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Abstract. A subset S of an integral domain R is called a semidomain provided that the pairs (S,+)

and (S, ·) are semigroups with identities. The study of factorizations in integral domains was initiated

by D. D. Anderson, D. F. Anderson, and M. Zafrullah in 1990, and this area has been systematically
investigated since then. In this paper, we study the divisibility and arithmetic of factorizations in

the more general context of semidomains. We are specially concerned with the ascent of the most

standard divisibility and factorization properties from a semidomain to its semidomain of (Laurent)
polynomials. As in the case of integral domains, here we prove that the properties of satisfying ACCP,

having bounded factorizations, and having finite factorizations ascend in the class of semidomains. We

also consider the ascent of the property of being atomic, and we show that the property of having unique
factorization ascends only when a semidomain is an integral domain. Throughout the paper we provide

several examples aiming to shed some light upon the arithmetic of factorizations of semidomains.

1. Introduction

A subset of an integral domain containing 0 and 1 and closed under both addition and multiplication
is called a semidomain. As for integral domains, we say that a semidomain is atomic if every nonzero
element that is not a multiplicative unit factors into irreducibles. The first systematic study of factor-
izations in the context of integral domains was carried out by D. D. Anderson, D. F. Anderson, and
M. Zafrullah in [2], where they not only introduced and studied the bounded and the finite factoriza-
tion properties but also investigated further factorization properties, including being atomic, satisfying
ACCP, and being factorial or half-factorial. With the same properties in mind, here we study the arith-
metic of the more general class of semidomains, putting special emphasis on whether such properties
ascend from a semidomain to its semidomains of (Laurent) polynomials.

A commutative semiring S is a nonempty set endowed with two compatible binary operations de-
noted by ‘+’ and ‘·’ such that (S,+) and (S, ·) are commutative semigroups with identities. Commutative
semirings consisting of nonnegative real numbers (under the standard addition and multiplication) are
called positive semirings. Clearly, every positive semiring is a semidomain. The atomicity of positive
semirings consisting of rational numbers was first considered in [1,14]. Positive semirings were also
studied by N. R. Baeth and the first author [7] in connection with factorizations of matrices. Several ex-
amples of positive semirings were recently given in [6], where for the first time additive and multiplicative
factorizations in positive semirings were considered simultaneously.

The algebraic structures of central interest in this paper are semidomains of polynomials and semido-
mains of Laurent polynomials. The arithmetic of certain semidomains of (Laurent) polynomials has
been considered in the literature in the past few years. P. Cesarz et al. in [12] studied the elasticity
of R≥0[X], where R≥0 is the nonnegative cone of R. In addition, methods to factorize polynomials in
N0[X] were investigated by H. Brunotte in [10]. More recently, F. Campanini and A. Facchini in [11]
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provided a systematic investigation of factorizations in N0[X]. More generally, semigroup semirings
from the factorization point of view were studied by Ponomarenko in [37].

The positive semirings we obtain as homomorphic images of semidomains of polynomials and semido-
mains of Laurent polynomials have also been investigated recently. The additive structure of N0[α],
where α is a positive algebraic number, was studied in [14] by Chapman et al. and then in [16] by J.
Correa-Morris and the first author. More recently, the elasticity and the omega-primality of N0[α] have
been considered in [36]. Also, the atomicity of the multiplicative structure of N0[α] was studied in [12],
where it is shown that N0[α] has full infinite elasticity for reasonable quadratic algebraic integers α.
On the other hand, S. Zhu has recently studied several factorization aspects of the homomorphic image
N0[α±1] of the semidomain of Laurent polynomials N0[X±1], where α is a positive algebraic number.

We revise the definitions and terminology relevant to this paper in Section 2. Our first results
are presented in Section 3, where we study atomicity in connection with ACCP. It was proved by
M. Roitman [39, Proposition 1.1] that atomicity ascends from any integral domain R to the ring of
polynomials R[x] provided that every finite subset of R has a maximal common divisor. In Section 3 we
extend and generalize this result, proving that if an atomic semidomain has maximal common divisors for
finite subsets, then its semidomain of (Laurent) polynomial is also atomic. In [32], A. Grams constructed
a celebrated example of an atomic domain that does not satisfy ACCP. Further (nontrivial) examples
have been given in [39,43] and more recently in [9,30]. Here we construct a positive semiring (which
cannot be an integral domain) that is atomic but does not satisfy ACCP. On the other hand, we prove
that ACCP ascends from any semidomain to its semidomain of (Laurent) polynomials.

In Section 4, we consider the bounded and the finite factorization properties. Let S be a semidomain.
We say that S is a bounded factorization semidomain (BFS) if there is a function ` : S \{0} → N0 that is
zero on units and satisfies `(rs) ≥ `(r)`(s) for all r, s ∈ S\{0}. On the other hand, we say that S is a finite
factorization semidomain (FFS) if every nonzero element has finitely many divisors up to associates.
Both notions are extensions of the corresponding notions introduced in [2] for integral domains. It
is well known that both the bounded and the finite factorization properties ascend from an integral
domain to its ring of (Laurent) polynomials (see [2, Propositions 2.5 and 5.3] and [3, Corollary 2.2]). We
extend these facts by proving that the same properties ascend from any semidomain to its semidomain
of (Laurent) polynomials.

In Section 5, we study factorial and length-factorial semidomains. As for integral domains, we
say that a semidomain S is a factorial semidomain or a unique factorization semidomain (UFS) if
every nonzero element has a unique factorization into irreducibles. On the other hand, following the
terminology in [13], we say that S is a length-factorial semidomain (LFS) if S is atomic and any two
distinct factorizations of the same element of S have distinct numbers of irreducible factors (counting
repetitions). Length-factoriality was first studied in [18] and more recently in [13,24,29]. We prove
that the only semidomains where the unique factorization and the length-factorial properties ascend to
their corresponding (Laurent) polynomial semidomains are integral domains. We conclude the paper
considering the elasticity of semidomains of polynomials.

2. Preliminaries

In this section, we introduce the notation and terminology we shall be using later. For a comprehensive
background on factorization theory and semiring theory, the reader can consult [22] and [28], respectively.
Following standard notation, we let Z,Q, and R denote the sets of integers, rational numbers, and real
numbers, respectively. Additionally, we let N denote the set of positive integers, and we set N0 := {0}∪N.
Given r ∈ R and S ⊆ R, we set S<r := {s ∈ S | s < r}; we define S>r and S≥r in a similar way. For
m,n ∈ N0, we denote by Jm,nK the discrete interval from m to n; that is, Jm,nK := {k ∈ Z | m ≤ k ≤ n}.
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2.1. Monoids and Factorizations. Throughout this paper, a monoid1 is defined to be a semigroup
with identity that is cancellative and commutative. As we are primarily interested in the multiplicative
structure of certain semirings, unless otherwise specified we will use multiplicative notation for monoids.
Let M be a monoid with identity 1. We set M• := M \ {1}, and we let U (M) denote the group of
units (i.e., invertible elements) of M . In addition, we let Mred denote the quotient M/U (M), which is
also a monoid. The monoid M is reduced provided that U (M) is the trivial group, in which case we
naturally identify Mred with M . The Grothendieck group of M , denoted here by G (M), is the abelian
group (unique up to isomorphism) satisfying that any abelian group containing a homomorphic image
of M also contains a homomorphic image of G (M). For a subset S of M , we let 〈S〉 denote the smallest
submonoid of M containing S, and S is a generating set of M provided that M = 〈S〉.

For b, c ∈M , we say that b divides c in M if there exists b′ ∈M such that c = bb′, in which case we
write b |M c, dropping the subscript precisely when M = (N,×). Two elements b, c ∈ M are associates
if b |M c and c |M b. A submonoid N of M is divisor-closed if for each b ∈ N and d ∈ M the relation
d |M b implies that d ∈ N . Let S be a nonempty subset of M . An element d ∈M is a common divisor
of S provided that d |M s for all s ∈ S. A common divisor d of S is a greatest common divisor of S if d
is divisible by all common divisors of S. Also, a common divisor of S is a maximal common divisor if
every greatest common divisor of S/d belongs to U (M). We let gcdM (S) (resp., mcdM (S)) denote the
set consisting of all greatest common divisors (resp., maximal common divisors) of S. The monoid M
is a GCD-monoid (resp., an MCD-monoid) provided that every finite nonempty set of elements in M
has a greatest common divisor (resp., maximal common divisor).

An element a ∈ M \ U (M) is an atom if for all b, c ∈ M the equality a = bc implies that either
b ∈ U (M) or c ∈ U (M). We let A (M) denote the set of all atoms of M . The monoid M is atomic if
each element in M \U (M) can be written as a (finite) product of atoms. One can readily check that M
is atomic if and only if Mred is atomic. A subset I of M is an ideal of M provided that IM ⊆ I or,
equivalently, IM = I. An ideal I of M is principal if I = bM for some b ∈M . The monoid M satisfies
the ascending chain condition on principal ideals (ACCP) if every increasing sequence of principal
ideals of M (under inclusion) eventually stabilizes. It is well known and not hard to verify that monoids
satisfying ACCP are atomic.

Assume now that M is atomic. We let Z(M) denote the free (commutative) monoid on A (Mred).
The elements of Z(M) are factorizations, and if z = a1 · · · a` ∈ Z(M) for a1, . . . , a` ∈ A (Mred), then `
is the length of z, which is denoted by |z|. Let π : Z(M)→Mred be the unique monoid homomorphism
satisfying that π(a) = a for all a ∈ A (Mred). For each b ∈ M , the following sets associated to b are
fundamental in the study of factorization theory:

(2.1) ZM (b) := π−1(bU (M)) ⊆ Z(M) and LM (b) := {|z| : z ∈ ZM (b)} ⊆ N0.

We drop the subscript M in (2.1) whenever the monoid is clear from the context. Following [2] and [33],
we say that M is a finite factorization monoid (FFM ) if Z(b) is finite for all b ∈M , and we say that M
is a bounded factorization monoid (BFM ) if L(b) is finite for all b ∈M . It is clear that every FFM is a
BFM and, by virtue of [22, Corollary 1.3.3], every BFM satisfies ACCP. Following [44], we say that M is
a half-factorial monoid (HFM ) if |L(b)| = 1 for all b ∈M . Finally, M is a unique factorization monoid
(UFM ) if |Z(b)| = 1 for all b ∈M . It is clear that every UFM is an HFM and also that every HFM is a
BFM. The atomic classes defined in this paragraph can be fitted in the following diagram, introduced by
Anderson, Anderson, and Zafrullah in [2] and since then used as a methodology to study atomicity and
the phenomenon of multiple factorizations. Finally, we follow the terminology in [13] and say that M is
a length-factorial monoid (LFM ) if for all b ∈M and z, z′ ∈ Z(b), the equality |z| = |z′| implies z = z′.
It is clear that every UFM is an LFM.

1The standard definition of a monoid does not assume the cancellative and the commutative conditions.
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UFM HFM

FFM BFM ACCP monoid atomic monoid

/

/ /

/ / /

Figure 1. The implications in the diagram show the general inclusions among the sub-
classes of atomic monoids we have previously mentioned. The diagram also emphasizes
(with red marked arrows) that no further inclusion between any two of these classes
holds in general.

2.2. Semirings. A commutative semiring S is a nonempty set endowed with two binary operations
denoted by ‘+’ and ‘·’ and called addition and multiplication, respectively, such that the following
conditions hold:

• (S,+) is a monoid with its identity element denoted by 0;

• (S, ·) is a commutative semigroup with an identity element denoted by 1;

• b · (c+ d) = b · c+ b · d for all b, c, d ∈ S;

• 0 · b = 0 for all b ∈ S.

With notation as in the previous definition and for any b, c ∈ S, we write bc instead of b · c when
there seems to be no risk of confusion. A more general notion of a ‘semiring’ S does not assume that
the semigroup (S, ·) is commutative. However, this more general type of algebraic objects are not of
interest in the scope of this paper. Accordingly, from now on we will use the single term semiring,
tacitly assuming the commutativity of both operations. A subset S′ of a semiring S is a subsemiring
of S if (S′,+) is a submonoid of (S,+) that contains 1 and is closed under multiplication. Observe that
every subsemiring of S is a semiring.

Definition 2.1. We say that a semiring S is a semidomain provided that S is a subsemiring of an
integral domain.

Let S be a semidomain. Then (S\{0}, ·) is a monoid, which we denote by S∗ and call the multiplicative
monoid of S. In Example 2.3, we show a semiring S that is not a semidomain but still (S \ {0}, ·) is
a monoid. In order to reuse notation from ring theory, we refer to the units of (S,+) as invertible
elements, so that we can refer to the units of the multiplicative monoid S∗ simply as units of S without
the risk of ambiguity. Also, following standard notation from ring theory, we let S× denote the group
of units of S, letting U (S) refer to the additive group of invertible elements of S. In addition, we write
A (S) instead of A (S∗) for the set of atoms of the multiplicative monoid S∗ (we do not consider in
this paper the set of atoms of the additive monoid of a semidomain, except briefly in Proposition 3.6).
Finally, for b, c ∈ S such that b divides c in S∗, we write b |S c (instead of b |S∗ c).

For the next example, we need the following lemma.

Lemma 2.2. For a semiring S, the following conditions are equivalent.

(a) S is a semidomain.

(b) The multiplication of S extends to G (S) turning G (S) into an integral domain.

Proof. (b) ⇒ (a): This is clear.

(a) ⇒ (b): Let S be a semidomain, and suppose that S is embedded into an integral domain R.
We can identify the Grothendieck group G (S) of (S,+) with the subgroup {r − s | r, s ∈ S} of the
underlying additive group of R. It is easy to see then that G (S) is closed under the multiplication it
inherits from R, and it contains the multiplicative identity because 0, 1 ∈ S. Hence G (S) is an integral
domain having S as a subsemiring. �
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Example 2.3. Notice that the set S := {(0, 0)} ∪ (N× N) is a monoid with the usual component-wise
addition, and it is closed under the usual component-wise multiplication with multiplication identity
(1, 1). Hence S is a semiring. Observe, on the other hand, that any extension of the multiplication
of S to G (S) making the latter a commutative ring must respect the identity (1, 0)(0, 1) = (0, 0) and,
therefore, will not turn G (S) into an integral domain. Hence it follows from Lemma 2.2 that S is not a
semidomain.

We say that a semidomain S is atomic (resp., satisfies ACCP) if its multiplicative monoid S∗ is atomic
(resp., satisfies ACCP). In addition, we say that S is a BFS, FFS, HFS, or UFS provided that S∗ is
a BFM, FFM, HFM, or UFM, respectively. Note that when S is an integral domain, we recover the
usual definition of a UFD as well as the definitions of a BFD, an FFD, and an HFD, which are now
standard notions in atomicity and factorization theory. Although a semidomain S can be embedded
into an integral domain R, the semiring S may not inherit any atomic property from R as, after all, the
integral domain Q[x] is a UFD but it contains as a subring the integral domain Z+ xQ[x], which is not
even atomic.

The set consisting of all polynomials with coefficients in a semiring S is also a semiring, which we
denote by S[x] and call the semiring of polynomials over S. In addition, if S is a semidomain embedded
into an integral domain R, then it is clear that S[x] is also a semidomain, and the elements of S[x] are,
in particular, polynomials in R[x]. As a result, when S is a semidomain all the standard terminology for
polynomials can be applied to elements of S[x], including degree, order, leading coefficient, etc. Observe
that S∗ is a divisor-closed submonoid of S[x]∗ and, therefore, S[x]× = S× and A (S[x]) ∩ S = A (S).
Following [39], we say that a nonzero polynomial in S[x] is indecomposable if it cannot be written as a
product of two non-constant polynomials in S[x]. Similarly, when S is a semidomain, the semiring of
Laurent polynomials with coefficients in S is also a semidomain, which we denote by S[x±1] and call
the semiring of Laurent polynomials. Note that {sxn | s ∈ S∗ and n ∈ Z} is a divisor-closed submonoid
of S[x±1]∗, and so S[x±1]× = {sxn | s ∈ S× and n ∈ Z}.

Following the terminology in [6], we call a subsemiring of R (under the standard addition and mul-
tiplication) consisting of nonnegative numbers a positive semiring. The fact that underlying additive
monoids of positive semirings are reduced makes them more tractable. The reader can check the recent
paper [6] for several examples of positive semirings. The class of semidomains clearly contains those of
integral domains and positive semirings. As the following example illustrates, positive semirings and
integral domains account for all semidomains that can be embedded into Q.

Example 2.4. Suppose that S is a semidomain that is a subsemiring of Q, and assume that S is not
a positive semiring. Since S is not a positive semiring, it must contain a negative rational. By virtue
of [25, Theorem 2.9] any additive submonoid of Q containing both a negative and a positive rationals
must be a subgroup of Q. As a result, the additive monoid of S is a subgroup of Q. Thus, S is a subring
of Q, and so an integral domain.

In general, there are semidomains that are neither positive semirings nor integral domains.

Example 2.5. Consider the semidomain N0[α, β,−β], where α, β ∈ R>0 are algebraically independent
over Q. Clearly, the additive monoid N0[α, β,−β] is not reduced. On the other hand, since α and β are
algebraically independent over Q, we see that −α 6∈ N0[α, β,−β] and, therefore, (N0[α, β,−β],+) is not
a group.

3. Atomicity and the ACCP

In this section, we investigate under which conditions the property of being atomic and that of sat-
isfying ACCP ascend from a semidomain to its semidomain of (Laurent) polynomials. For an integral
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domain R, it is well known that the property of being ACCP ascends to both R[x] and R[x±1]. However,
this is not the case for the property of being atomic. Indeed, Roitman constructed in [39] examples of
atomic domains whose polynomial rings are not atomic (in the same vein, examples of atomic monoids
with non-atomic monoid algebras were constructed in [17]). The following result generalizes [39, Propo-
sition 1.1] to the context of semidomains.

Theorem 3.1. For a semidomain S, the following statements are equivalent.

(a) S is atomic and mcd(s1, . . . , sn) 6= ∅ for any coefficients s1, . . . , sn of an indecomposable poly-
nomial in S[x].

(b) S[x] is atomic.

(c) S[x±1] is atomic.

Proof. (a) ⇒ (b): Assume that S[x] is not atomic. Let f be a minimum-degree nonunit polynomial
in S[x]∗ that does not factor into irreducibles. Then f must be indecomposable and, as S is atomic,
deg f ≥ 1. Write f = cg, where c is a maximal common divisor of the set of coefficients of f . As g is
indecomposable, it is irreducible in S[x]. Hence c is a nonunit of S that cannot factor into irreducibles
in S. Hence S is not atomic.

(b) ⇒ (c): We claim that A (S[x]) ⊆ A (S[x±1]) ∪ S[x±1]×. To argue this, take f ∈ A (S[x]), and
assume that f /∈ S[x±1]× = {uxn | u ∈ S× and n ∈ Z}. Now write f = gh for some g, h ∈ S[x±1].
After replacing g and h by some of their associates in S[x±1], we can assume that g, h ∈ S[x]. Since
f ∈ A (S[x]), either g or h belongs to S[x]× ⊆ S[x±1]×, and so f ∈ A (S[x±1]).

(c) ⇒ (a): The monoid M := {sxn | s ∈ S∗ and n ∈ Z} is atomic because it is a divisor-closed
submonoid of S[x±1]∗. Since S∗red

∼= Mred, we conclude that S is atomic. Now suppose, by way
of contradiction, that there exists an indecomposable polynomial f =

∑n
i=0 six

i ∈ S[x] such that
mcd(s0, . . . , sn) = ∅. As f is indecomposable, ord f = 0, and the fact that mcd(s1, . . . , sn) = ∅
ensures that deg f ≥ 1. Hence f is a nonzero nonunit in S[x±1], and so we can write f = g1 · · · gm for
g1, . . . , gm ∈ A (S[x±1]). After replacing g1, . . . , gm for some of their associates in S[x±1], we can assume
that they all belong to S[x]. Because f is indecomposable, we can further assume that deg gm = deg f
and deg gi = 0 for every i ∈ J1,m − 1K. Since gm ∈ A (S[x±1]) ∩ S[x] and ord gm = 0, we see that
gm ∈ A (S[x]), which means that S× is the set of greatest common divisors of the coefficients of gm.
Hence g1 · · · gm−1 must belong to mcd(s1, . . . , sn), a contradiction. �

As a consequence of Theorem 3.1, we obtain that if a semidomain S is atomic and MCD, then its
polynomial extensions S[x] and S[x±1] are atomic. Next we show that in this case S[x] and S[x±1] are
also MCDs.

Proposition 3.2. For a semidomain S, the following statements are equivalent.

(a) S is MCD.

(b) S[x] is MCD.

(c) S[x±1] is MCD.

Proof. (a) ⇒ (b): Suppose that S is MCD. Let

T = {(f1, . . . , fn) | n ∈ N>1, fi ∈ S[x] for i ∈ J1, nK, and mcd(f1, . . . , fn) = ∅} .

Assume towards a contradiction that T is nonempty, and let (g1, . . . , gm) ∈ T such that
∑m

i=1 deg(gi)
is minimal. For f = cnx

n + · · · + c0 ∈ S[x], set c(f) := {cn, . . . , c0}. Let c be an arbitrary element of
the set mcd(∪mi=1c(gi)). By the minimality of

∑m
i=1 deg(gi), the set mcd(g1/c, . . . , gn/c) = S[x]×, which

contradicts that (g1, . . . , gm) is an element of T . Hence S[x] is MCD.

(b) ⇒ (c): This implication follows readily from the fact that S[x]× ⊆ S[x±1]×.
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(c) ⇒ (a): Suppose that S[x±1] is MCD. Since M = {sxn | s ∈ S∗ and n ∈ Z} is a divisor-closed
submonoid of S[x±1]∗ satisfying that M× = S[x±1]×, the former is also MCD. This immediately implies
that S is MCD because M and S∗ have isomorphic reduced monoids. �

Now we switch gears from the property of being atomic to that of satisfying ACCP, keeping our
setting of semidomains. Although it follows from the corresponding definitions that every semidomain
satisfying ACCP is atomic, we have mentioned in the introduction that the converse does not hold in
general. We proceed to provide an example of an atomic positive semiring that does not satisfy ACCP.

Example 3.3. Take r ∈ Q∩ (0, 1) with n(r) ≥ 2, and consider the additive monoid Sr := 〈rn | n ∈ N0〉.
By [14, Corollary 4.4], the monoid Sr is atomic and does not satisfy ACCP. We proceed to argue that Sr is
an MCD-monoid. Take s1, . . . , sk ∈ Sr for some k ∈ N. For each i ∈ J1, kK, we can write si =

∑ni

j=0 ci,jr
j ,

where ci,j ∈ N0 for all i ∈ J1, kK and j ∈ J0, niK. By virtue of the identity n(r)rn = d(r)rn+1, there is no
loss of generality in assuming that ci,j < n(r) for all i ∈ J1, kK and j ∈ J0, ni− 1K. In addition, the same
identity allows us to assume that n1 = · · · = nk. Set y := (min1≤i≤k ci,n1

)rn1 . Clearly, y is a common

divisor of s1, . . . , sk in Sr. Observe that, for some i ∈ J1, kK, the equality si − y =
∑n1−1

j=0 ci,jr
j holds,

where ci,j < n(r) for each j ∈ J0, n1 − 1K. By [14, Lemma 3.1(4)], the element si − y has finitely many
nonzero divisors in Sr, which implies that mcdSr (s1, . . . , sk) is nonempty. Hence Sr is an MCD-monoid.

Let us now consider the additive monoid E(Sr) := 〈es | s ∈ Sr〉. It follows from Lindemann-
Weierstrass Theorem that E(Sr) is the free monoid on the set M = {es | s ∈ Sr}. Note that E(Sr) is
closed under multiplication and, consequently, it is a positive semiring (cf. [6, Example 4.15]). Since the
multiplicative submonoid M is isomorphic to the additive monoid Sr, the monoid M does not satisfy
ACCP which, in turn, implies that E(Sr) does not satisfy ACCP as E(Sr)× = U (M) = {1}. To argue
that E(Sr) is atomic, take a nonzero nonunit f := c1e

s1 + · · · + cke
sk ∈ E(Sr) for some c1, . . . , ck ∈ N

and s1, . . . , sk ∈ Sr. After taking s ∈ mcd(s1, . . . , sk) and setting d := mcd(c1, . . . , ck), we can write

f = des
(
c1
d
es1−s + · · ·+ ck

d
esk−s

)
,

where s1 − s, . . . , sk − s have no nonunit common divisor in Sr. Since both P and {ea | a ∈ A (Sr)}
are contained in A (E(Sr)), the fact that N and Sr are atomic immediately implies that des factors
into irreducibles in E(Sr). Set g := c1

d e
s1−s + · · · + ck

d e
sk−s, and write g = f1 · · · fm for some nonunit

elements f1, . . . , fm ∈ E(Sr). As no element of the form et with t ∈ Sr divides g in E(Sr), it follows
that m ≤ log2

(
c1
d + · · ·+ ck

d

)
. Hence, after assuming that m is as large as it can possibly be, we obtain

that f1 · · · fm is a factorization of g in E(Sr), and so f factors into irreducibles. Thus, E(Sr) is atomic.

Unlike the property of being atomic, it is well known that the property of satisfying ACCP ascends
from every semidomain to its semidomain of (Laurent) polynomials (this is not the case in the more
general context of commutative rings with identity, as shown by W. J. Heinzer and D. C. Lantz in [35]).
In the next theorem, we generalize this result to the context of semidomains. If S is a semidomain and
f ∈ S[x]∗, then we let c(f) denote the leading coefficient of f .

Theorem 3.4. For a semidomain S, the following statements are equivalent.

(a) S satisfies ACCP.

(b) S[x] satisfies ACCP.

(c) S[x±1] satisfies ACCP.

Proof. (a) ⇒ (b): Let (fnS[x])n∈N be an ascending chain of principal ideals in S[x]. Since deg fn ≥
deg fn+1 for every n ∈ N, we can choose N1 ∈ N with deg fn = deg fN1

for every n ≥ N1. On the other
hand, for each n ∈ N, the fact that fn+1 divides fn in S[x] implies that c(fn+1) |S c(fn). Therefore
(c(fn)S)n∈N is an ascending chain of principal ideals in S. Since S satisfies ACCP, there exists N2 ∈ N
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such that c(fn) and c(fN2) are associates in S∗ for every n ≥ N2. After setting N := max{N1, N2},
we can take a sequence (sn)n∈N with terms in S∗ and a sequence (un)n∈N with terms in S× such that
fn = snfN and c(fn) = unc(fN ) for every n ≥ N . Thus, for each n ∈ N with n ≥ N ,

unc(fN ) = c(fn) = c(snfN ) = snc(fN ),

which implies that sn ∈ S×. As a result, fnS[x] = fNS[x] for every n ≥ N , and so the ascending chain
of principal ideals (fnS[x])n∈N stabilizes. Hence S[x] satisfies ACCP.

(b) ⇒ (c): Now assume that S[x] satisfies ACCP. Let (xknfnS[x±1])n∈N be an ascending chain of
principal ideals of S[x±1], where (kn)n∈N is a sequence of integers and fn ∈ S[x] satisfies ord fn = 0 for
every n ∈ N. Take a sequence (`n)n∈N of integers and a sequence (gn)n∈N with terms in S[x] satisfying
ord gn = 0 and xknfn = (xkn+1fn+1)(x`n+1gn+1) for every n ∈ N. As fn = fn+1gn+1 for each n ∈ N,
we see that (fnS[x])n∈N is an ascending chain of principal ideals in S[x]. Since S[x] satisfies ACCP,
(fnS[x])n∈N must stabilize, and so there is an N ∈ N such that fn and fn+1 are associates in S[x] for
every n ≥ N . This implies that gn+1 = fn/fn+1 ∈ S[x]× ⊆ S[x±1]× for every n ≥ N . Thus, xknfn and
xkn+1fn+1 are associates in S[x±1] for every n ≥ N , and so (xknfnS[x±1])n∈N stabilizes. Hence S[x±1]
satisfies ACCP.

(c) ⇒ (a): Suppose that S[x±1] satisfies ACCP. Since M = {sxn | s ∈ S∗ and n ∈ Z} is a divisor-
closed submonoid of S[x±1]∗, the former also satisfies ACCP. This immediately implies that S satisfies
ACCP because M and S∗ have isomorphic reduced monoids. �

A semidomain S is called Noetherian if every ideal of S is finitely generated. In contrast to Theo-
rem 3.4, the polynomial extension of a Noetherian semidomain is not necessarily Noetherian as the next
example illustrates.

Example 3.5. Consider the polynomial semidomain Q≥0[x]. Clearly, the semidomain Q≥0 has no
nonzero proper ideals, which implies that Q≥0 is Noetherian. Let I be the set consisting of all polyno-
mials in Q≥0[x] whose support have cardinality strictly bigger than 2. As the reader can easily verify,
the set I is, in fact, an ideal of Q≥0[x]. Suppose towards a contradiction that I is finitely generated, i.e.,
I = (f1, . . . , fn) for some n ∈ N and f1, . . . , fn ∈ Q≥0[x]. For a polynomial f = s1x

n1 + · · · + skx
nk ∈

Q≥0[x]∗ written in canonical form, we define ∆(f) := {ni−ni+1 | i ∈ J1, k−1K}. Set ∆ := ∪i∈J1,nK∆(fi),

and let N ∈ N such that N > max ∆. Consider the polynomial g = x3N + x2N + xN ∈ I. Observe that,
for polynomials f ′, g′ ∈ Q≥0[x], we have

min ∆(f ′ · g′) ≤ min ∆(f ′) and min ∆(f ′ + g′) ≤ min ∆(f ′).

But this contradicts that g ∈ (f1, . . . , fn). Therefore Q≥0[x] is not Noetherian.

Let S be a semidomain, and suppose that it is embedded into an integral domain R. The subset of the
ring of formal power series RJxK consisting of those power series with coefficients in S is a semidomain,
which we call the semidomain of formal power series over S and denote by SJxK. It is clear that SJxK
does not depend on the embedding of S into R. In [40], Roitman showed that atomicity does not ascend
from an integral domain to its ring of formal formal power series. Next we show that the semidomain
of formal power series over S is not necessarily atomic, even when S is a UFS.

Proposition 3.6. Let S be a semidomain such that (S,+) is reduced. The following statements hold.

(1) SJxK does not satisfy the ACCP.
(2) If A (S,+) 6= ∅, then SJxK is not atomic.

Proof. For each k ∈ N0, set fk :=
∑∞

n=0 x
n·2k . Observe that fk = (1 +x2

k

)fk+1 for every k ∈ N0, which
implies that (fkSJxK)k∈N0 is an ascending chain of principal ideals of SJxK. Since SJxK× = S×, we have

that 1 + x2
k 6∈ SJxK× for any k ∈ N0. Consequently, the ascending chain (fkSJxK)k∈N0

never stabilizes.
Hence SJxK does not satisfy the ACCP.
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To tackle the statement (2), we start by proving that N0JxK is not atomic. It is clear that N0JxK is
reduced. Suppose towards a contradiction that N0JxK is atomic. Set f :=

∑∞
i=0 x

i. Observe that we
can write f = gh, where either g :=

∑∞
i=0 cix

i or h :=
∑∞

i=0 dix
i is an irreducible of N0JxK that is not

a polynomial. Clearly, the inequality ci + di ≤ 1 holds for each i ∈ N. We can assume, without loss of
generality, that c0 = · · · = ct = c(k+1)(t+1) = 1 and d0 = dt+1 = · · · = dk(t+1) = 1 for some t, k ∈ N
(note that, implicitly, we are also assuming that certain coefficients of g and h are 0). Set

C =
{
n ∈ N : t+ 1 - n and dn = 1

}⋃{
n ∈ N : t+ 1 | n, cn = 1, and cn+j = 0 for some j ∈ J1, tK

}
.

We now prove that C is empty. Let m be the minimal element of C. If t+1 - m, then m = k′(t+1)+j

for some j ∈ J1, tK and k′ ∈ N≥k. It is easy to see that the term xk
′(t+1) does not show up in h and,

by the minimality of m, this term does not show up in g either. As a result, there exist r, ` ∈ (t+ 1)N
such that r + ` = k′(t+ 1), c` = 1, dr = 1, and max(r, `) < k′(t+ 1). The minimality of m now implies
that c`+j = 1, which contradicts that dm = 1. Hence m = k′(t+ 1) for some k′ ∈ N≥k+1, which implies
the existence of j ∈ J1, tK with cm+j = 0. Without loss of generality, we can assume that cm+j−i = 1
for every i ∈ J1, jK. It is easy to verify that dm+j = 0. Consequently, there exist r, ` ∈ N<m with
r + l = m + j, c` = 1, and dr = 1. The minimality of m ensures that t + 1 | r which, in turn, implies
that ` = k′′(t + 1) + j for some k′′ ∈ N. Since cm = 1, both equalities ck′′(t+1) = 0 and dk′′(t+1) = 0
hold. Again, there exist r′, `′ ∈ N<k′′(t+1) with r′ + `′ = k′′(t+ 1), c`′ = 1, and dr′ = 1. The minimality
of m guarantees that t + 1 | r′, which implies that c`′+j = 1, but this contradicts that c` = 1. Thus C
is empty.

Since C is empty, it is not hard to see that if cn(t+1) = 0 for some n ∈ N, then cn(t+1)+j = 0 for all
j ∈ J0, tK. Therefore 1 + x + · · · + xt divides g in N0JxK. Assume now that, for some m ∈ N0, we can
write

h =

m∑
i=0

(
xi(t+1) + x(i+1)(t+1) + · · ·+ x(i+k)(t+1)

)
+

∞∑
i=n

di(t+1)x
i(t+1),

where n > m + k. There is no loss in assuming that dn(t+1) = 1. By way of contradiction, suppose
that there exists j ∈ J1, kK such that d(n+j)(t+1) = 0, and assume that j is minimal. Since c(k+1)(t+1) =
dk(t+1) = 1 and n > k, we have c(n+j)(t+1) = 0. Consequently, there exist r, ` ∈ N such that r + ` =
(n + j)(t + 1), cr = 1, and d` = 1. Clearly, we can write l = (u + v)(t + 1), where u ∈ J0,mK and
v ∈ J0, kK. Observe that v < j; otherwise d(u+v−j)(t+1) = 1, which implies that dn(t+1) = 0. Thus,

(3.1) xn(t+1) · x(k+1)(t+1) = x(u+v+k−j+1)(t+1) · xr,

where 1 ≤ v + k − j + 1 ≤ k. Since n > m + k ≥ u + (v + k − j + 1), the equality (3.1) represents
a contradiction. As a consequence, we have that d(n+j)(t+1) = 1 for each j ∈ J0, kK. By induction, we

obtain that 1 + xt+1 + · · · + xk(t+1) divides h in N0JxK. We can conclude that neither g nor h is an
irreducible of N0JxK that is not a polynomial. Therefore N0JxK is not atomic.

Let us now take care of the general case. Since A (S,+) 6= ∅, we have that 1 ∈ A (S,+). Suppose
towards a contradiction that SJxK is atomic. Set f :=

∑∞
i=0 x

i. Again, since SJxK is atomic, we can
write f = gh, where either g :=

∑∞
i=0 cix

i or h :=
∑∞

i=0 dix
i is an irreducible of SJxK that is not a

polynomial. Clearly, we have c0d0 = 1. On the other hand, if t + s = t′ + s′ for indices t, t′, s, s′ ∈ N0

satisfying t 6= t′ and s 6= s′, then either ctds = 0 or ct′ds′ = 0 because 1 ∈ A (S,+) and (S,+) is reduced.
As a consequence, we obtain that ci = c0 and di = d0 for every i ∈ N0. This, in turn, implies that
f = g′h′, where g′ = d0g and h′ = c0h are both elements of N0JxK and either g′ or h′ is an irreducible
of N0JxK that is not a polynomial; however, we already established that this is a contradiction, which
concludes our argument. �

Corollary 3.7. The semidomain N0JxK is not atomic.
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Corollary 3.7 shows that, in the context of semidomains, no factorization property behaves well with
respect to formal power series extensions. In particular, the statement of Theorem 3.4 is not longer true
if we replace either S[x] or S[x±1] by SJxK.

The main results we have established in this section are illustrated in the following diagram.

S satisfies ACCP S is atomic

S[x] satisfies ACCP S[x] is atomic

S[x±1] satisfies ACCP S[x±1] is atomic

/

/

/

/

Figure 2. As proved in Theorems 3.1 and 3.4 the implications in the above diagram
hold for every semidomain S. Grams’ construction in [32, Section 1] and Roitman’s
examples in [39, Section 5] confirm that neither the horizontal implications nor the
top-right implication are reversible, which is illustrated by red marked arrows.

4. The Bounded and Finite Factorization Properties

In this section, we study the bounded and the finite factorization properties. Specifically, we prove
that both properties ascend from a semidomain S to the semidomains S[x] and S[x±1]. Let us start
with a useful characterization of BFMs.

Definition 4.1. Given a monoid M , a function ` : M → N0 is a length function of M if it satisfies the
following two properties:

(i) `(u) = 0 if and only if u ∈ U (M);

(ii) `(bc) ≥ `(b) + `(c) for every b, c ∈M .

The following result is well known.

Proposition 4.2. [33, Theorem 1] A monoid M is a BFM if and only if there is a length function
` : M → N0.

We are now in a position to discuss the results of this section.

Theorem 4.3. For a semidomain S, the following statements are equivalent.

(a) S is a BFS.

(b) S[x] is a BFS.

(c) S[x±1] is a BFS.

Proof. (a) ⇒ (b): Assume that S is a BFS. Then there exists a length function ` : S∗ → N0. Let us
argue now that the function `x : S[x]∗ → N0 given by `x(f) = `(c(f)) + deg f is also a length function.
Since f ∈ S[x]∗ is a unit if and only if f = c(f) and c(f) is a unit of S, we see that for each f ∈ S[x]∗

the equality `x(f) = 0 holds if and only if f ∈ S[x]×. Using now the fact that ` is a length function of
S∗, for any f, g ∈ S[x]∗ we see that

`x(fg) = `(c(fg)) + deg fg ≥ (`(c(f)) + deg f) + (`(c(g)) + deg g) = `x(f) + `x(g).

Therefore the map `x is a length function of S[x]∗, which implies that S[x] is a BFS.
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(b) ⇒ (c): Suppose now that S[x] is a BFS, and let ` : S[x]∗ → N0 be a length function of S[x]∗.
Proving that S[x±1] is a BFS amounts to showing that the map

¯̀: S[x±1]∗ → N0 defined by ¯̀(f) = `
( f

xord f

)
is a length function. For each f ∈ S[x±1]∗, we observe that ¯̀(f) = 0 if and only if f/xord f is a unit of
S[x], which happens precisely when f is a unit in S[x±1]. In addition, for all f, g ∈ S[x±1]∗,

¯̀(fg) = `
( fg

xord fg

)
= `
( f

xord f
· g

xord g

)
≥ `
( f

xord f

)
+ `
( g

xord g

)
= ¯̀(f) + ¯̀(g).

As a consequence, ¯̀ is a length function, and so S[x±1] is a BFS.

(c) ⇒ (a): This follows from the fact that {sxn | s ∈ S∗ and n ∈ Z} is a divisor-closed submonoid of
S[x±1]∗ whose reduced monoid is isomorphic to that of S∗. �

It is known that the class of BFDs is strictly contained in that consisting of all integral domains
satisfying ACCP. Moreover, it turns out that there are semidomains satisfying ACCP that are neither
integral domains nor BFSs. Indeed, if M :=

〈
1
p | p ∈ P

〉
, then the semidomain E(M) satisfies ACCP

but it is not a BFS [7, Example 4.15].

We now turn our attention to the finite factorization property.

Theorem 4.4. For a semidomain S, the following statements are equivalent.

(a) S is an FFS.

(b) S[x] is an FFS.

(c) S[x±1] is an FFS.

Proof. (a)⇒ (b): Suppose that S is an FFS, and let K be a field containing S. Assume, by contradiction,
that S[x] is not an FFS. Take a nonunit f0 ∈ S[x]∗ such that

{
gS[x]× | g ∈ S[x] and g |S[x] f0

}
is infinite

(this element exists by [33, Corollary 2]). Now let (fn)n∈N be a sequence whose terms are non-associate
divisors of f0 in S[x]. For each n ∈ N0, let sn be the leading coefficient of fn. As sn |S s0 for every
n ∈ N and the set

{
tS× ∈ S∗red | t |S∗ s0

}
is finite by [33, Corollary 2], after replacing (fn)n∈N by a

subsequence we can assume that snS
× = s1S

× for every n ∈ N. Then we can replace fn by s1s
−1
n fn for

every n ∈ N≥2 and assume that each term of (fn)n∈N has leading coefficient s1. Because fn |K[x] f0 for

every n ∈ N and K[x] is an FFD (in fact, a UFD), we can take i, j ∈ N with i 6= j and fiK
× = fjK

×.
Since both fi and fj have leading coefficient s1, we see that fi = fj , contradicting that they are not
associates in S[x]. Hence S[x] is an FFS.

(b) ⇒ (c): Suppose that S[x] is an FFS. By [33, Corollary 2], it suffices to show that every nonzero
f ∈ S[x] with ord f = 0 has only finitely many divisors in S[x±1] up to associates. To do so, fix a
nonzero f ∈ S[x] with ord f = 0. Now assume that xd1g1 and xd2g2 are divisors of f in S[x±1] for
some d1, d2 ∈ Z and g1, g2 ∈ S[x] with ord g1 = ord g2 = 0. Observe that g1 and g2 divide f in S[x]
and also that xd1g1 and xd2g2 are associates in S[x±1] if and only if g1 and g2 are associates in S[x].
As S[x] is an FFS, it follows from [33, Corollary 2] that f has only finitely many divisors in S[x] up to
associates, and so our previous observation ensures that f has only finitely many divisors in S[x±1] up
to associates. Therefore S[x±1] is an FFS.

(c) ⇒ (a): Suppose that S[x±1] is an FFS. Then S is an FFS because S∗ and the divisor-closed
submonoid {sxn | s ∈ S∗ and n ∈ Z} of S[x±1]∗ have isomorphic reduced monoids. �

In the class of integral domains, the bounded factorization property does not imply the finite factor-
ization property (see, for instance, [5, Example 4.7]). Hence the same statement must hold in the class
of semidomains. As the following example illustrates, there are positive semidomains that are BFS but
not FFSs.
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Example 4.5. Fix k ∈ N≥2 and observe that S = N0 ∪ R≥k is a positive semiring. It follows from
[6, Theorem 5.1] that S is a BFS with A (S) =

(
P<k2 ∪ [k, k2)

)
\ P · S>1. In addition, S is a reduced

semiring because minS \{0} = 1. Showing that S is not an FFS amounts to observing that the equality
(k+ 1)2 = (µ(k+ 1))(µ−1(k+ 1)) yields a factorization of (k+ 1)2 for each µ ∈ R>1 closed enough to 1
such that k < µ−1(k + 1) < µ(k + 1) < k + 2 ≤ k2.

In light of Corollary 3.7, the statements of Theorems 4.3 and 4.4 are not longer true if one replaces
either S[x] or S[x±1] by SJxK.

We summarize the results we have established in this section in the following diagram.

S is an FFS S is a BFS

S[x] is an FFS S[x] is a BFS

S[x±1] is an FFS S[x±1] is a BFS

/

/

/

Figure 3. As proved in Theorems 4.3 and 4.4, the vertical implications in the above
diagram hold for every semidomain S. The same theorems, along with Example 4.5,
ensure that none of the horizontal implications is reversible, which is illustrated by the
red marked arrows.

5. Factoriality Properties

It is well known that an integral domain R is a UFD if and only if R[x] is a UFD. However, the same
result does not hold for the more general class of semidomains as indicated by the following example.

Example 5.1. While the semidomain N0 is a UFS, we will verify that the polynomial extension N0[x]
is not. To do so, consider the polynomial f(x) := x5 + x4 + x3 + x2 + x+ 1 ∈ N0[x]. We can factor f in
N0[x] in the following two ways:

(5.1) f(x) = (x+ 1)(x4 + x2 + 1) and f(x) = (x2 + x+ 1)(x3 + 1).

One can now verify that any decomposition of x+ 1, x2 + x+ 1, x3 + 1, and x4 + x2 + 1 as a product
of non-constant polynomials in C[x] must contain a factor that does not belong to N0[x]. Hence the
decompositions in (5.1) are actually distinct factorizations of f in N0[x]. Thus, N0[x] is not a UFS.

Recall that a monoid M is a length-factorial monoid (or an LFM for short) if for all b ∈ M and
z, z′ ∈ Z(b), the equality |z| = |z′| implies z = z′. We say that a semidomain S is a length-factorial
semidomain (LFS ) if its multiplicative monoid is an LFM. It is clear that every UFS is an LFS. In
addition, it was proved by J. Coykendall and W. W. Smith [18] that an integral domain is an LFS if and
only if it is a UFS. As a result, the length-factorial property (somehow vacuously) ascends to (Laurent)
polynomial domains. In this section, we prove that the semidomains where the length-factorial property
ascends to (Laurent) polynomial semidomains are precisely the integral domains.

For the rest of the section, we identify a semidomain S with a subsemiring of the integral domain
G (S) (see Lemma 2.2). Given a semidomain S, let n be the smallest positive integer such that the
sum of n copies of 1 equals 0 in S, and let n be 0 if such a positive integer does not exist. As in the
context of commutative rings, we call n the characteristic of S. We proceed to show that the irreducible
polynomials in Example 5.1 are still irreducible as polynomials in S[x] for any semidomain S that is not
an integral domain.
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Lemma 5.2. Let S be a semidomain that is not an integral domain. Then the polynomials

(5.2) x+ 1, x2 + x+ 1, x3 + 1, and x4 + x2 + 1

are irreducible in S[x].

Proof. Note that if S had finite characteristic, then every element of S would have an additive inverse,
which contradicts the hypothesis that S is not an integral domain. Consequently, S has characteristic 0.
Also, observe that any element of S dividing any of the polynomials in (5.2) must be a unit. Let us
analyze each polynomial p(x) in (5.2) independently.

Case 1: p(x) = x + 1. This case immediately follows from the fact that the polynomial p(x) is
indecomposable in S[x] along with our previous observation that every constant factor of p(x) in S[x]
is a unit.

Case 2: p(x) = x2+x+1. Suppose, towards a contradiction, that the polynomial p(x) is not irreducible
in S[x]. As in Case 1, we see that p(x) is not divisible in S[x] by any nonunit of S. Then we can write
p(x) = (ax+b)(cx+d) for some a, b, c, d ∈ S∗, from which we obtain the identities ad+bc = bd = ac = 1.
Thus,

ab = ab ((ad)(ac) + (bc)(bd)) = abcd(a2 + b2) = a2 + b2.

Therefore b3 = ab2 − a2b in G (S), and we can use this identity to obtain

b3c3 = (ab2 − a2b)c3 = b2c2 − bc = bc(bc− 1) = bc(−ad) = −1.

However −1 = b3c3 ∈ S implies that S is an integral domain, a contradiction.

Case 3: p(x) = x3 + 1. Suppose, by way of contradiction, that p(x) reduces in S[x]. Since p(x) is not
divisible in S[x] by any nonunit of S, we can write p(x) = (ax2 + bx+ c)(dx+e) for some a, b, c, d, e ∈ S.
Expanding the product, we obtain the identities ce = ad = 1 and ae+ bd = be+ cd = 0, whence

0 = cd(ae+ bd) = 1 + bcd2.

This implies that −1 = bcd2 ∈ S, which contradicts that S is not an integral domain.

Case 4: p(x) = x4 + x2 + 1. Suppose, by way of contradiction, that p(x) reduces in S[x]. As p(x) is
not divisible in S[x] by any nonunit of S, it follows that p(x) factors in S[x] either as a polynomial of
degree 1 times a polynomial of degree 3, or into two polynomials of degree 2, yielding the following two
subcases.

Case 4.1: p(x) = (ax3 + bx2 + cx+d)(ex+f) for some a, b, c, d, e, f ∈ S. After expanding this product,
we obtain the identities ae = df = 1 and cf + ed = 0. Therefore, we see that

0 = af(cf + ed) = acf2 + (ae)(df) = acf2 + 1.

This implies that −1 = acf2 ∈ S, which contradicts that S is not an integral domain.

Case 4.2: p(x) = (ax2 + bx + c)(dx2 + ex + f) for some a, b, c, d, e, f ∈ S. Observe that if b = e = 0,
we can produce a contradiction by reducing this case to Case 2. Thus, we can assume, without loss of
generality that e 6= 0. After unfolding the product (ax2 + bx+ c)(dx2 + ex+ f), we obtain the identities
ad = cf = af + be+ cd = 1 and ae+ bd = bf + ce = 0. Since d 6= 0 and

d(a2e+ b) = (ad)(ae) + bd = ae+ bd = 0,

the equality a2e+ b = 0 holds. Similarly, we can obtain the equality c2e+ b. Therefore the assumption
e 6= 0 ensures that a2 = c2. Hence either a = c or a = −c in G (S). If a = c, then

1 + be = ad− af − cd+ cf = (a− c)(d− f) = 0,

contradicting that −1 /∈ S. On the other hand, if a = −c, then

3 = ad+ cf + (af + be+ cd) = a(d+ f) + c(d+ f) + be = (a+ c)(d+ f) + be = be,

which implies that −1 = 2− be = 2− (1− af − cd) = af + cd+ 1 ∈ S, which is a contradiction. �
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Corollary 5.3. Let S be a semidomain. If S[x] is an LFS, then S is an integral domain.

We say that a semidomain S is a GCD-semidomain if S∗ is a GCD-monoid. It is well known and
not hard to verify that every UFM is a GCD-monoid. Hence every UFS is a GCD-semidomain. We can
characterize when a polynomial semidomain S[x] is GCD in terms of S.

Proposition 5.4. Let S be a semidomain. Then S[x] is a GCD-semidomain if and only if S is a
GCD-domain.

Proof. The reverse implication follows from [27, Theorem 6.4]. For the direct implication, we first
observe that the fact that S∗ is a divisor-closed submonoid of S[x]∗ ensures that S∗ is a GCD-monoid.
In addition, observe that if S is not an integral domain, then by Lemma 5.2 the polynomial x+ 1 is an
irreducible element of S[x]∗ that is not prime and, therefore, it follows from [25, Theorem 6.7(2)] that
S[x]∗ is not a GCD-monoid. Hence the fact that S[x] is a GCD-semidomain also guarantees that S is
an integral domain. �

Remark 5.5. Observe that, in the context of semidomains, while being MCD ascends to polynomial
extensions, being GCD does not ascend in general.

Now we are in a position to characterize in several ways when S[x] (or S[x±1]) is length-factorial.

Theorem 5.6. Let S be a semidomain. The following statements are equivalent.

(a) S is a UFD.

(b) S[x] is a UFS.

(c) S[x±1] is a UFS.

(d) S is an LFD.

(e) S[x] is an LFS.

(f) S[x±1] is an LFS.

Proof. (a) ⇔ (b): The direct implication follows from the well-known fact that the unique factorization
property ascends to polynomial rings. For the reverse implication, suppose that S[x] is a UFS. Then
S[x] is an atomic GCD-semidomain. Thus, S is atomic by Theorem 3.1. In addition, it follows from
Proposition 5.4 that S is a GCD-domain, which concludes our argument given that every atomic GCD-
domain is a UFD (see [34, page 114]).

(a) ⇔ (d): It follows from [18, Corollary 2.11].

(b) ⇔ (c): Consider the multiplicative monoid M = {f ∈ S[x]∗ | ord f = 0}, and observe that S[x]∗

is isomorphic to the product monoid N0 ×M via the map f 7→ (ord f, f/xord f ). It is clear that S[x] is
a UFS if and only if M is a UFM. Now the equivalence follows from the fact that M and S[x±1]∗ have
isomorphic reduced monoids.

(b) ⇔ (e): The direct implication follows from definitions. As for the reverse implication, suppose
that S[x] is an LFS. Then one of the polynomials x + 1, x3 + 1, x2 + x + 1, and x4 + x2 + 1 is not
irreducible in S[x]; otherwise, the expressions (x+ 1)(x4 +x2 + 1) and (x2 +x+ 1)(x3 + 1) would induce
distinct equal-length factorizations of the same element of S[x] (see Example 5.1). In this case, S must
be an integral domain by virtue of Lemma 5.2. Hence S[x] is an integral domain, and so a UFD by
[18, Corollary 2.11].

(e) ⇔ (f): This follows similarly to (b) ⇔ (c), after observing that, under the same notation used to
prove the later, S[x] is an LFS if and only if M is an LFM. �

While there are UFSs that are not UFDs (e.g., N0 and N0[1/n]), it is not clear whether there exists
a proper (i.e., not a UFS) LFS. Motivated by this, we pose the following question.
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Question 5.7. Is there a proper LFS?

Motivated by the terminology in [44], we say that S is a half-factorial semidomain (HFS ) provided
that S is atomic and any two factorizations of the same nonzero element have the same length. It is clear
that every UFS is an HFS. However, the reverse implication does not hold as the next two examples
illustrate.

Example 5.8. Consider the semidomain S = N0 + xZ[x]. It is not hard to verify that the equality
A (S) = A (Z[x])∩ S holds. Observe that S is not a UFS. Indeed, we have x2 = (−x)2, while −x 6'S x.
Next we show that S is atomic. Let f ∈ S, and write f = ckx

k + · · · + c1x + c0, where k ∈ N0,
ck, . . . , c1 ∈ Z and c0 ∈ N0. Let g1, . . . , gm ∈ A (Z[x]) such that f = g1 · · · gm. We have two possible
cases.

Case 1: c0 > 0. In this case, it is easy to see that the set {gi | gi(0) < 0, i ∈ J1,mK} has even cardinality.
Then we can assume, without loss of generality, that −g1, . . . ,−g2t, g2t+1, . . . , gm ∈ A (Z[x]) ∩ S. Since
A (S) = A (Z[x]) ∩ S and f = (−g1) · · · (−g2t) · · · gm, the element f factors into irreducibles in S.

Case 2: c0 = 0. Write f = (−1)lxtf ′, where l ∈ {0, 1}, t ∈ N, and f ′ ∈ S. By the previous token, f ′

factors into irreducibles in S, which implies that f also factors into irreducibles.
Hence we can conclude that S is atomic. Let z = h1 · · ·hn and z′ = h′1 · · ·h′s be two factorizations

of f in S. Since A (S) = A (Z[x]) ∩ S, we have that z and z′ are two factorizations of f in Z[x].
Consequently, the equality n = s holds as Z[x] is a UFD. Therefore S is a HFS.

Our next example is a fairly simple “polynomial-like” construction of a non-integrally closed HFD.

Example 5.9. Let F be a field, and let M = 〈(1, n) | n ∈ N〉 ⊆ (N2
0,+). Denote by ≤ the lexicograhic

ordering, and observe that (M,≤) is totally ordered. LetD = JFM,≤K denote the set of all mappings from
M to F . We represent an element f ∈ D as f =

∑
m∈M f(m)xm. Since (M,≤) is totally ordered, we can

define an addition operation and a convolution product on D just as for formal power series ([19]), and D
is an integral domain with respect to these operations ([38, page 84]). By [38, Proposition 2.3], an element
f ∈ D is a unit if and only if f((0, 0)) 6= 0. Observe that D is not a UFD as x(1,1) ·x(1,3) = x(1,2) ·x(1,2).
Next we show that D is an HFD. Let f, g1, . . . , gk be nonzero nonunit elements of D satisfying that
f = g1 · · · gk. Thus,

∑
m∈M

f(m)xm =

(∑
m∈M

g1(m)xm

)
· · ·

(∑
m∈M

gk(m)xm

)
.

Since ord f 6= (0, 0) and M is an HFM (see [15, Example 4.23]), there is no loss in assuming that
gi ∈ A (D) for all i ∈ J1, kK. This implies that ord gi ∈ A (M) for each i ∈ J1, kK; otherwise, x(1,1) |D gi,
which contradicts that gi ∈ A (D). Hence L(f) = L(ord f) and, therefore, D is an HFD. It is easy to
see that D is not integrally closed.

The half-factorial property does not behave well under polynomial extensions in the context of integral
domains (see [45, Theorem 2.4] and [4, Example 5.4]). On the other hand, a semidomain S[x] satisfying
that (S,+) is reduced is “far” from being half-factorial in a sense that we now explain.

One of the best-studied arithmetic statistics related to the sets of lengths of an atomic monoid is
the elasticity. The elasticity, first studied by J. L. Steffan [41] and R. Valenza [42] in the context of
algebraic number theory, measures the deviation of an atomic monoid from being half-factorial. Let M
be an atomic monoid. The elasticity of a nonunit x ∈M•, denoted by ρ(x), is defined as

ρ(x) =
sup L(x)

inf L(x)
.
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By convention, we set ρ(u) = 1 for every u ∈ U (M). Observe that ρ(x) ∈ Q≥1 ∪ {∞} for all x ∈M . In
addition, the elasticity of the whole monoid M is defined to be

ρ(M) := sup{ρ(x) | x ∈M}.

Observe that a monoid M is an HFM if and only if ρ(M) = 1. Thus, we can think of the elasticity as
an arithmetic statistic to measure how far an atomic monoid is from being an HFM, in which case, an
atomic monoid having infinite elasticity is as far from being half-factorial as it can possibly be.

On the other hand, the set of elasticities of M is R(M) := {ρ(x) | x ∈ M}, and M is said to have
full elasticity provided that R(M) = (Q ∪ {∞}) ∩ [1, ρ(M)]. As a monoid is half-factorial if and only if
its set of elasticities is a singleton, namely {1}, we observe that for a given monoid having full elasticity
provides an indication that it is as far from being an HFM as it can possibly be.

The following proposition is a generalized version of [12, Theorem 2.3], and here we adapt the proof
given in [12] to fit the more general setting of polynomials over semidomains.

Proposition 5.10. An atomic polynomial semidomain S[x] has full and infinite elasticity provided that
(S,+) is reduced.

Proof. As we pointed out before, if S has finite characteristic, then (S,+) is not reduced (it is, in fact, a
group). Consequently, S must have characteristic 0. Now let K be a field containing S as a subsemiring.
We first claim that for every n ∈ N≥2, the polynomial (x+ n)n(x2 − x+ 1) is an irreducible element in
S[x]. It follows from [12, Lemma 2.1] that for every m ∈ N0 the polynomial (x+n)m(x2−x+1) belongs
to N0[x] if and only if m ≥ n. This, together with the fact that S is a semidomain whose additive
monoid is reduced, guarantees that (x + n)m(x2 − x + 1) /∈ S[x] when m < n. Therefore the fact that
K[x] is a UFD guarantees that (x+ n)n(x2 − x+ 1) is an irreducible element in S[x].

By Lemma 5.2, the polynomial (x2 − x+ 1)(x+ 1) = x3 + 1 is irreducible in S[x]. Now for n, k ∈ N,
consider the polynomial

f(x) := (x+ n)n(x2 − x+ 1)(x+ 1)k ∈ N0[x] ⊆ S[x].

As every divisor of f(x) in S[x] is a divisor of f(x) in K[x] and K[x] is a UFD, the only two factorizations
of f(x) in S[x] are [(x+ n)n(x2 − x+ 1)] · [x+ 1]k and [x+ n]n · [(x2 − x+ 1)(x+ 1)] · [x+ 1]k−1, which
have lengths k + 1 and k + n, respectively. Since {(k + n)/(k + 1) | k, n ∈ N} = Q≥1, we conclude that
S[x] has full and infinite elasticity. �

Remark 5.11. Transfer Krull monoids (see [21, Section 4] for the definition) play an important role in
factorization theory, and they have been investigated in [8,20,23]. In [23, Theorem 3.1], A. Geroldinger
and Q. Zhong proved that transfer Krull monoids have full elasticity. However, observe that the ad-
ditively reduced semidomain S[x] is not transfer Krull by exactly the same argument used in [11, Re-
mark 5.4].
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