Subgraph Deletion of 4-Regular Graphs and Their Genus Ranges

Hayden Hunter

University of South Florida

December 7, 2018

Definition

Let A be an alphabet. A *double occurence word* over A is a word which contains each symbol of A exactly 0 or 2 times. We denote the set of double occurence words as A_{DOW} .

Example: Let $A = \mathbb{N}$. Then $121323 \in A_{DOW}$

- Rotation System
- Sharp Corners are not permitted

Definition: Assembly Graph

Let Γ be a graph where each vertex is a rigid vertex of degree 4 or 1. Then we call Γ an *assembly graph*.

$$1 \rightarrow 2 \rightarrow 1 \rightarrow 3$$

$$1
ightarrow 2
ightarrow 1
ightarrow 3
ightarrow 2$$

$$1 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 3$$

- Ribbon graphs and boundary components
- The Euler Characteristic of these ribbon graphs
- The change of a boundary connection at a vertex

Ribbon Graphs

æ

イロト イヨト イヨト イヨト

Definition

The integer g that represents the number of handles a topological space has is the *genus* of that topological space

- The genus of an assembly graph Γ is the minimum number of handles of the topological space Γ can be embedded into.
- Letting b(Γ) be the number of boundary components, and considering that each assembly graph with n vertices has 2n edges,

$$\chi = n - 2n + b(\Gamma) \implies g(\Gamma) = \frac{1}{2}(2 + n - b(\Gamma))$$

For each vertex there are two possible ways to construct our ribbon graph at the second occurrence.

Thus we have that for an assembly graph Γ with *n* vertices, that there exists 2^n boundary connections and thus 2^n different graphical embeddings.

3

イロト イヨト イヨト イヨト

Definition: Genus Range

Letting *a* be the minimum genus of Γ and *b* being the maximum genus of Γ , we say that the *genus range* of Γ is [a, b].

- The minimum genus will be the minimum number of handles of the topological space that Γ is being embedded onto.
- The maximum genus will be the maximum number of handles of the topological space that Γ is being embedded onto.

Let $u = u_1 u_2 \dots u_n$. Then we say that the reverse of u denoted as $u^R = u_n u_{n-1} \dots u_2 u_1$.

Definition: Repeat and Return Insertions

Let $w = xyz \in A$. Let u be a single occurrence word where $w \cap u = \{\varepsilon\}$ where $|\varepsilon| = 0$. Then $\mathcal{T}(u)$ acts on w so that

$$w \star \mathcal{T}(u) = xuyu'z$$

where

$$u' = \begin{cases} u & \mathcal{T} = \rho \\ u^R & \mathcal{T} = \tau \end{cases}$$

We call ρ the repeat insertion and τ the return insertion.

Example: Repeat and Return Insertion Let w = 121323 and let u = 45. Then we have that

> $w \star \rho(u) = 1452134523$ $w \star \tau(u) = 1452135423$

Graphical Representation of a Repeat Insertion

Let Γ_w be the assembly graph for some double occurrence word $w = xyz \in A_{DOW}$. Let u be a single occurrence word of length m. Then we can represent Γ_w and $\Gamma_{w \star \rho(u)}$ as

External Connection Graphs

Definition: External Connection Graph

Definition 1. Let $w \in A_{DOW}$ for some alphabet A. Let G = (V, E) be a graph where $V(G) = \{v_1, \ldots, v_8\}$, $\sigma' : \{v_1, v_3, v_6, v_8\} \rightarrow \{v_2, v_4, v_5, v_7\}$ and $\sigma : \{v_2, v_4, v_5, v_7\} \rightarrow \{v_1, v_3, v_6, v_8\}$ are bijective functions, and $E(G) = E_{\sigma} \dot{\cup} E_{ext}$ where

$$E_{ext} = \{ (v_i, \sigma'(v_i)) | i = 1, 3, 6, 8 \}$$

$$E_{\sigma} = \{ (v_i, \sigma(v_i)) | i = 2, 4, 5, 7 \}$$

We call G the exterior connection graph of $\Gamma_{w \star \rho(u,i,j)}$.

Theorem 1

Theorem 1. Let $A = \mathbb{N} \setminus \{1\}$ be an alphabet and $w \in A_{DOW}$. Let $\Gamma = \Gamma_w$ be the assembly graph for w who's genus range is [a, b]. Then the assembly graph $\Gamma' = \Gamma_{w \star \rho(1)}$ for the double occurence word $w \star \rho(1)$ has a genus range of $[a + \epsilon, b + \epsilon']$ where $\epsilon, \epsilon' \in \{-1, 0, 1, 2\}$

M _G	e_1	e_2	e ₃	e_4	e_5	<i>e</i> ₆	<i>e</i> ₇	<i>e</i> ₈
<i>v</i> ₁	+1	0	0	0	-1	0	0	0
V 2	0	-1	0	0	ζ_{25}	ζ_{26}	ζ27	ζ28
<i>V</i> 3	0	0	+1	0	0	-1	0	0
<i>V</i> 4	0	0	0	-1	ζ_{45}	ζ_{46}	ζ47	ζ48
V5	-1	0	0	0	ζ_{55}	ζ_{56}	ζ_{57}	ζ_{58}
V ₆	0	+1	0	0	0	0	-1	0
V 7	0	0	-1	0	ζ_{75}	ζ_{76}	ζ77	ζ_{78}
<i>V</i> 8	0	0	0	+1	0	0	0	-1

 \downarrow

M'_G	e_1	<i>e</i> ₂	e ₃	e_4	<i>e</i> ₅	e_6	<i>e</i> ₇	<i>e</i> ₈
<i>V</i> 1	+1	0	0	0	-1	0	0	0
V 2	0	-1	0	0	ζ_{25}	ζ_{26}	ζ_{27}	ζ28
V ₃	0	+1	0	0	0	-1	0	0
<i>V</i> 4	0	0	-1	0	ζ_{45}	ζ_{46}	ζ_{47}	ζ48
<i>V</i> 5	0	0	0	-1	ζ_{55}	ζ_{56}	ζ_{57}	ζ_{58}
V ₆	0	0	+1	0	0	0	-1	0
V 7	-1	0	0	0	ζ_{75}	ζ_{76}	ζ_{77}	ζ_{78}
<i>V</i> 8	0	0	0	+1	0	0	0	-1

December 7, 2018 23 / 35

3

<ロト < 四ト < 三ト < 三ト

Example

Let $\sigma((v_1, v_3, v_6, v_8)) = (v_2, v_7, v_5, v_4)$. Then the external connection graphs for Γ_w and $\Gamma_{w \star xyz}$ are

Permutation Type	<i>b</i> (Γ)	$ b(\Gamma') $	$ b(\Gamma') = b(\Gamma) $
51	2	$ b(\Gamma') $	$ b(\Gamma') - b(\Gamma) $ -1
(v_2, v_4, v_5, v_7)	1	-	-1
(v_2, v_4, v_7, v_5)		2	
(v_2, v_5, v_4, v_7)	1	2	1
(v_2, v_5, v_7, v_4)	2	1	-1
(v_2, v_7, v_4, v_5)	2	3	1
(v_2, v_7, v_5, v_4)	3	2	-1
(v_4, v_2, v_5, v_7)	1	2	1
(v_4, v_2, v_7, v_5)	2	3	1
(v_4, v_5, v_2, v_7)	2	1	-1
(v_4, v_5, v_7, v_2)	1	2	1
(v_4, v_7, v_2, v_5)	3	2	-1
(v_4, v_7, v_5, v_2)	2	1	-1
(v_5, v_2, v_4, v_7)	2	3	1
(v_5, v_2, v_7, v_4)	3	2	-1
(v_5, v_4, v_2, v_7)	3	2	-1
(v_5, v_4, v_7, v_2)	2	1	-1
(v_5, v_7, v_2, v_4)	4	1	-3
(v_5, v_7, v_4, v_2)	3	2	-1
(v_7, v_2, v_4, v_5)	1	4	3
(v_7, v_2, v_5, v_4)	2	3	1
(v_7, v_4, v_2, v_5)	2	3	1
(v_7, v_4, v_5, v_2)	1	2	1
(v_7, v_5, v_2, v_4)	3	2	-1
(v_7, v_5, v_4, v_2)	2	3	1

Hayden Hunter (University of South Florida)Subgraph Deletion of 4-Regular Graphs and T

3

We then consider what occurs when we change the boundary at the inserted vertex. G'' in this context is the external connection graph for Γ with a boundary connection change at the inserted vertex.

Permutation Type	<i>b</i> (Г)	$ b'(\Gamma') $ 1	$ b'(\Gamma') - b(\Gamma) $
(v_2, v_4, v_5, v_7)	2		-1
(v_2, v_4, v_7, v_5)	1	2	1
(v_2, v_5, v_4, v_7)	1	2	1
(v_2, v_5, v_7, v_4)	2	3	1
(v_2, v_7, v_4, v_5)	2	1	-1
(v_2, v_7, v_5, v_4)	3	2	-1
(v_4, v_2, v_5, v_7)	1	2	1
(v_4, v_2, v_7, v_5)	2	3	1
(v_4, v_5, v_2, v_7)	2	3	1
(v_4, v_5, v_7, v_2)	1	4	3
(v_4, v_7, v_2, v_5)	3	2	-1
(v_4, v_7, v_5, v_2)	2	3	1
(v_5, v_2, v_4, v_7)	2	1	-1
(v_5, v_2, v_7, v_4)	3	2	-1
(v_5, v_4, v_2, v_7)	3	2	-1
(v_5, v_4, v_7, v_2)	2	3	1
(v_5, v_7, v_2, v_4)	4	1	-3
(v_5, v_7, v_4, v_2)	3	2	-1
(v_7, v_2, v_4, v_5)	1	2	1 -1
(v_7, v_2, v_5, v_4)	2		-1
(v_7, v_4, v_2, v_5)	2	1	-1
(v_7, v_4, v_5, v_2)	1	2	1
(v_7, v_5, v_2, v_4)	3	2	-1
(v_7, v_5, v_4, v_2)	2	3	1

3

<ロト < 四ト < 三ト < 三ト

$$g(\Gamma') = \frac{1}{2}(2 + (n+1) - b(\Gamma')) = \frac{1}{2}(2 + n - b(\Gamma')) + \frac{1}{2}(1 - \epsilon)$$
where $\epsilon = -3$, -1 , 1 , 3 so that

where $\epsilon = -3, -1, 1, 3$ so that

$$g(\Gamma') = g(\Gamma) + \delta$$

where $\delta = -1, 0, 1, 2$.

∃ →

Image: A matrix and a matrix

æ

Theorem 2

Theorem 2. Let A be an alphabet and $u, v, w \in A$ so that $uvw \in A_{DOW}$. Let Γ be the assembly graph for uvw who's genus range is [a, b]. Then the assembly graph Γ' for the double occurence word u12v12w has a genus range of $[a + \epsilon, b + \epsilon']$ where $\epsilon, \epsilon' \in \{0, 1, 2\}$

Theorem 3

Theorem 3 L.*et A be an alphabet w* \in *A*_{DOW}*. Let* $\Gamma = \Gamma_w$ *be the assembly graph for w who's genus range is* [*a*, *b*]*. Let* v_{odd} , v_{even} , $u \in A_{SOW}$ where $|v_{odd}| = 3$, $|v_{even}| = 2$, and |u| = n.

$$g(\Gamma_{w\star\mathcal{T}(u,i,j)}) = \begin{cases} g(\Gamma_{w\star\mathcal{T}(v_{odd},i,j)}) & \text{ If } n \equiv \text{ odd} \\ g(\Gamma_{w\star\mathcal{T}(v_{even},i,j)} & \text{ If } n \equiv \text{ even} \end{cases}$$

Example

Consider the $\ensuremath{\textit{DOW}}$

$12145673234567 = 121323 \star \rho(4567)$

Hayden Hunter (University of South Florida)Subgraph Deletion of 4-Regular Graphs and T

Example

Consider the $\ensuremath{\textit{DOW}}$

$12145673234567 = 121323 \star \rho(4567)$

We have that $g(121323 \star \rho(4567)) = g(121323 \star \rho(45)) = [2,3]$

Hayden Hunter (University of South Florida)Subgraph Deletion of 4-Regular Graphs and T

- Construction of a lower bound
- Classes of assembly graphs after subgraph deletion

- D. Buck, E. Dolzhenko, N. Jonoska, M. Saito, K. Valencia. Genus Ranges of 4-Regular Rigid Vertex Graphs. *The Electronic Journal of Combinatorics*. pg (1-10,15)
- N. Jonoska, L. Nabergall, M. Saito. Patterns and Distances in Words Related to DNA Rearrangement. *Fundamenta Informaticae*. pg(1003 - 1007)
- D. Cruz, M. Ferrari, N. Jonoska, L. Nabergall, M. Saito.
 Transformations on Double Occurrence Words Motivated by DNA Rearrangement. arXiv:1811.11739 . pg(5,6)

< 1 k