that an atomic monoid semidomain S[M ] has full and infinite elasticity provided
that (S,+) is reduced, M is nontrivial and torsion-free, and F (S)[M ] is a UFD, where F (S) denotes
the quotient field of G (S). This generalizes [17, Proposition 5.7] in which the authors proved that a
semidomain S[x] has full and infinite elasticity if S is additively reduced. For the rest of the section, we
identify a semidomain S with a subsemiring of the integral domain G (S) (resp., F (S)) (see Lemma 2.2).

Proposition 5.4. An atomic monoid semidomain S[M ] has full and infinite elasticity provided that
(S,+) is reduced, M is nontrivial and torsion-free, and F (S)[M ] is a UFD.

Proof. First we show that there exists a nonzero element a ∈M such that xa+b is irreducible in F (S)[M ]
for every nonzero b ∈ F (S). Since F (S)[M ] is a UFD, the monoid M is factorial and each nonzero
element of the group U (M) of invertible elements of M is of type (0, 0, . . .) by [14, Theorem 14.16].
If M is reduced then it is not hard to see that, for a ∈ A (M), the polynomial expression xa + b is
irreducible in F (S)[M ] for any nonzero b ∈ F (S). On the other hand, if M is not reduced then
there is no loss in assuming that M = U (M). To see why our previous assumption is valid, observe
that S[U (M)]∗ is a divisor-closed submonoid of S[M ]∗. Indeed, if there exist polynomial expressions
f = s1x

h1 + · · ·+ snx
hn ∈ S[U (M)]∗ and g = s′1x

m1 + · · ·+ s′kx
mk ∈ S[M ]∗ such that g |S[M ] f then,

since S is additively reduced, for each i ∈ J1, kK there exists j ∈ J1, nK such that mi |M hj , but U (M)
is a divisor-closed submonoid of M ; consequently, we have that g ∈ S[U (M)]∗. Now since S[U (M)]∗ is
a divisor-closed submonoid of S[M ]∗, the semidomain S[U (M)] is atomic and if S[U (M)] has full and
infinite elasticity then S[M ] has full and infinite elasticity too. Consequently, we may assume that M is
a group satisfying that all of its nonzero elements are of type (0, 0, . . .). This, in turn, implies that there
exists a nonzero a ∈ M of height (0, 0, . . .). By virtue of [21, Lemma 4.1], the polynomial expression
xa + b is irreducible in F (S)[M ] for every nonzero b ∈ F (S).

For every field F containing F (S), the integral domain F [M ] is a UFD by [14, Theorem 14.16].
Consequently, there is no loss in assuming that F (S) is algebraically closed. Consider now the polyno-
mial expression f = x2a − xa + 1, where a is a nonzero element of M such that xa + b is irreducible in
F (S)[M ] for every nonzero b ∈ F (S). Observe that f reduces in F (S)[M ]. In fact, f = (xa+α)(xa+β)
for some nonzero α, β ∈ F (S) satisfying that αβ = 1 and α + β = −1. We already established that
xa +α and xa +β are irreducibles (in fact, primes) in F (S)[M ]. Note that either nα 6∈ S for any n ∈ N
or nβ 6∈ S for any n ∈ N. Indeed, if kα and tβ are in S for some k, t ∈ N then we have

−(tk) = tk(α+ β) = t(kα) + k(tβ) ∈ S,

which contradicts that (S,+) is reduced. Without loss of generality, assume that nα 6∈ S for any n ∈ N.
We now claim that the polynomial expression (xa+n)n(x2a−xa+1) is irreducible in S[M ] for every n ∈ N.
It follows from [7, Lemma 2.1] that, for every n,m ∈ N, the polynomial (y+n)m(y2−y+1) ∈ N0[y] if and
only if m ≥ n. By a straightforward substitution, we obtain that, for every n,m ∈ N, the polynomial
expression (xa + n)m(x2a − xa + 1) ∈ S[M ] if and only if m ≥ n. Since S[M ] is atomic, we can write

(xa + n)n(x2a − xa + 1) = (xa + n)n(xa + α)(xa + β) = f1 · · · fk,

where k ∈ N and f1, . . . , fk are irreducibles in S[M ]. Since nα 6∈ S for any n ∈ N, if xa + α |F(S)[M ] fj
for some j ∈ J1, kK then xa + β |F(S)[M ] fj . Hence if k ≥ 2 then, for some j ∈ J1, kK, we have that

fj = (xa+n)l(x2a−xa+1) for some 0 ≤ l < n, but we already showed that this is impossible. Therefore
(xa+n)n(x2a−xa+1) is irreducible in S[M ] for every n ∈ N. Clearly, xa+1 and x3a+1 are irreducibles
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in S[M ]. For n, k ∈ N, consider the polynomial expression

g = (xa + n)n(x2a − xa + 1)(xa + 1)k ∈ S[M ].

Since F (S)[M ] is a UFD and xa + b is irreducible in F (S)[M ] for every nonzero b ∈ F (S), we have
that the only two factorizations of g in S[M ] are

[(xa + n)n(x2a − xa + 1)] · [xa + 1]k and [xa + n]n · [(x2a − xa + 1)(xa + 1)] · [xa + 1]k−1

with lengths k + 1 and k + n, respectively. Since {(k + n)/(k + 1) | k, n ∈ N} = Q≥1, we conclude that
S[M ] has full and infinite elasticity. �

The reverse implication of Proposition 5.4 does not hold as the following example illustrates.

Example 5.5. Let M = 〈(3/2)n | n ∈ N0〉 ⊆ (Q≥0,+), and consider the monoid semidomain N0[M ].
Since M is an FFM ([16, Theorem 5.6]), the semidomain N0[M ] is atomic (in fact, an FFS) by Theo-
rem 4.6. It was proved in [10, Proposition 4.4] that M has full and infinite elasticity, which implies that
N0[M ] has full and infinite elasticity too. However, since M is not a UFM, the domain F [M ] is not a
UFD for any field F containing N0 ([14, Theorem 14.7]).

We conclude this section using Proposition 5.4 to provide two large classes of additively reduced
monoid semidomains with full and infinite elasticity.

Corollary 5.6. Let S[M ] be an atomic monoid semidomain such that S is additively reduced and M is
nontrivial and torsion-free. The following statements hold.

(1) If M is a reduced UFM then S[M ] has full and infinite elasticity.
(2) If M is not reduced and every nonzero element of U (M) is of type (0, 0, . . .) then S[M ] has full

and infinite elasticity.

Proof. Observe that if M is a reduced UFM then F (S)[M ] is a UFD by [14, Theorem 14.16]. Con-
sequently, the statement (1) follows from Proposition 5.4. Now suppose that M is not reduced and
that every nonzero element of U (M) is of type (0, 0, . . .). We already established that S[U (M)]∗ is a
divisor-closed submonoid of S[M ]∗, which implies that S[U (M)] is atomic. By [14, Theorem 14.15],
the integral domain F (S)[U (M)] is a UFD. Then S[U (M)] has full and infinite elasticity by virtue of
Proposition 5.4, which concludes our argument. �

Corollary 5.7. An atomic polynomial semidomain S[x] (resp., S[x, x−1]) has full and infinite elasticity
provided that (S,+) is reduced.

References

[1] D. D. Anderson and B. Mullins: Finite factorization domains, Proc. Amer. Math. Soc. 124 (1996) 389–396.
[2] N. R. Baeth, S. T. Chapman, and F. Gotti: Bi-atomic classes of positive semirings, Semigroup Forum 103 (2021)

1–23.

[3] N. R. Baeth and F. Gotti: Factorizations in upper triangular matrices over information semialgebras, J. Algebra
562 (2020) 466–496.

[4] R. W. Barnard, W. Dayawansa, K. Pearce, and D. Weinberg: Polynomials with nonnegative coefficients, Proc. Amer.
Math. Soc. 113 (1991) 77–85.

[5] H. Brunotte: On some classes of polynomials with nonnegative coefficients and a given factor, Period. Math. Hungar.

67 (2013) 15–32.
[6] F. Campanini and A. Facchini: Factorizations of polynomials with integral non-negative coefficients, Semigroup

Forum 99 (2019) 317–332.

[7] P. Cesarz, S. T. Chapman, S. McAdam, and G. J. Schaeffer: Elastic properties of some semirings defined by pos-
itive systems. In: Commutative Algebra and Its Applications (Eds. M. Fontana, S. E. Kabbaj, B. Olberding, and

I. Swanson), pp. 89–101, Proceedings of the Fifth International Fez Conference on Commutative Algebra and its

Applications, Walter de Gruyter, Berlin, 2009.



ARITHMETIC OF ADDITIVELY REDUCED MONOID SEMIDOMAINS 15

[8] S. T. Chapman, J. Coykendall, F. Gotti, and W. W. Smith: Length-factoriality in commutative monoids and integral
domains, J. Algebra 578 (2021) 186–212.

[9] S. T. Chapman, F. Gotti, and M. Gotti: When is a Puiseux monoid atomic?, Amer. Math. Monthly 128 (2021)
302–321.

[10] S. T. Chapman, F. Gotti, and M. Gotti: Factorization invariants of Puiseux monoids generated by geometric se-

quences, Comm. Algebra 48 (2020) 380–396.
[11] J. Coykendall and F. Gotti: On the atomicity of monoid algebras, J. Algebra 539 (2019) 138–151.

[12] J. Coykendall and W. W. Smith: On unique factorization domains, J. Algebra 332 (2011) 62–70.

[13] A. Geroldinger and F. Halter-Koch: Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure
and Applied Mathematics Vol. 278, Chapman & Hall/CRC, Boca Raton, 2006.

[14] R. Gilmer: Commutative Semigroup Rings, The University of Chicago Press, 1984.

[15] J. S. Golan: Semirings and their Applications, Kluwer Academic Publishers, 1999.
[16] F. Gotti: Increasing positive monoids of ordered fields are FF-monoids, J. Algebra 518 (2019) 40–56.

[17] F. Gotti and H. Polo: On the arithmetic of polynomial semidomains. Preprint on arXiv:

https://arxiv.org/pdf/2203.11478.pdf
[18] F. Halter-Koch: Finiteness theorems for factorizations, Semigroup Forum 44 (1992) 112–117.

[19] J. Hashimoto and T. Nakayama: On a problem of G. Birkhoff, Proc. Amer. Math. Soc. 1 (1950) 141–142.
[20] H. Kim: Factorization in monoid domains (Order No. 9903921), Available from ProQuest Dissertations &

Theses Global. (304491574). Retrieved from https://www.proquest.com/dissertations-theses/factorization-monoid-

domains/docview/304491574/se-2.
[21] R. Matsuda: Torsion-free abelian group rings III, Bull. Fac. Sci. Ibaraki Univ. Math. 9 (1977) 1–49.

[22] V. Ponomarenko: Arithmetic of semigroup semirings, Ukr. Math. J. 67 (2015) 213–229.

[23] M. Roitman: Polynomial extensions of atomic domains, J. Pure Appl. Algebra 87 (1993) 187–199.
[24] J. L. Steffan: Longueurs des décompositions en produits d’éléments irréductibles dans un anneau de Dedekind, J.
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