On Higher Dimensional Milnor Frames

Hayden Hunter

AMS Southeastern Sectionals, Contributed Papers, March 18, 2023

伺下 イヨト イヨト

For a Lie group G, let $L_p: G \to G$, $h \to p \cdot h$ be left-translations on G.

臣

(周) (日) (日)

For a Lie group G, let $L_p: G \to G$, $h \to p \cdot h$ be left-translations on G.

A metric g on G is said to be left-invariant if $\forall p \in G$, $(L_p)^*g = g$.

伺 ト イヨト イヨト

For a Lie group G, let $L_p: G \to G$, $h \to p \cdot h$ be left-translations on G.

A metric g on G is said to be left-invariant if $\forall p \in G$, $(L_p)^*g = g$.

There exists a one-to-one correspondence between simply connected Lie groups with left-invariant metrics and Lie algebras with inner product structures.

・ 同 ト ・ ヨ ト ・ ヨ ト

For a Lie group G, let $L_p: G \to G$, $h \to p \cdot h$ be left-translations on G.

A metric g on G is said to be left-invariant if $\forall p \in G$, $(L_p)^*g = g$.

There exists a one-to-one correspondence between simply connected Lie groups with left-invariant metrics and Lie algebras with inner product structures.

Let $(\mathfrak{g}, \mathfrak{g})$ be a metric Lie algebra with a frame of left-invariant vector fields $\{X_1, \ldots, X_n\}$ and $\{c_{ij}^k\}$ be the structure constants w.r.t this frame.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For a Lie group G, let $L_p: G \to G$, $h \to p \cdot h$ be left-translations on G.

A metric g on G is said to be left-invariant if $\forall p \in G$, $(L_p)^*g = g$.

There exists a one-to-one correspondence between simply connected Lie groups with left-invariant metrics and Lie algebras with inner product structures.

Let (\mathfrak{g}, g) be a metric Lie algebra with a frame of left-invariant vector fields $\{X_1, \ldots, X_n\}$ and $\{c_{ij}^k\}$ be the structure constants w.r.t this frame. If ∇ is the Levi-Civita connection w.r.t g, for each $i, j, k \in \{1, \ldots, n\}$

$$g(\nabla_{X_i}X_j,X_k)=c_{ij}^\ell g_{\ell k}-c_{jk}^\ell g_{\ell i}+c_{ki}^\ell g_{\ell j}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

For a Lie group G, let $L_p: G \to G$, $h \to p \cdot h$ be left-translations on G.

A metric g on G is said to be left-invariant if $\forall p \in G$, $(L_p)^*g = g$.

There exists a one-to-one correspondence between simply connected Lie groups with left-invariant metrics and Lie algebras with inner product structures.

Let (\mathfrak{g}, g) be a metric Lie algebra with a frame of left-invariant vector fields $\{X_1, \ldots, X_n\}$ and $\{c_{ij}^k\}$ be the structure constants w.r.t this frame. If ∇ is the Levi-Civita connection w.r.t g, for each $i, j, k \in \{1, \ldots, n\}$

$$g(
abla_{X_i}X_j,X_k)=c_{ij}^\ell g_{\ell k}-c_{jk}^\ell g_{\ell i}+c_{ki}^\ell g_{\ell j}$$

The Ricci tensor is defined to be

$$\operatorname{Ric}_{g}(X_{i}, X_{j}) = g(\nabla_{X_{j}} \nabla_{X_{i}} X_{i} - \nabla_{X_{i}} \nabla_{X_{j}} X_{i} + \nabla_{[X_{i}, X_{j}]} X_{i}, X_{j})$$

• (1) • (

3-dimensional Unimodular Lie Algebras

Remark 1: Lie Groups are Orientable Manifolds.

→

3-dimensional Unimodular Lie Algebras

Remark 1: Lie Groups are Orientable Manifolds.

Remark 2: Let \mathfrak{g} be a 3-dimensional metric Lie algebra (a Lie algebra with a left invariant metric) with fixed orientation. For two linearly independent vectors $U, V \in \mathfrak{g}$, define the cross product $U \wedge V$ to be the unique orthogonal positively oriented vector such that

$$g(U \wedge V, U \wedge V) = |U \wedge V|^2 = g(U, U)g(V, V) - g(U, V)^2$$

3-dimensional Unimodular Lie Algebras

Remark 1: Lie Groups are Orientable Manifolds.

Remark 2: Let \mathfrak{g} be a 3-dimensional metric Lie algebra (a Lie algebra with a left invariant metric) with fixed orientation. For two linearly independent vectors $U, V \in \mathfrak{g}$, define the cross product $U \wedge V$ to be the unique orthogonal positively oriented vector such that

$$g(U \wedge V, U \wedge V) = |U \wedge V|^2 = g(U, U)g(V, V) - g(U, V)^2$$

Remark 3: Let (\mathfrak{g}, g) be a 3-dimensional metric Lie algebra with an orientation. By the universal property of alternating bilinear maps, there exists a linear operator $T : \mathfrak{g} \to \mathfrak{g}$ such that the diagram below commutes:

Definition

Let \mathfrak{g} be a Lie algebra. For each $X \in \mathfrak{g}$, define the linear operator $ad_X : \mathfrak{g} \to \mathfrak{g}, U \mapsto [X, U]$. We say that \mathfrak{g} is unimodular if $ad_X = 0$ for any $X \in \mathfrak{g}$.

イロン 不同 とうほう 不同 とう

Definition

Let \mathfrak{g} be a Lie algebra. For each $X \in \mathfrak{g}$, define the linear operator $ad_X : \mathfrak{g} \to \mathfrak{g}, U \mapsto [X, U]$. We say that \mathfrak{g} is unimodular if $ad_X = 0$ for any $X \in \mathfrak{g}$.

Lemma (4.1 Milnor (1976), pg. 305)

Let $(\mathfrak{g}, \mathfrak{g})$ be a 3-dimensional metric Lie algebra with an orientation. Let $T : \mathfrak{g} \to \mathfrak{g}^1$ be the linear operator defined by $T(U \land V) = [U, V]$. Then \mathfrak{g} is unimodular if and only if the linear transformation T is self-adjoint.

(日) (四) (三) (三) (三)

Definition

Let \mathfrak{g} be a Lie algebra. For each $X \in \mathfrak{g}$, define the linear operator $ad_X : \mathfrak{g} \to \mathfrak{g}, U \mapsto [X, U]$. We say that \mathfrak{g} is unimodular if $ad_X = 0$ for any $X \in \mathfrak{g}$.

Lemma (4.1 Milnor (1976), pg. 305)

Let $(\mathfrak{g}, \mathfrak{g})$ be a 3-dimensional metric Lie algebra with an orientation. Let $T : \mathfrak{g} \to \mathfrak{g}^1$ be the linear operator defined by $T(U \land V) = [U, V]$. Then \mathfrak{g} is unimodular if and only if the linear transformation T is self-adjoint.

Recall: If a linear transformation T is self-adjoint then there exists an orthonormal frame of eigenvectors.

(日) (四) (三) (三) (三)

4/13

Corollary (Milnor (1976), pg. 305)

If (\mathfrak{g}, g) is a unimodular metric Lie algebra, then there exists an orthonormal frame $\{X_1, X_2, X_3\}$ such that $[X_i, X_{\sigma(i)}] = \lambda_{\sigma^2(i)} X_{\sigma^2(i)}$ where $\sigma = (123) \in S_3$.

1

¹Milnor, 1976 pg. 299

イロン イヨン イヨン イヨン

Corollary (Milnor (1976), pg. 305)

If (\mathfrak{g}, g) is a unimodular metric Lie algebra, then there exists an orthonormal frame $\{X_1, X_2, X_3\}$ such that $[X_i, X_{\sigma(i)}] = \lambda_{\sigma^2(i)} X_{\sigma^2(i)}$ where $\sigma = (123) \in S_3$.

If g is a unimodular 3-dimensional metric Lie algebra then we have a Milnor frame $\{X_1, X_2, X_3\}$ with structure constants $\lambda_1, \lambda_2, \lambda_3$.

1

・ 同 ト ・ ヨ ト ・ ヨ ト

5/13

Denote the 3-dimensional Heisenberg group and its Lie algebra as

$$\mathcal{H}^{3} = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}, \mathfrak{h}^{3} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

イロン 不同 とくほど 不同 とう

Ð,

6/13

Denote the 3-dimensional Heisenberg group and its Lie algebra as

$$\mathcal{H}^{3} = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}, \mathfrak{h}^{3} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

Theorem (Corollary 5.3, Lauret, 2003)

The only nilpotent non-abelian Lie algebras with one metric up to scaling and automorphism are the Heisenberg Lie algebra directly summed with an abelian Lie algebra.

向下 イヨト イヨト

Denote the 3-dimensional Heisenberg group and its Lie algebra as

$$\mathcal{H}^{3} = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}, \mathfrak{h}^{3} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

Theorem (Corollary 5.3, Lauret, 2003)

The only nilpotent non-abelian Lie algebras with one metric up to scaling and automorphism are the Heisenberg Lie algebra directly summed with an abelian Lie algebra.

If g and g' are two left-invariant metrics on \mathcal{H}^3 , then there exists c > 0and $\phi \in \operatorname{Aut}(\mathcal{H}^3)$ such that for any $X, Y \in \mathfrak{h}^3$

$$g'(X,Y) = c(\phi.g)(X,Y) = cg(\phi(X),\phi(Y))$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Higher Dimensional Milnor Frames

Definition (H.)

Let g be a finite-dimensional Lie algebra and $\sigma \in S_n$, be the permutation $\sigma = (12 \dots n)$. A linearly independent collection or vectors $\{X_1, \dots, X_n\}$ is a n-Milnor frame if for i, j,

$$[X_i, X_j] = \begin{cases} \lambda_{\sigma^2(i)} X_{\sigma^2(i)} & j = \sigma(i) \\ -\lambda_{\sigma^2(j)} X_{\sigma^2(j)} & i = \sigma(j) \\ 0 & otherwise \end{cases}$$

where $\lambda_i \in \mathbb{R}$ for $1 \leq i \leq n$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Proposition

Let g be a metric Lie algebra with a Milnor frame $\{X_1, \ldots, X_n\}$ and structure constants $\{\lambda_1, \ldots, \lambda_n\}$ with $n \ge 4$. For each $1 \le i \le n$, $\lambda_i \lambda_{\sigma^2(i)} = 0$

For $X, Y, Z \in \mathfrak{g}$ let

$$J(X, Y, Z) = [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]]$$

 $0 = J(X_{\sigma(i)}, X_{\sigma^{-2(i)}}, X_{\sigma^{-1}(i)}) = [X_{\sigma(i)}, [X_{\sigma^{-2}(i)}, X_{\sigma^{-1}(i)}]] = \lambda_i [X_{\sigma(i)}, X_i] = -\lambda_i \lambda_{\sigma^2(i)}$

Theorem

Let $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ such that $\lambda_i \lambda_{\sigma^2(i)} = 0$ for any *i*. There exists a Lie algebra \mathfrak{g} with a Milnor frame whose structure constants are $\lambda_1, \ldots, \lambda_n$.

イロト イヨト イヨト イヨト 三日

Graph Representations for Milnor Frames

э

→ ∃ →

Figure: $\mathcal{G} \# \mathcal{G}'$

・ロン ・四と ・ヨン ・ヨー

Main Theorems

Theorem

For any Lie algebra \mathfrak{g} of dimension $n \ge 4$ with a Milnor frame, $\mathfrak{g} \cong (\oplus \mathfrak{h}^3) \oplus (\oplus \mathfrak{h}^4) \oplus \mathfrak{a}$ where \mathfrak{h}^3 is the Lie algebra of the Heisenberg Group, \mathfrak{h}^4 is a Lie algebra with a Milnor frame and two non-trivial structure constants, and \mathfrak{a} is an abelian Lie Alebra. Moreover, these Lie algebras are at most 3-step nilpotent.

・ 同 ト ・ ヨ ト ・ ヨ ト

Main Theorems

Theorem

For any Lie algebra \mathfrak{g} of dimension $n \ge 4$ with a Milnor frame, $\mathfrak{g} \cong (\oplus \mathfrak{h}^3) \oplus (\oplus \mathfrak{h}^4) \oplus \mathfrak{a}$ where \mathfrak{h}^3 is the Lie algebra of the Heisenberg Group, \mathfrak{h}^4 is a Lie algebra with a Milnor frame and two non-trivial structure constants, and \mathfrak{a} is an abelian Lie Alebra. Moreover, these Lie algebras are at most 3-step nilpotent.

The Lie algebras \mathfrak{h}^3 and \mathfrak{h}^4 are at most 3-step nilpotent.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

There exists a metric g such that \mathfrak{h}^4 does not admit an orthonormal Milnor frame with respect to g. Furthermore there exists a metric g such that $\mathfrak{h}^3 \oplus \mathfrak{h}^3$ does not admit an orthonormal Milnor frame with respect to g.

向下 イヨト イヨト

Theorem

There exists a metric g such that \mathfrak{h}^4 does not admit an orthonormal Milnor frame with respect to g. Furthermore there exists a metric g such that $\mathfrak{h}^3 \oplus \mathfrak{h}^3$ does not admit an orthonormal Milnor frame with respect to g.

Theorem

Let \mathfrak{g} be a non-abelian Lie algebra with a Milnor frame. If $\mathfrak{g} \ncong \mathfrak{h}^3 \oplus \mathfrak{a}$ where \mathfrak{a} is an abelian Lie algebra, there exists a metric g on \mathfrak{g} such that (\mathfrak{g}, g) does not admit an orthonormal Milnor frame.

(日本) (日本) (日本)

Lauret, Jorge (2003). "Degenerations of Lie algebras and geometry of Lie groups". In: Differential Geom. Appl. 18.2, pp. 177–194. ISSN: 0926-2245. DOI: 10.1016/S0926-2245(02)00146-8. URL: https://doi.org/10.1016/S0926-2245(02)00146-8.
Milnor, John (1976). "Curvatures of left invariant metrics on Lie groups". In: Advances in Math. 21.3, pp. 293–329.