Subgraph Deletion of 4-Regular Graphs and Their Genus Ranges

Hayden Hunter
University of South Florida

December 7, 2018

USE $\frac{\text { UNIVERSITY OF }}{\text { SOUTH FLORIDA. }}$

Definition: Double Occurence Word

Definition

Let A be an alphabet. A double occurence word over A is a word which contains each symbol of A exactly 0 or 2 times. We denote the set of double occurence words as $A_{D O W}$.

Example: Let $A=\mathbb{N}$. Then $121323 \in A_{\text {DOW }}$

Definition: Rigid Vertex

(1) Rotation System
(2) Sharp Corners are not permitted

Definition: Assembly Graph

Definition: Assembly Graph

Let Γ be a graph where each vertex is a rigid vertex of degree 4 or 1 . Then we call Γ an assembly graph.

Definition: Rigid Vertex and Assembly Graph

The graph below is the assembly graph of 121323 . For $\Gamma=(V(\Gamma), E(\Gamma))$ we have that

$$
1 \rightarrow 2
$$

- 3

Definition: Rigid Vertex and Assembly Graph

The graph below is the assembly graph of 121323 . For $\Gamma=(V(\Gamma), E(\Gamma))$ we have that

$$
1 \rightarrow 2 \rightarrow 1
$$

3

Definition: Rigid Vertex and Assembly Graph

The graph below is the assembly graph of 121323 . For $\Gamma=(V(\Gamma), E(\Gamma))$ we have that

$$
1 \rightarrow 2 \rightarrow 1 \rightarrow 3
$$

Definition: Rigid Vertex and Assembly Graph

The graph below is the assembly graph of 121323 . For $\Gamma=(V(\Gamma), E(\Gamma))$ we have that

$$
1 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2
$$

Definition: Rigid Vertex and Assembly Graph

The graph below is the assembly graph of 121323 . For $\Gamma=(V(\Gamma), E(\Gamma))$ we have that

$$
1 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 3
$$

Definition: Rigid Vertex and Assembly Graph

The graph below is the assembly graph of 121323 . For $\Gamma=(V(\Gamma), E(\Gamma))$ we have that

$$
1 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 1
$$

Graphs and Their Genus

- Ribbon graphs and boundary components
- The Euler Characteristic of these ribbon graphs
- The change of a boundary connection at a vertex

Ribbon Graphs

Euler Characteristic of Ribbon Graphs

Definition

The integer g that represents the number of handles a topological space has is the genus of that topological space

- The genus of an assembly graph Γ is the minimum number of handles of the topological space Γ can be embedded into.
- Letting $b(\Gamma)$ be the number of boundary components, and considering that each assembly graph with n vertices has $2 n$ edges,

$$
\chi=n-2 n+b(\Gamma) \Longrightarrow g(\Gamma)=\frac{1}{2}(2+n-b(\Gamma))
$$

For each vertex there are two possible ways to construct our ribbon graph at the second occurrence.

Thus we have that for an assembly graph 「 with n vertices, that there exists 2^{n} boundary connections and thus 2^{n} different graphical embeddings.

Definition: Genus Range

Letting a be the minimum genus of Γ and b being the maximum genus of Γ, we say that the genus range of Γ is $[a, b]$.

- The minimum genus will be the minimum number of handles of the topological space that Γ is being embedded onto.
- The maximum genus will be the maximum number of handles of the topological space that Γ is being embedded onto.

Repeat and Return Insertions

Let $u=u_{1} u_{2} \ldots u_{n}$. Then we say that the reverse of u denoted as $u^{R}=u_{n} u_{n-1} \ldots u_{2} u_{1}$.

Definition: Repeat and Return Insertions

Let $w=x y z \in A$. Let u be a single occurrence word where $w \cap u=\{\varepsilon\}$ where $|\varepsilon|=0$. Then $\mathcal{T}(u)$ acts on w so that

$$
w \star \mathcal{T}(u)=x^{x u y u} u^{\prime} z
$$

where

$$
u^{\prime}= \begin{cases}u & \mathcal{T}=\rho \\ u^{R} & \mathcal{T}=\tau\end{cases}
$$

We call ρ the repeat insertion and τ the return insertion.

Example: Repeat and Return Insertion
Let $w=121323$ and let $u=45$. Then we have that

$$
\begin{aligned}
& w \star \rho(u)=1452134523 \\
& w \star \tau(u)=1452135423
\end{aligned}
$$

Graphical Representation of a Repeat Insertion

Let Γ_{w} be the assembly graph for some double occurrence word $w=$ $x y z \in A_{D O W}$. Let u be a single occurrence word of length m. Then we can represent Γ_{w} and $\Gamma_{w \star \rho(u)}$ as

External Connection Graphs

Fig 3: G

Fig 4: G^{\prime}

External Connection Graphs

Definition: External Connection Graph

Definition 1. Let $w \in A_{D O W}$ for some alphabet A. Let $G=(V, E)$ be a graph where $V(G)=\left\{v_{1}, \ldots, v_{8}\right\}, \sigma^{\prime}:\left\{v_{1}, v_{3}, v_{6}, v_{8}\right\} \rightarrow\left\{v_{2}, v_{4}, v_{5}, v_{7}\right\}$ and $\sigma:\left\{v_{2}, v_{4}, v_{5}, v_{7}\right\} \rightarrow\left\{v_{1}, v_{3}, v_{6}, v_{8}\right\}$ are bijective functions, and $E(G)=E_{\sigma} \dot{\cup} E_{\text {ext }}$ where

$$
\begin{aligned}
& E_{e x t}=\left\{\left(v_{i}, \sigma^{\prime}\left(v_{i}\right)\right) \mid i=1,3,6,8\right\} \\
& E_{\sigma}=\left\{\left(v_{i}, \sigma\left(v_{i}\right)\right) \mid i=2,4,5,7\right\}
\end{aligned}
$$

We call G the exterior connection graph of $\Gamma_{w \star \rho(u, i, j)}$.

Theorem: Single Insertion of w

Theorem 1

Theorem 1. Let $A=\mathbb{N} \backslash\{1\}$ be an alphabet and $w \in A_{\text {DOw }}$. Let $\Gamma=\Gamma_{w}$ be the assembly graph for w who's genus range is $[a, b]$. Then the assembly graph $\Gamma^{\prime}=\Gamma_{w \star \rho(1)}$ for the double occurence word $w \star \rho(1)$ has a genus range of $\left[a+\epsilon, b+\epsilon^{\prime}\right]$ where $\epsilon, \epsilon^{\prime} \in\{-1,0,1,2\}$

M_{G}	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}
v_{1}	+1	0	0	0	-1	0	0	0
v_{2}	0	-1	0	0	ζ_{25}	ζ_{26}	ζ_{27}	ζ_{28}
v_{3}	0	0	+1	0	0	-1	0	0
v_{4}	0	0	0	-1	ζ_{45}	ζ_{46}	ζ_{47}	ζ_{48}
v_{5}	-1	0	0	0	ζ_{55}	ζ_{56}	ζ_{57}	ζ_{58}
v_{6}	0	+1	0	0	0	0	-1	0
v_{7}	0	0	-1	0	ζ_{75}	ζ_{76}	ζ_{77}	ζ_{78}
v_{8}	0	0	0	+1	0	0	0	-1

\downarrow

M_{G}^{\prime}	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}
v_{1}	+1	0	0	0	-1	0	0	0
v_{2}	0	-1	0	0	ζ_{25}	ζ_{26}	ζ_{27}	ζ_{28}
v_{3}	0	+1	0	0	0	-1	0	0
v_{4}	0	0	-1	0	ζ_{45}	ζ_{46}	ζ_{47}	ζ_{48}
v_{5}	0	0	0	-1	ζ_{55}	ζ_{56}	ζ_{57}	ζ_{58}
v_{6}	0	0	+1	0	0	0	-1	0
v_{7}	-1	0	0	0	ζ_{75}	ζ_{76}	ζ_{77}	ζ_{78}
v_{8}	0	0	0	+1	0	0	0	-1

Example

Let $\sigma\left(\left(v_{1}, v_{3}, v_{6}, v_{8}\right)\right)=\left(v_{2}, v 7, v_{5}, v_{4}\right)$. Then the external connection graphs for Γ_{w} and $\Gamma_{w * x y z}$ are

Permutation Type	$\|b(\Gamma)\|$	$\left\|b\left(\Gamma^{\prime}\right)\right\|$	$\left\|b\left(\Gamma^{\prime}\right)\right\|-\|b(\Gamma)\|$
$\left(v_{2}, v_{4}, v_{5}, v_{7}\right)$	2	1	-1
$\left(v_{2}, v_{4}, v_{7}, v_{5}\right)$	1	2	1
$\left(v_{2}, v_{5}, v_{4}, v_{7}\right)$	1	2	1
$\left(v_{2}, v_{5}, v_{7}, v_{4}\right)$	2	1	-1
$\left(v_{2}, v_{7}, v_{4}, v_{5}\right)$	2	3	1
$\left(v_{2}, v_{7}, v_{5}, v_{4}\right)$	3	2	-1
$\left(v_{4}, v_{2}, v_{5}, v_{7}\right)$	1	2	1
$\left(v_{4}, v_{2}, v_{7}, v_{5}\right)$	2	3	1
$\left(v_{4}, v_{5}, v_{2}, v_{7}\right)$	2	1	-1
$\left(v_{4}, v_{5}, v_{7}, v_{2}\right)$	1	2	1
$\left(v_{4}, v_{7}, v_{2}, v_{5}\right)$	3	2	-1
$\left(v_{4}, v_{7}, v_{5}, v_{2}\right)$	2	1	-1
$\left(v_{5}, v_{2}, v_{4}, v_{7}\right)$	2	3	1
$\left(v_{5}, v_{2}, v_{7}, v_{4}\right)$	3	2	-1
$\left(v_{5}, v_{4}, v_{2}, v_{7}\right)$	3	2	-1
$\left(v_{5}, v_{4}, v_{7}, v_{2}\right)$	2	1	-1
$\left(v_{5}, v_{7}, v_{2}, v_{4}\right)$	4	1	-3
$\left(v_{5}, v_{7}, v_{4}, v_{2}\right)$	3	2	-1
$\left(v_{7}, v_{2}, v_{4}, v_{5}\right)$	1	4	3
$\left(v_{7}, v_{2}, v_{5}, v_{4}\right)$	2	3	1
$\left(v_{7}, v_{4}, v_{2}, v_{5}\right)$	2	3	1
$\left(v_{7}, v_{4}, v_{5}, v_{2}\right)$	1	2	1
$\left(v_{7}, v_{5}, v_{2}, v_{4}\right)$	3	2	-1
$\left(v_{7}, v_{5}, v_{4}, v_{2}\right)$	2	3	1

We then consider what occurs when we change the boundary at the inserted vertex. $G^{\prime \prime}$ in this context is the external connection graph for Γ with a boundary connection change at the inserted vertex.

Permutation Type	$\|b(\Gamma)\|$	$\left\|b^{\prime}\left(\Gamma^{\prime}\right)\right\|$	$\left\|b^{\prime}\left(\Gamma^{\prime}\right)\right\|-\|b(\Gamma)\|$
$\left(v_{2}, v_{4}, v_{5}, v_{7}\right)$	2	1	-1
$\left(v_{2}, v_{4}, v_{7}, v_{5}\right)$	1	2	1
$\left(v_{2}, v_{5}, v_{4}, v_{7}\right)$	1	2	1
$\left(v_{2}, v_{5}, v_{7}, v_{4}\right)$	2	3	1
$\left(v_{2}, v_{7}, v_{4}, v_{5}\right)$	2	1	-1
$\left(v_{2}, v_{7}, v_{5}, v_{4}\right)$	3	2	-1
$\left(v_{4}, v_{2}, v_{5}, v_{7}\right)$	1	2	1
$\left(v_{4}, v_{2}, v_{7}, v_{5}\right)$	2	3	1
$\left(v_{4}, v_{5}, v_{2}, v_{7}\right)$	2	3	1
$\left(v_{4}, v_{5}, v_{7}, v_{2}\right)$	1	4	3
$\left(v_{4}, v_{7}, v_{2}, v_{5}\right)$	3	2	-1
$\left(v_{4}, v_{7}, v_{5}, v_{2}\right)$	2	3	1
$\left(v_{5}, v_{2}, v_{4}, v_{7}\right)$	2	1	-1
$\left(v_{5}, v_{2}, v_{7}, v_{4}\right)$	3	2	-1
$\left(v_{5}, v_{4}, v_{2}, v_{7}\right)$	3	2	-1
$\left(v_{5}, v_{4}, v_{7}, v_{2}\right)$	2	3	1
$\left(v_{5}, v_{7}, v_{2}, v_{4}\right)$	4	1	-3
$\left(v_{5}, v_{7}, v_{4}, v_{2}\right)$	3	2	-1
$\left(v_{7}, v_{2}, v_{4}, v_{5}\right)$	1	2	1
$\left(v_{7}, v_{2}, v_{5}, v_{4}\right)$	2	1	-1
$\left(v_{7}, v_{4}, v_{2}, v_{5}\right)$	2	1	-1
$\left(v_{7}, v_{4}, v_{5}, v_{2}\right)$	1	2	1
$\left(v_{7}, v_{5}, v_{2}, v_{4}\right)$	3	2	-1
$\left(v_{7}, v_{5}, v_{4}, v_{2}\right)$	2	3	1

$$
g\left(\Gamma^{\prime}\right)=\frac{1}{2}\left(2+(n+1)-b\left(\Gamma^{\prime}\right)\right)=\frac{1}{2}\left(2+n-b\left(\Gamma^{\prime}\right)\right)+\frac{1}{2}(1-\epsilon)
$$

where $\epsilon=-3,-1,1,3$ so that

$$
g\left(\Gamma^{\prime}\right)=g(\Gamma)+\delta
$$

where $\delta=-1,0,1,2$.

Theorem 2

Theorem 2. Let A be an alphabet and $u, v, w \in A$ so that $u v w \in A_{\text {DOW }}$. Let Γ be the assembly graph for uvw who's genus range is $[a, b]$. Then the assembly graph Γ^{\prime} for the double occurence word $u 12 v 12 w$ has a genus range of $\left[a+\epsilon, b+\epsilon^{\prime}\right]$ where $\epsilon, \epsilon^{\prime} \in\{0,1,2\}$

Theorem 3

Theorem 3 L.et A be an alphabet $w \in A_{D O w}$. Let $\Gamma=\Gamma_{w}$ be the assembly graph for w who's genus range is $[a, b]$. Let $v_{\text {odd }}, v_{\text {even }}, u \in A_{\text {sow }}$ where $\left|v_{\text {odd }}\right|=3,\left|v_{\text {even }}\right|=2$, and $|u|=n$.

$$
g\left(\Gamma_{w \star \mathcal{T}(u, i, j)}\right)= \begin{cases}g\left(\Gamma_{w \star \mathcal{T}\left(v_{\text {odd }}, i, j\right)}\right) & \text { If } n \equiv \text { odd } \\ g\left(\Gamma_{w \star \mathcal{T}\left(v_{\text {even }}, i, j\right)}\right. & \text { If } n \equiv \text { even }\end{cases}
$$

Example

Consider the DOW

$$
12145673234567=121323 \star \rho(4567)
$$

Example

Consider the DOW

$$
12145673234567=121323 \star \rho(4567)
$$

We have that $g(121323 \star \rho(4567))=g(121323 \star \rho(45))=[2,3]$

Conclusion

- Construction of a lower bound
- Classes of assembly graphs after subgraph deletion

References

- D. Buck, E. Dolzhenko, N. Jonoska, M. Saito, K. Valencia. Genus Ranges of 4-Regular Rigid Vertex Graphs. The Electronic Journal of Combinatorics. pg (1-10,15)
- N. Jonoska, L. Nabergall, M. Saito. Patterns and Distances in Words Related to DNA Rearrangement. Fundamenta Informaticae. pg(1003 - 1007)
- D. Cruz, M. Ferrari, N. Jonoska, L. Nabergall, M. Saito. Transformations on Double Occurrence Words Motivated by DNA Rearrangement. arXiv:1811.11739. pg(5,6)

Thank you!

