
ON THE SUBATOMICITY OF POLYNOMIAL SEMIDOMAINS
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Abstract. A semidomain is an additive submonoid of an integral domain that is closed under multi-

plication and contains the identity element. Although factorizations and divisibility in atomic domains
have been systematically studied for more than thirty years, the same aspects in the more general con-

text of atomic semidomains have been investigated just recently. Here we study subatomicity in the

context of semidomains; that is, we study semidomains satisfying divisibility properties weaker than
atomicity. We mostly focused on the Furstenberg properties, which is due to P. Clark and motivated

by the work of H. Furstenberg on the infinitude of primes, and the almost atomic and quasi-atomic

properties, introduced by J. Boynton and J. Coykendall in the context of divisibility in integral do-
mains. We investigate these three properties in the context of semidomain, paying special attention to

whether they ascend from a semidomain to its polynomial and Laurent polynomial semidomains.

1. Introduction

A semidomain is an additive submonoid of an integral domain that is closed under multiplication
and contains the identity element. Let S be a semidomain, and set S∗ := S \ {0}; that is, S∗ is the
multiplicative monoid of S. We say that S is atomic provided that every non-invertible element of S∗ can
be written as a product of atoms (i.e., irreducible elements). Factorizations in atomic domains have been
systematically studied for more than three decades, considerably motivated by the landmark paper [3]
by D. D. Anderson, D. F. Anderson, and M. Zafrullah. However, factorizations in the more general
context of atomic semidomains have been investigated just recently by N. R. Baeth, S. T. Chapman,
and the authors [5,16]. In the present paper, we investigate atomic properties that are weaker than
being atomic in the setting of semidomains. We put special emphasis on the ascent of such properties
from the semidomain S to the polynomial semidomain S[x] and the Laurent polynomial semidomain
S[x±1].

Special cases of polynomial semidomains and Laurent polynomial semidomains have been the focus of
a great deal of attention lately in the factorization theory community. For instance, methods to factorize
polynomials in N0[X] were investigated by H. Brunotte in [7] and, more recently, F. Campanini and A.
Facchini in [8] carried out a more systematic investigation of factorizations in the semidomain N0[X].
More generally, semigroup semirings were studied by V. Ponomarenko in [24] from the factorization
perspective. The arithmetic of polynomial semidomains with coefficients in R≥0 has also been considered;
for instance, P. Cesarz et al. in [9] studied the elasticity of R≥0[X], where R≥0 is the set of nonnegative
real numbers.

Positive semidomains, that is, subsemirings of R≥0, have been actively studied in the last few years.
Factorizations in positive semidomains consisting of rational numbers were considered in [10] by Chap-
man et al. and then in [1] by S. Albizu-Campos et al. The same semidomains were studied in [4] by
Baeth and the first author in connection with factorizations of matrices. This in turn motivated the
paper [5] by Baeth et al., where several examples of positive semidomains were constructed. Positive
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semidomains can be also produced as valuations of polynomial and Laurent polynomial semidomains,
and such valuations have also been investigated recently: the arithmetic of factorizations of N0[α],
where α is a positive algebraic number, was studied recently for rational valuations in [10] by Chapman
et al. and for algebraic valuations in [12,22] by J. Correa-Morris et al. On the other hand, the atomic
structure of the algebraic valuations of the Laurent polynomial semidomain N0[X±1] has been recently
studied by S. Zhu in [26].

Following the terminology introduced by P. Clark in [11], we say that the semidomain S is a Fursten-
berg semidomain if every nonunit element in S∗ is divisible by an atom. It is clear that each atomic
semidomain is a Furstenberg semidomain. Furstenberg domains have been studied by N. Lebowitz-
Lockard in [23] in connection with the properties of almost atomicity and quasi-atomicity, which we
define in the next two paragraphs. In addition, Furstenberg domains have been recently considered
in [20] by the first author and Zafrullah in connection with idf-domains (i.e., integral domains whose
elements have only finitely many irreducible divisors up to associates). Finally, Furstenberg domains
have been considered in [19, Section 5] by the first author and B. Li in the context of integer-valued
polynomials. In Section 3, we prove that the property of being Furstenberg ascends from the semido-
main S to both S[x] and S[x±1]. We also construct an example of a Furstenberg semidomain that is
neither an integral domain nor an atomic semidomain.

The semidomain S is said to be almost atomic provided that, for every nonunit b ∈ S∗, there
exist atoms a1, . . . , ak of S∗ such that a1 · · · akb factors into atoms in S∗. Observe that each atomic
semidomain is almost atomic. The notion of almost atomicity was introduced in [6] by J. Boynton
and J. Coykendall, and it was later studied in parallel to various other subatomic properties in [23]
by Lebowitz-Lockard. In Section 4, we study almost atomicity in the context of semidomains. Unlike
the Furstenberg property, we will show that the property of being almost atomic does not ascend in
general from the semidomain S to neither S[x] nor S[x±1]. However, it does ascend if we impose that
the coefficients of certain polynomials over S have a maximal common divisor, as we will prove.

As the notion of almost atomicity, that of quasi-atomicity was introduced in [6] and further studied
in [23] in the context of integral domains. Motivated by this, we say that the semidomain S is quasi-
atomic provided that, for every nonunit b ∈ S∗, there exists an element a of S∗ such that ab factors into
atoms in S∗. It follows directly from definitions that each almost atomic semidomain is quasi-atomic.
In Section 5, we provide a simple ideal-theoretical characterization of quasi-atomic semidomains. In
addition, as for the property of being almost atomic, we prove that the property of being quasi-atomic
ascends from the semidomain S to both S[x] and S[x±1] under the same divisibility conditions referred
to in the previous paragraph.

2. Background

In this section, we introduce the notation and terminology necessary to follow our exposition. Ref-
erence material on factorization theory and semiring theory can be found in the monographs [14] by
A. Geroldinger and F. Halter-Koch and [17] by J. Golan, respectively. Throughout this paper, we let
Z,Q, and R denote the set of integers, rational numbers, and real numbers, respectively. Additionally,
we let N denote the set of positive integers, and we set N0 := {0} ∪ N. Given r ∈ R and S ⊆ R, we set
S<r := {s ∈ S | s < r}, and we define S>r and S≥r in a similar way. For m,n ∈ Z, we denote by Jm,nK
the discrete interval from m to n, that is, Jm,nK := {k ∈ Z | m ≤ k ≤ n}.

2.1. Monoids. A monoid1 is defined here to be a semigroup with identity that is cancellative and
commutative. Since our interest lies in the multiplicative structure of certain semirings, we will use
multiplicative notation for monoids unless we specify otherwise. For the rest of this section, let M be

1The standard definition of a monoid does not assume the cancellative and the commutative conditions.
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a monoid with identity 1. We set M• := M \ {1}, and we let U (M) denote the group of units (i.e.,
invertible elements) of M . In addition, we let Mred denote the quotient M/U (M), which is also a
monoid. We say that M is reduced provided that U (M) is the trivial group, in which case we identify
Mred with M . The Grothendieck group of M , denoted here by G (M), is the abelian group (unique up
to isomorphism) satisfying that any abelian group containing a homomorphic image of M also contains
a homomorphic image of G (M). For a subset S of M , we let 〈S〉 denote the smallest submonoid of M
containing S, and if M = 〈S〉, then we say that S is a generating set of M .

For b, c ∈ M , it is said that b divides c in M if there exists b′ ∈ M such that c = bb′, in which
case we write b |M c, dropping the subscript precisely when M = (N,×). We say that b, c ∈ M are
associates if b |M c and c |M b. A submonoid N of M is divisor-closed if for each b ∈ N and d ∈M the
relation d |M b implies that d ∈ N . Let S be a nonempty subset of M . An element d ∈ M is called a
common divisor of S provided that d |M s for all s ∈ S. A common divisor d of S is called a greatest
common divisor of S if d is divisible by all common divisors of S. Also, a common divisor of S is called
a maximal common divisor if every greatest common divisor of S/d belongs to U (M). We let gcdM (S)
(resp., mcdM (S)) denote the set consisting of all greatest common divisors (resp., maximal common
divisors) of S. The monoid M is called a GCD-monoid (resp., an MCD-monoid) if each finite nonempty
subset of M has a greatest common divisor (resp., a maximal common divisor).

An element a ∈M \U (M) is called an atom if for all b, c ∈M the equality a = bc implies that either
b ∈ U (M) or c ∈ U (M). We let A (M) denote the set consisting of all atoms of M . The monoid M is
called atomic if each element in M \U (M) can be written as a (finite) product of atoms. One can readily
check that M is atomic if and only if Mred is atomic. Assume for the rest of this paragraph that M
is atomic. We let Z(M) denote the free (commutative) monoid on A (Mred). The elements of Z(M)
are called factorizations, and if z = a1 · · · a` ∈ Z(M) for some a1, . . . , a` ∈ A (Mred), then ` is called
the length of z, which is denoted by |z|. Let π : Z(M) → Mred be the unique monoid homomorphism
satisfying that π(a) = a for all a ∈ A (Mred). For each b ∈M , the sets

(2.1) ZM (b) := π−1(bU (M)) ⊆ Z(M) and LM (b) := {|z| : z ∈ ZM (b)} ⊆ N0

are of crucial importance to study the atomicity of M . When there seems to be no risk of ambiguity,
we drop the subscript M from the notations in (2.1).

Following [11], we say that a monoid is Furstenberg provided that every nonunit has a divisor that
is an atom. On the other hand, extending the terminology in [6], a monoid M is called almost atomic
(resp., quasi-atomic) provided that, for every nonunit c ∈ M , there exists a1, . . . , ak ∈ A (M) (resp.,
b ∈M) such that a1 · · · akc (resp., bc) can be written as a product of atoms in M .

2.2. Semirings. A commutative semiring S is a nonempty set endowed with two binary operations
denoted by ‘+’ and ‘·’ and called addition and multiplication, respectively, such that the following
conditions hold:

• (S,+) is a monoid with its identity element denoted by 0;

• (S, ·) is a commutative semigroup with an identity element denoted by 1;

• b · (c+ d) = b · c+ b · d for all b, c, d ∈ S;

• 0 · b = 0 for all b ∈ S.

With notation as in the previous definition and for any b, c ∈ S, we write bc instead of b · c when
there seems to be no risk of confusion. A more general notion of a ‘semiring’ S does not assume that
the semigroup (S, ·) is commutative. However, this more general type of algebraic objects is not of
interest in the scope of this paper. Accordingly, from now on we will use the single term semiring,
tacitly assuming the commutativity of both operations. A subset S′ of a semiring S is a subsemiring
of S if (S′,+) is a submonoid of (S,+) that contains 1 and is closed under multiplication. Observe that
every subsemiring of S is a semiring.
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Definition 2.1. We say that a semiring S is a semidomain provided that S is a subsemiring of an
integral domain.

Let S be a semidomain. We set S∗ := (S \ {0}, ·) and call it the multiplicative monoid of S. In
[16, Example 2.3], we exhibited a semiring S that is not a semidomain but still S∗ is a monoid. Following
standard notation from ring theory, we refer to the units of the multiplicative monoid S∗ simply as units
of S, and we denote the set of units of S by S×. We never consider in this paper the units of the
monoid (S,+), so the use of the term ‘unit’ in the context of the semidomain S should not generate
any ambiguity. In addition, we write A (S) instead of A (S∗) for the set of atoms of the multiplicative
monoid S∗, while we let A+(S) denote the set of atoms of the additive monoid (S,+). Finally, for any
b, c ∈ S such that b divides c in S∗, we write b |S c instead of b |S∗ c. The following lemma was stated
and proved in [16], but we include its proof here for the sake of completeness.

Lemma 2.2. [16, Lemma 2.2] For a semiring S, the following conditions are equivalent.

(a) The multiplication of S extends to G (S) turning G (S) into an integral domain.

(b) S is a semidomain.

Proof. (a) ⇒ (b): This is clear.

(b) ⇒ (a): Let S be a semidomain, and suppose that S is embedded into an integral domain R.
We can identify the Grothendieck group G (S) of (S,+) with the subgroup {r − s | r, s ∈ S} of the
underlying additive group of R. It is easy to see then that G (S) is closed under the multiplication it
inherits from R, and it contains the multiplicative identity because 0, 1 ∈ S. Hence G (S) is an integral
domain having S as a subsemiring. �

We say that a semidomain S is atomic (resp., Furstenberg, almost atomic, quasi-atomic) if its multi-
plicative monoid S∗ is atomic (resp., Furstenberg, almost atomic, quasi-atomic). We denote by 〈A (S)〉
the submonoid of S∗ generated by the atoms and units of S. A subset I of S is an ideal2 of S provided
that (I,+) is a submonoid of (S,+) and IS ⊆ I. We say that an ideal I is prime if I 6= S and, for
b, c ∈ S, the containment bc ∈ I implies that either b ∈ I or c ∈ I. Although a semidomain S can
be embedded into an integral domain R, the semidomain S may not inherit any (sub)atomic property
from R as, after all, the integral domain Q[x] is a UFD but it contains as a subring the integral domain
Z + xQ[x], which is not even quasi-atomic (see [23, Lemma 17]).

The set consisting of all polynomial expressions with coefficients in the semiring S is also a semiring,
which we denote by S[x] and call the semiring of polynomials over S. Additionally, if S is a semidomain
embedded into an integral domain R, then it is clear that S[x] is also a semidomain, and the elements
of S[x] are, in particular, polynomials in R[x]. Consequently, when S is a semidomain all the standard
terminology for polynomials can be applied to elements of S[x], including constant polynomial, degree,
order, and leading coefficient. Observe that S∗ is a divisor-closed submonoid of S[x]∗ and, therefore,
S[x]× = S× and A (S[x]) ∩ S = A (S). Following [25], we say that a nonzero polynomial in S[x] is
indecomposable if it is not a product of two nonconstant polynomials in S[x].

Following the terminology in [5], we call a subsemiring of R consisting of nonnegative numbers a
positive semiring. The fact that underlying additive monoids of positive semirings are reduced makes
them more tractable. The reader can check the recent paper [5] for several examples of positive semirings.
The class of semidomains clearly contains those of integral domains and positive semirings.

2Golan [17] defines an ideal in a more restrictive way: if I is an ideal of a semiring S, then by definition I 6= S.
Consequently, any result we cite from [17] is interpreted here as a statement about the proper ideals of a semiring.
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3. Furstenberg Semidomains

In this section, we analyze under which conditions the Furstenberg property ascends from a semido-
main to its semidomain of (Laurent) polynomials.

The Furstenberg property is, evidently, a relaxation of being atomic, and the reader can find interest-
ing examples of non-atomic Furstenberg domains in [19, Section 5] and [23, Section 4]. We now provide
an example of a non-atomic positive semiring that is Furstenberg.

Example 3.1. Let p be a prime number such that there exists k ∈ N satisfying the inequalities
1 < k < p− 1, and consider the monoid

M =

〈
p

(
k

p

)n
, (p− k)

(
k

p

)n ∣∣∣∣ n ∈ N0

〉
.

By virtue of [18, Theorem 6.2] and the identity

p

(
k

p

)n
= (p− k)

(
k

p

)n
+ p

(
k

p

)n+1

,

we have A (M) = {(p− k)(k/p)n | n ∈ N0}, which implies that M is a non-atomic Furstenberg monoid.
Now consider the additive monoid E(M) := 〈em | m ∈ M〉, which is free on the set {em | m ∈ M}
by the Lindemann-Weierstrass theorem stating that, for distinct algebraic numbers α1, . . . , αn, the set
{eα1 , . . . , eαn} is linearly independent over the algebraic numbers. Observe that E(M) is closed under
multiplication and, consequently, it is a positive semiring3. We argue that E(M) is a non-atomic
semidomain that is Furstenberg. Clearly, the multiplicative submonoid e(M) := {em | m ∈ M} is
isomorphic to (M,+), which implies that e(M) is not atomic. Since e(M) is a divisor-closed submonoid
of E(M), the semiring E(M) is not atomic either. Now let x ∈ E(M), and write x = c1e

m1 +· · ·+ckemk ,
where c1, . . . , ck ∈ N and m1, . . . ,mk ∈M . Thus,

x = em(c1e
m1−m + · · ·+ cke

mk−m) = emy1 · · · yt,
where m is a common divisor of m1, . . . ,mk in M and yi ∈ E(M) \ {1} for each i ∈ J1, tK. If m > 0,
then there exists an atom a ∈ A (M) such that a |M m which, in turn, implies that ea |E(M) x. Note
that ea ∈ A (E(M)). On the other hand, if m1, . . . ,mk have no nonzero common divisor in M , then
no element of the form em (with m ∈ M•) divides yi in E(M) for each i ∈ J1, tK, which implies that
t ≤ log2(c1 + · · ·+ ck); in this case, x ∈ 〈A (E(M))〉. Therefore E(M) is Furstenberg, which concludes
our argument.

Remark 3.2. For an example of a Furstenberg semidomain that is not quasi-atomic, see Proposition ??
and Remark ??.

Next we show that the Furstenberg property ascends from a semidomain to its semidomain of (Lau-
rent) polynomials.

Theorem 3.3. For a semidomain S, the following statements are equivalent.

(a) S is Furstenberg.

(b) S[x] is Furstenberg.

(c) S[x±1] is Furstenberg.

Proof. (a) ⇒ (b): Suppose that S is Furstenberg. Take a nonzero nonunit f ∈ S[x]. If f ∈ S, then
the fact that S∗ is a Furstenberg monoid guarantees the existence of a ∈ A (S) with a |S f . As S∗ is
a divisor-closed submonoid of S[x], the element a is also an atom of S[x], and so f is divisible by an
atom in S[x]. Now suppose that deg f ≥ 1. Take the largest m ∈ N such that f = rg1 · · · gm for some

3This construction was introduced in [5].
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r ∈ S∗ and g1, . . . , gm ∈ S[x] with deg gi ≥ 1 for every i ∈ J1,mK. If g1 ∈ A (S[x]) we are done. If g1 is
reducible, then we can write g1 = s(g1/s), where s ∈ S∗ is a nonunit element dividing g1 in S[x]. As s
is a nonunit of S∗, it must be divisible by an atom b in S. Since b is an atom of S[x], f is divisible by
an atom in S[x]. Hence S[x] is Furstenberg.

(b) ⇒ (c): First, observe that every irreducible f in S[x] with ord f = 0 is an irreducible in S[x±1].
Now take a nonzero nonunit g ∈ S[x±1], and write g = xdh for some d ∈ Z and h ∈ S[x] with ordh = 0.
As g is not a unit in S[x±1], we see that h is not a unit in S[x], and so there is an a ∈ A (S[x]) such
that a |S[x] h. Note that ord a = 0 because the same holds for h. Thus, a is an irreducible in S[x±1]

dividing g. Therefore S[x±1] is Furstenberg.

(c) ⇒ (a): This follows from the fact that {sxn | s ∈ S∗ and n ∈ Z} is a divisor-closed submonoid of
S[x±1] whose reduced monoid is isomorphic to that of S∗. �

Observe that Theorem 3.3 can help us identifying non-atomic semidomains that are Furstenberg. For
instance, Roitman [25] provided the first example of an atomic domain A such that A[x] is not atomic.
By virtue of Theorem 3.3, we can now assert that A[x] is a non-atomic Furstenberg domain.

4. Almost Atomic Semidomains

Clearly, atomic semidomains are almost atomic. However, the reverse implication does not hold as
the next example illustrates.

Example 4.1. Let S = {(1/2)n+2 | n ∈ N}, and let p1, p2, . . . be the (ascending) sequence of prime
numbers greater than 4. Set

S′ :=

{
1

pn
,

1

2n+2
+

1

2
− 1

pn

∣∣∣∣ n ∈ N
}
,

and consider the monoid M = 〈S ∪ S′〉. It is not hard to see that A (M) = S′, which implies that
M is not atomic. Note that every element x ∈ M can be written as x = c(1/2)N + x′, where c ∈ N0,
N ∈ N≥3, and x′ ∈ 〈A (M)〉; thus, we have x + c = x′ + 2c

(
(1/2)N+1 + 1/2

)
. Therefore M is almost

atomic. Now pick an arbitrary element x ∈M . Evidently, we can write

(4.1) x =
c

2n
+

c1
pn1

+ · · ·+ ck
pnk

+ d1

(
1

2m1+2
+

1

2
− 1

pm1

)
+ · · ·+ dl

(
1

2ml+2
+

1

2
− 1

pml

)
,

where either c = 0 or gcd(c, 2n) = 1, 0 < ci < pni
, 0 < dj < pmj

, and pni
6= pmj

for i ∈ J1, kK and
j ∈ J1, lK; we also assume that if pni

= pni′ (resp., pmj
= pmj′ ) for i, i′ ∈ J1, kK (resp., for j, j′ ∈ J1, lK),

then we have i = i′ (resp., j = j′). We claim that x ∈M has finitely many representations of the form
(4.1). Consider another representation of x having this form

(4.2) x =
α

2`
+
α1

p′n1

+ · · ·+ αt
p′nt

+ β1

(
1

2m
′
1+2

+
1

2
− 1

pm′1

)
+ · · ·+ βr

(
1

2m
′
r+2

+
1

2
− 1

pm′r

)
.

After cancelling similar terms in expressions (4.1) and (4.2), we may assume that either α = 0 or c = 0
and pni

6= p′nj
for any i ∈ J1, kK and any j ∈ J1, tK. Then pm′j = pn1

for some j ∈ J1, rK; otherwise,

we would obtain a contradiction after clearing denominators. This, in turn, implies that βj = pn1
− c1.

Using an inductive argument, it is not hard to see that, if we fix the representation (4.1), then the
representation (4.2) is completely determined by the similar terms we can cancel in both expressions,
which proves our claim. Consequently, M is an MCD-monoid. Indeed, if (αn)n∈N is a nonconstant
sequence of common divisors of x1, . . . , xm ∈M for some m ∈ N>1 such that αn |M αn+1 for all n ∈ N,
then xj has infinitely many representations of the form (4.1) for some j ∈ J1,mK. As in Example 3.1,
consider the positive semiring E(M). As we mentioned before, the multiplicative monoid e(M) is
isomorphic to (M,+), which implies that e(M) is not atomic. Since e(M) is a divisor-closed submonoid
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of E(M), the monoid E(M) is not atomic either. Let x be a nonzero nonunit element of E(M), and
write x = c1e

m1 + · · ·+ cke
mk , where c1, . . . , ck ∈ N and m1, . . . ,mk ∈M . There is no loss in assuming

that c1, . . . , ck are relatively prime positive integers. Let m ∈ mcdM (m1, . . . ,mk), and notice that

x = em(c1e
m1−m + · · ·+ cke

mk−m) = emy1 · · · yt,

where yi ∈ E(M) \ {0, 1} for each i ∈ J1, tK. Since no element of the form em
′

(with m′ ∈ M•) divides
yi in E(M) for any i ∈ J1, tK, we have that the inequality t ≤ log2(c1 + · · · + ck) holds which, in turn,
implies that there is no loss in assuming that y1, . . . , yt ∈ 〈A (E(M))〉. Since M is almost atomic, there
exists m∗ ∈ 〈A (M)〉 such that m∗ +m ∈ 〈A (M)〉. We can conclude that xem

∗ ∈ 〈A (E(M))〉. Hence
E(M) is almost atomic.

For almost atomic semidomains, we have a result similar to Theorem 3.3.

Theorem 4.2. For a semidomain S, each of the following statements implies the next.

(a) S is almost atomic and mcd (s1, . . . , sn) 6= ∅ for any coefficients s1, . . . , sn of an indecomposable
polynomial in S[x].

(b) S[x] is almost atomic.

(c) S[x±1] is almost atomic.

Moreover, conditions (b) and (c) are equivalent.

Proof. (a) ⇒ (b): Let f be a nonzero nonunit element of S[x] such that deg f = n for some n ∈ N0.
If n = 0, then our result follows from the fact that S is almost atomic and 〈A (S)〉 ⊆ 〈A (S[x])〉.
Consequently, we may assume that n > 0. Write f = f1 · · · fm, where fi ∈ S[x] and deg fi > 0 for
each i ∈ J1,mK. Without loss of generality, assume that m is maximal. Fix an arbitrary j ∈ J1,mK.
Since m is maximal, the polynomial fj is indecomposable in S[x]. Now write fj = s1x

n1 + · · ·+ skx
nk

with coefficients s1, . . . , sk ∈ S∗ and exponents n1, . . . , nk ∈ N0. Take s ∈ mcd(s1, . . . , sk), and note
that s−1fj ∈ A (S[x]). Since S is almost atomic, there exists βj ∈ 〈A (S)〉 such that sβj ∈ 〈A (S)〉.
Consequently, there exists β :=

∏m
i=1 βi ∈ 〈A (S[x])〉 such that βf ∈ 〈A (S[x])〉. Hence S[x] is almost

atomic.

(b) ⇒ (c): First, observe that A (S[x]) \ {x} ⊆ A (S[x±1]). In fact, assume towards a contradiction
that f = g · h, where f ∈ A (S[x]) \ {x} and g, h ∈ S[x±1] \ S[x±1]×. Then f = xng′(x) · xmh′(x) for
some m,n ∈ Z and g′, h′ ∈ S[x] such that ord g′ = ordh′ = 0. It is not hard to see that n + m = 0,
which implies that either g′ or h′ is a unit of S[x]. This, in turn, implies that either g or h is a unit
of S[x±1], a contradiction. Now let f be a nonzero nonunit element of S[x±1], and write f = xkg,
where k ∈ Z, g ∈ S[x], and ord g = 0. Since S[x] is almost atomic, there exists h ∈ 〈A (S[x])〉 such
that hg ∈ 〈A (S[x])〉. Observe that 〈A (S[x])〉 ⊆ 〈A (S[x±1])〉 because A (S[x]) \ {x} ⊆ A (S[x±1]) and
{x} ∪ S[x]× ⊆ S[x±1]×. Since xk ∈ S[x±1]× for every k ∈ Z, our result follows.

(c) ⇒ (b): Let f be a nonzero nonunit element of S[x]. Given that x ∈ A (S[x]), there is no loss in
assuming that ord f = 0. There exists g ∈ 〈A (S[x±1])〉 such that gf ∈ 〈A (S[x±1])〉. As we mentioned
above, xk ∈ S[x±1]× for every k ∈ Z, so we may assume ord g = 0 (consequently, we have ord gf = 0
since S contains no zero divisors). If g ∈ S[x±1]×, then g ∈ S×, which implies that g ∈ 〈A (S[x])〉.
Otherwise, we can write g = g1 · · · gn, where gi ∈ A (S[x±1]) for each i ∈ J1, nK. Again, without loss of
generality, we can assume that ord gi = 0 for every i ∈ J1, nK which, in turn, implies that gi ∈ A (S[x])
for all i ∈ J1, nK. Hence g ∈ 〈A (S[x])〉. By the same argument, gf ∈ 〈A (S[x])〉. Therefore S[x] is
almost atomic. �

In general, we do not know whether the polynomial extension of an almost atomic semidomain is
almost atomic, so we raise the following conjecture.

Conjecture 4.3. There exists an almost atomic semidomain S such that S[x] is not almost atomic.
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Following [13], we say that a semidomain M is antimatter provided that the set of atoms A (S)
is empty. We conclude this section by providing an example of an antimatter semidomain S whose
polynomial extension S[x] is almost atomic.

Example 4.4. Consider the positive semiring S = {0} ∪Q≥1, which is antimatter ([5, Example 3.10]).
We shall prove that S[x] is almost atomic. Take an arbitrary nonzero nonunit element f ∈ S[x], and
observe that we can write f = cg, where c ∈ Q≥1 and g = cnx

n+ · · ·+ c1x+ c0 with cj = 1 for some j ∈
J0, nK. Then our problem reduces to show that every element of Q≥1 and every polynomial g = cnx

n +
· · ·+c1x+c0 with cj = 1 for some j ∈ J0, nK can be expressed as a quotient of a (finite) product of atoms
of S[x]. Let us start with the latter case: write g = f1 · · · fm as a product of indecomposable polynomials
f1, . . . , fm ∈ S[x]. Note that every c ∈ Q≥1 dividing all coefficients c0, c1, . . . , cn is, necessarily, a unit
of S, which means that fi is an atom of S[x] for each i ∈ J1,mK. To tackle the first case, observe that
every c ∈ Q≥1 can be written as

(4.3) c =
(cx+ 1)(x+ c)

x2 +
(
c+ 1

c

)
x+ 1

,

where each of the polynomials in Equation (4.3) factors into atoms of S[x] by the previous argument.
Thus S[x] is almost atomic.

5. Quasi-atomic Semidomains

As mentioned in the introduction, in this section, we provide an ideal-theoretical characterization of
quasi-atomic semidomains and study when quasi-atomicity ascends from a semidomain to its semidomain
of (Laurent) polynomials.

While the fact that almost atomic semidomains are quasi-atomic follows immediately from definitions,
no simple counterexamples to the reverse implication is known. Next we generalize a construction that
can be found in [23, Example 7] for integral domains.

Example 5.1. Before proceeding with our example, let us introduce a couple of definitions. A semifield
is a semiring in which every nonzero element has a multiplicative inverse, while a bounded factorization
semidomain is an atomic semidomain satisfying that L(b) is finite for all b ∈ M . Now let S be a
bounded factorization semidomain that is not a semifield (e.g, N0). Let K be a field properly containing
the field of fractions of G (S), and consider the semidomain R = S[x] + x2K[x]. Take an arbitrary
f = cnx

n + · · ·+ c1x+ c0 ∈ R∗ with n ∈ N0, and suppose that ord f = m for some m ∈ N0.
We shall prove that f ∈ 〈A (R)〉 if and only if cm ∈ S. Assume that cm 6∈ S, and write f = g1 · · · gt

with g1, . . . , gt ∈ R∗. For some j ∈ J1, tK, the coefficient corresponding to the term xord gj in gj is not an
element of S. Consequently, every element of S∗ divides gj in R. Observe that R× = S×. Since S is not a
semifield, some nonunit of S divides gj in R; in other words, f 6∈ 〈A (R)〉. As for the reverse implication,
write f = g1 · · · gt, where gi 6∈ R× for any i ∈ J1, tK. If m = 0 (resp., m = 1), then the inequality
t ≤ n + L(c0) (resp., t ≤ n + L(c1)) holds. Indeed, for every i ∈ J1, tK, we have that either deg gi > 0
or gi is a divisor of c0 (resp., c1) in S that is not a unit. Consequently, if either m = 0 or m = 1, then
f ∈ 〈A (R)〉. On the other hand, if m > 1, then f = xm−1g with g = cnx

n−m+1+cn−1x
n−m+ · · ·+cmx,

and the reverse implication follows from the fact that x ∈ A (R).
Observe now that if cm 6∈ S, then f · (1/cm)x2 ∈ 〈A (R)〉, which implies that R is quasi-atomic. On

the other hand, if cm is an element of K that is not in the field of fractions of G (S), then fg 6∈ 〈A (R)〉
for any g ∈ 〈A (R)〉. Consequently, the semidomain R is not almost atomic.

We are now in a position to characterize quasi-atomic semidomains. To do so, we mimick the proof
of [23, Theorem 8].
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Theorem 5.2. A semidomain S is quasi-atomic if and only if every nonzero prime ideal of S contains
an irreducible element.

Proof. Suppose that S is quasi-atomic, and let P be a nonzero prime ideal of S. Take a nonzero
x ∈ P (clearly, x 6∈ S×). Since S is quasi-atomic, there exist β ∈ S∗ and a1, . . . , an ∈ A (S) such
that xβ = a1 · · · an. As a consequence, we have that ai ∈ P for some i ∈ J1, nK. As for the remaining
implication, assume towards a contradiction that there exists x ∈ S∗ such that xS ∩ 〈A (S)〉 = ∅. Let P
be an ideal of S that is maximal among those disjoint from 〈A (S)〉. By virtue of [17, Proposition 7.12],
the ideal P is prime and, clearly, it contains no irreducible elements. This contradiction concludes our
proof. �

For quasi-atomic semidomains, we have a result similar to Theorem 4.2.

Theorem 5.3. For a semidomain S, each of the following statements implies the next.

(a) S is quasi-atomic and mcd (s1, . . . , sn) 6= ∅ for any coefficients s1, . . . , sn of an indecomposable
polynomial in S[x].

(b) S[x] is quasi-atomic.

(c) S[x±1] is quasi-atomic.

Moreover, conditions (b) and (c) are equivalent.

Proof. (a) ⇒ (b): Let f be a nonzero nonunit element of S[x] such that deg f = n for some n ∈
N0. If n = 0, then our result follows from the fact that S is quasi-atomic and 〈A (S)〉 ⊆ 〈A (S[x])〉.
Consequently, we may assume that n > 0. Write f = f1 · · · fm, where fi ∈ S[x] and deg fi > 0 for
each i ∈ J1,mK. Without loss of generality, assume that m is maximal. Fix an arbitrary j ∈ J1,mK.
Since m is maximal, the polynomial fj is indecomposable. Now write fj = s1x

n1 + · · · + skx
nk with

coefficients s1, . . . , sk ∈ S∗ and exponents n1, . . . , nk ∈ N0. Take s ∈ mcd(s1, . . . , sk), and note that
s−1fj ∈ A (S[x]). Since S is quasi-atomic, there exists βj ∈ S∗ such that sβj ∈ 〈A (S)〉. Consequently,
there exists β :=

∏m
i=1 βi ∈ S[x]∗ such that βf ∈ 〈A (S[x])〉. Therefore S[x] is quasi-atomic.

(b) ⇒ (c): We already established that A (S[x]) \ {x} ⊆ A (S[x±1]). Now let f be a nonzero nonunit
element of S[x±1], which can be written as f = xkg, where k ∈ Z, g ∈ S[x], and ord g = 0. Since S[x]
is quasi-atomic, there exists h ∈ S[x]∗ such that hg ∈ 〈A (S[x])〉. Note that 〈A (S[x])〉 ⊆ 〈A (S[x±1])〉
because A (S[x]) \ {x} ⊆ A (S[x±1]) and {x} ∪ S[x]× ⊆ S[x±1]×. Since xk ∈ S[x±1]× for every k ∈ Z,
our result follows.

(c) ⇒ (b): Let f be a nonzero nonunit element of S[x]. Given that x ∈ A (S[x]), there is no loss
in assuming that ord f = 0. There exists g ∈ S[x±1]∗ such that gf ∈ 〈A (S[x±1])〉. As we mentioned
above, xk ∈ S[x±1]× for every k ∈ Z, so we may assume ord g = 0 (which, in turn, implies that
ord gf = 0). If gf ∈ S[x±1]×, then gf ∈ S×, which implies that gf ∈ 〈A (S[x])〉. Otherwise, we can
write gf = g1 · · · gn, where gi ∈ A (S[x±1]) for each i ∈ J1, nK. Again, without loss of generality, we can
assume that ord gi = 0 for every i ∈ J1, nK which, in turn, implies that gi ∈ A (S[x]) for all i ∈ J1, nK.
Hence gf ∈ 〈A (S[x])〉. Therefore S[x] is quasi-atomic. �

As a corollary of Theorem 5.3, we obtain that, in a GCD-semidomain S, quasi-atomicity ascends from
S to its semidomain of (Laurent) polynomials. The following result sheds light upon this observation.

Proposition 5.4. Let M be a (cancellative and commutative) monoid. Then M is a UFM if and only
if it is quasi-atomic and GCD.

Proof. The direct implication clearly holds. As for the reverse implication, it is known that an atomic
GCD-monoid is a UFM (see, for example, [21, Section 10.7]). Then our problem reduces to show that M
is atomic. Let x be a nonzero nonunit element of M . Since M is quasi-atomic, there exists x′ ∈M• such
that xx′ ∈ 〈A (M)〉. Consequently, we have xx′ = up1 · · · pn, where u ∈ U (M) and p1, . . . , pn ∈ A (M).
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For every i ∈ J1, nK, we have that each pi is prime by [15, Theorem 6.7(2)], which implies that either
pi |M x or pi |M x′. Since M is cancellative and x is not a unit, we have that x ∈ 〈A (M)〉. Hence M is
atomic, which concludes our argument. �

Corollary 5.5. Let S be a semidomain. Then S is a UFS if and only if it is quasi-atomic and GCD.

To ensure that a GCD-monoid is a UFM, some sort of subatomic property needs to be assumed as
the following example illustrates.

Example 5.6. Let α =
√
5−1
2 , and consider the additive monoid N0[α]. Observe that α is an algebraic

number with minimal polynomial mα(X) = X2 + X − 1. Since 1 6∈ A+(N0[α]), the monoid N0[α] is
antimatter by [12, Theorem 4.1]. Next we show that N0[α] is a GCD-monoid. We start by proving that
gcd(mαn, kαn+1) = min(mαn, kαn+1) for all k,m ∈ N and n ∈ N0. Let

S =
{

(m, k) ∈ N× N | gcd(mαn, kαn+1) 6= min(mαn, kαn+1) for some n ∈ N0

}
.

By way of contradiction, assume that S is nonempty. Let (m′, k′) ∈ S such that m′ + k′ is minimal.

Clearly, there exists n′ ∈ N0 such that gcd(m′αn
′
, k′αn

′+1) 6= min(m′αn
′
, k′αn

′+1). Observe that

k′ > m′ > 0 since the equality αn
′

= αn
′+1 + αn

′+2 holds. Thus,

gcd((k′ −m′)αn
′+1,m′αn

′+2) = min((k′ −m′)αn
′+1,m′αn

′+2)

which, in turn, implies that m′αn
′+1 + min((k′ −m′)αn′+1,m′αn

′+2) is a common divisor of m′αn
′

and

k′αn
′+1 in N0[α]. Now if the inequality (k′ −m′)αn′+1 < m′αn

′+2 holds, then gcd(m′αn
′
, k′αn

′+1) =

k′αn
′+1, which is a contradiction. We obtain a similar contradiction if (k′ − m′)αn

′+1 ≥ m′αn
′+2.

Consequently, S is an empty set. Let x, y be nonzero elements of N0[α]. Since αn = αn+1 +αn+2 for all
n ∈ N0, it is not hard to see that there exist m ∈ N and c1, c2, c3, c4 ∈ N0 such that x = c1α

m + c2α
m+1

and y = c3α
m + c4α

m+1. We may assume that c1 ≥ c3. If c2 ≥ c4 then it follows readily that
gcd(x, y) = min(x, y). On the other hand, if c2 < c4 then c3α

m+c2α
m+1+gcd((c1−c3)αm, (c4−c2)αm+1)

is a common divisor of x and y in N0[α]. Since gcd((c1−c3)αm, (c4−c2)αm+1) = min((c1−c3)αm, (c4−
c2)αm+1), a simple computation shows that gcd(x, y) = min(x, y). By [15, Corollary 6.3], N0[α] is a
GCD-monoid.
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