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Introductory Material

For a Lie group G, let L, : G — G, h — p - h be left-translations on G.
A metric g on G is said to be left-invariant if Vp € G, (Ly)*g = g.

There exists a one-to-one correspondence between simply connected Lie
groups with left-invariant metrics and Lie algebras with inner product
structures.

Let (g, g) be a metric Lie algebra with a frame of left-invariant vector
fields {X1,..., Xy} and {c,f} be the structure constants w.r.t this frame.

If V is the Levi-Civita connection w.r.t g, for each i,j, k € {1,...,n}

g(Vx.Xj, Xk) = cigik — Cjgei + Ci8ij

The Ricci tensor is defined to be

Ricg(X,-,Xj) = g(vvaX,-Xi — VX,-VXJ-Xi + V[X;,Xj]Xi,Xj)
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3-dimensional Unimodular Lie Algebras

Remark 1: Lie Groups are Orientable Manifolds.
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3-dimensional Unimodular Lie Algebras

Remark 1: Lie Groups are Orientable Manifolds.

Remark 2: Let g be a 3-dimensional metric Lie algebra (a Lie algebra with
a left invariant metric) with fixed orientation. For two linearly independent
vectors U, V' € g, define the cross product U A V to be the unique
orthogonal positively oriented vector such that

g(U/\ V7 Un V) = ’U/\ V|2 :g(Ua U)g(\/, V) _g(U7 V)2
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3-dimensional Unimodular Lie Algebras

Remark 1: Lie Groups are Orientable Manifolds.

Remark 2: Let g be a 3-dimensional metric Lie algebra (a Lie algebra with
a left invariant metric) with fixed orientation. For two linearly independent
vectors U, V' € g, define the cross product U A V to be the unique
orthogonal positively oriented vector such that

g(U/\ V7 Un V) = ’U/\ V|2 :g(Ua U)g(\/, V) _g(U7 V)2

Remark 3: Let (g,g) be a 3-dimensional metric Lie algebra with an
orientation. By the universal property of alternating bilinear maps, there
exists a linear operator T : g — g such that the diagram below commutes:

gxg

I

§ =589
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Definition
Let g be a Lie algebra. For each X € g, define the linear operator
adx : g — g, U~ [X, U]. We say that g is unimodular if adx = 0 for any

X €eg.
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Definition

Let g be a Lie algebra. For each X € g, define the linear operator

adx : g — g, U~ [X, U]. We say that g is unimodular if adx = 0 for any
X €eg.

Lemma (4.1 Milnor (1976), pg. 305)

Let (g,g) be a 3-dimensional metric Lie algebra with an orientation. Let
T : g — g' be the linear operator defined by T(U A V) = [U, V]. Then g
is unimodular if and only if the linear transformation T is self-adjoint.
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Definition

Let g be a Lie algebra. For each X € g, define the linear operator

adx : g — g, U~ [X, U]. We say that g is unimodular if adx = 0 for any
X €eg.

Lemma (4.1 Milnor (1976), pg. 305)

Let (g,g) be a 3-dimensional metric Lie algebra with an orientation. Let
T : g — g' be the linear operator defined by T(U A V) = [U, V]. Then g
is unimodular if and only if the linear transformation T is self-adjoint.

Recall: If a linear transformation T is self-adjoint then there exists an
orthonormal frame of eigenvectors.
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Corollary (Milnor (1976), pg. 305)

If (g,g) is a unimodular metric Lie algebra, then there exists an
orthonormal frame { X1, Xo, X3} such that [X;, X, ()] = Ao2(j)Xs2(iy where
o= (1 2 3) € S;.

Milnor, 1976 pg. 299
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Corollary (Milnor (1976), pg. 305)

If (g,g) is a unimodular metric Lie algebra, then there exists an
orthonormal frame { X1, Xo, X3} such that [X;, X, ()] = Ao2(j)Xs2(iy where
o= (1 2 3) € S;.

If g is a unimodular 3-dimensional metric Lie algebra then we have a
Milnor frame {Xi, X2, X3} with structure constants A1, A2, As.
1

Milnor, 1976 pg. 299
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L Referonces
Denote the 3-dimensional Heisenberg group and its Lie algebra as
0
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Denote the 3-dimensional Heisenberg group and its Lie algebra as

Theorem (Corollary 5.3, Lauret, 2003)

The only nilpotent non-abelian Lie algebras with one metric up to scaling
and automorphism are the Heisenberg Lie algebra directly summed with an
abelian Lie algebra.
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Denote the 3-dimensional Heisenberg group and its Lie algebra as

Theorem (Corollary 5.3, Lauret, 2003)

The only nilpotent non-abelian Lie algebras with one metric up to scaling
and automorphism are the Heisenberg Lie algebra directly summed with an
abelian Lie algebra.

If g and g’ are two left-invariant metrics on 73, then there exists ¢ > 0
and ¢ € Aut(#?) such that for any X, Y € b3

g'(X,Y) =c(¢.8)(X,Y) = cg(¢(X), ¢(Y))
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Higher Dimensional Milnor Frames

Definition (H.)

Let g be a finite-dimensional Lie algebra and o € S,,, be the permutation

o=(12...n). A linearly independent collection or vectors {Xi,...,Xn}
is a n-Milnor frame if for i, j,

A2y X2y J = o(i)
[X,‘,)(j] = _)\GQ(j)XJQ(j) = U(j)
0 otherwise

where A\ € R forl < i < n.
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Proposition

Let g be a metric Lie algebra with a Milnor frame {Xi,...,X,} and
structure constants {\1, ..., \p} with n > 4. Foreach1l <i<n,
Aidg2(j) =0

For X,Y,Z € g let
JIX, Y, Z)=[X,[Y,Z]| + [Y,[Z,X]]| + [Z,[X, Y]]

0 = J(Xo(iys Xy =205 Xo-1(3i)) = [Xo(iys [Xo—2(i)> X1y ]] = AilXo(iys Xil = = Nido2(iy

Let (A1,...,An) € R" such that A\jA,2(jy = 0 for any i. There exists a Lie
algebra g with a Milnor frame whose structure constants are A1, ..., Ap.
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Graph Representations for Milnor Frames

A
/\1 A2
g A,
/ ;
/
M & v v
Figure: G & G’

Hayden Hunter Left Invariant Metrics, and Milnor Frames 9/13



Figure: G#G'
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Main Theorems

Theorem

For any Lie algebra g of dimension n > 4 with a Milnor frame,

g = (©h3) @ (@h*) @ a where b3 is the Lie algebra of the Heisenberg
Group, h* is a Lie algebra with a Milnor frame and two non-trivial
structure constants, and a is an abelian Lie Alebra. Moreover, these Lie
algebras are at most 3-step nilpotent.
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Main Theorems

Theorem

For any Lie algebra g of dimension n > 4 with a Milnor frame,

g = (©h3) @ (@h*) @ a where b3 is the Lie algebra of the Heisenberg
Group, h* is a Lie algebra with a Milnor frame and two non-trivial
structure constants, and a is an abelian Lie Alebra. Moreover, these Lie
algebras are at most 3-step nilpotent.

The Lie algebras h3 and h* are at most 3-step nilpotent.
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There exists a metric g such that h* does not admit an orthonormal Milnor
frame with respect to g. Furthermore there exists a metric g such that
h3 @ b3 does not admit an orthonormal Milnor frame with respect to g.
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There exists a metric g such that h* does not admit an orthonormal Milnor
frame with respect to g. Furthermore there exists a metric g such that
h3 @ b3 does not admit an orthonormal Milnor frame with respect to g.

Let g be a non-abelian Lie algebra with a Milnor frame. If g 23 @ a
where a is an abelian Lie algebra, there exists a metric g on g such that
(9,g) does not admit an orthonormal Milnor frame.
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