On Higher Dimensional Milnor Frames

Hayden Hunter

UF-FSU Conference, FSU, November 4, 2023

Funding is supported by the National Science Foundation (MS-2104662)

Hayden Hunter

1/15

Left Invariant Metrics, and Milnor Frames

▲口 ▶ ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲日 ● ● ● ●

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

"On Higher Dimensional Milnor Frames"

∃ → ∢

Image: A matrix and a matrix

э

"On Higher Dimensional Milnor Frames"

eprint at arXiv:2303.07132v2 [math.DG]

"On Higher Dimensional Milnor Frames"

eprint at arXiv:2303.07132v2 [math.DG]

Revisions sent back to the Journal of Lie Theory 10/24/2024

æ

Definition

Let \mathfrak{g} be a Lie algebra. For each $X \in \mathfrak{g}$, define the linear operator $\operatorname{ad}_X : \mathfrak{g} \to \mathfrak{g}, \ U \mapsto [X, U]$. We say that \mathfrak{g} is unimodular if $\operatorname{ad}_X = 0$ for any $X \in \mathfrak{g}$.

Definition

Let \mathfrak{g} be a Lie algebra. For each $X \in \mathfrak{g}$, define the linear operator $\operatorname{ad}_X : \mathfrak{g} \to \mathfrak{g}, \ U \mapsto [X, U]$. We say that \mathfrak{g} is unimodular if $\operatorname{ad}_X = 0$ for any $X \in \mathfrak{g}$.

Remark: Lie Groups are Orientable. This allows us to define a "cross product", ∧, on 3-dimensional Lie algebras.

Definition

Let \mathfrak{g} be a Lie algebra. For each $X \in \mathfrak{g}$, define the linear operator $\operatorname{ad}_X : \mathfrak{g} \to \mathfrak{g}, \ U \mapsto [X, U]$. We say that \mathfrak{g} is unimodular if $\operatorname{ad}_X = 0$ for any $X \in \mathfrak{g}$.

Remark: Lie Groups are Orientable. This allows us to define a "cross product", ∧, on 3-dimensional Lie algebras.

Lemma (4.1 [1], pg. 305)

Let $(\mathfrak{g}, \mathfrak{g})$ be a 3-dimensional metric Lie algebra with an orientation. Let $T : \mathfrak{g} \to \mathfrak{g}^1$ be the linear operator defined by $T(U \land V) = [U, V]$. Then \mathfrak{g} is unimodular if and only if the linear transformation T is self-adjoint.

Definition

Let \mathfrak{g} be a Lie algebra. For each $X \in \mathfrak{g}$, define the linear operator $\operatorname{ad}_X : \mathfrak{g} \to \mathfrak{g}, \ U \mapsto [X, U]$. We say that \mathfrak{g} is unimodular if $\operatorname{ad}_X = 0$ for any $X \in \mathfrak{g}$.

Remark: Lie Groups are Orientable. This allows us to define a "cross product", ∧, on 3-dimensional Lie algebras.

Lemma (4.1 [1], pg. 305)

Let $(\mathfrak{g}, \mathfrak{g})$ be a 3-dimensional metric Lie algebra with an orientation. Let $T : \mathfrak{g} \to \mathfrak{g}^1$ be the linear operator defined by $T(U \land V) = [U, V]$. Then \mathfrak{g} is unimodular if and only if the linear transformation T is self-adjoint.

Recall: If a linear transformation T is self-adjoint then there exists an orthonormal frame of eigenvectors.

¹[1] pg. 299

Left Invariant Metrics, and Milnor Frames

Hayden Hunter 4 / 15

・ロト ・四ト ・ヨト ・ヨト

Corollary ([1], pg. 305)

If (\mathfrak{g}, g) is a unimodular metric Lie algebra, then there exists an orthonormal frame $\{X_1, X_2, X_3\}$ such that $[X_i, X_{\sigma(i)}] = \lambda_{\sigma^2(i)} X_{\sigma^2(i)}$ where $\sigma = (123) \in S_3$.

¹[1] pg. 299

Corollary ([1], pg. 305)

If (\mathfrak{g}, g) is a unimodular metric Lie algebra, then there exists an orthonormal frame $\{X_1, X_2, X_3\}$ such that $[X_i, X_{\sigma(i)}] = \lambda_{\sigma^2(i)} X_{\sigma^2(i)}$ where $\sigma = (123) \in S_3$.

Definition

Let **g** be a Lie algebra with a frame $\{X_1, X_2, X_3\}$. If there exists $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ such that the bracket relation $[X_i, X_{\sigma(i)}] = \lambda_{\sigma^2(i)} X_{\sigma^2(i)}$ holds for any $1 \leq i \leq 3$, then $\{X_1, X_2, X_3\}$ is called a Milnor frame.

Corollary ([1], pg. 305)

If (\mathfrak{g}, g) is a unimodular metric Lie algebra, then there exists an orthonormal frame $\{X_1, X_2, X_3\}$ such that $[X_i, X_{\sigma(i)}] = \lambda_{\sigma^2(i)} X_{\sigma^2(i)}$ where $\sigma = (123) \in S_3$.

Definition

Let **g** be a Lie algebra with a frame $\{X_1, X_2, X_3\}$. If there exists $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ such that the bracket relation $[X_i, X_{\sigma(i)}] = \lambda_{\sigma^2(i)} X_{\sigma^2(i)}$ holds for any $1 \leq i \leq 3$, then $\{X_1, X_2, X_3\}$ is called a Milnor frame.

If $\mathfrak g$ is a unimodular 3-dimensional metric Lie algebra then $\mathfrak g$ admits an orthonormal Milnor frame.

1

¹[1] pg. 299

æ

(日)

Denote the 3-dimensional Heisenberg group and its Lie algebra as

$$\mathcal{H}^3 = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}, \mathfrak{h}^3 = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

Denote the 3-dimensional Heisenberg group and its Lie algebra as

$$\mathcal{H}^3 = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}, \mathfrak{h}^3 = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

Let E_{ij} denote the matrix whose entries are 1 at (i, j) and 0 everywhere else.

Denote the 3-dimensional Heisenberg group and its Lie algebra as

$$\mathcal{H}^3 = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}, \mathfrak{h}^3 = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

Let E_{ij} denote the matrix whose entries are 1 at (i, j) and 0 everywhere else.

Letting $X_1 = E_{12}$, $X_2 = E_{13}$, and $X_3 = E_{23}$ we obtain the bracket relations

Denote the 3-dimensional Heisenberg group and its Lie algebra as

$$\mathcal{H}^3 = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}, \mathfrak{h}^3 = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

Let E_{ij} denote the matrix whose entries are 1 at (i, j) and 0 everywhere else.

Letting $X_1 = E_{12}$, $X_2 = E_{13}$, and $X_3 = E_{23}$ we obtain the bracket relations

$$[X_1, X_2] = 0, \quad [X_2, X_3] = 0, \quad [X_3, X_1] = -X_2$$

Higher Dimensional Milnor Frames

Higher Dimensional Milnor Frames

Definition (H.)

Let g be a finite-dimensional Lie algebra and $\sigma \in S_n$, be the permutation $\sigma = (12 \dots n)$. A linearly independent collection or vectors $\{X_1, \dots, X_n\}$ is a *n*-Milnor frame if for *i*, *j*,

$$[X_i, X_j] = \begin{cases} \lambda_{\sigma^2(i)} X_{\sigma^2(i)} & j = \sigma(i) \\ -\lambda_{\sigma^2(j)} X_{\sigma^2(j)} & i = \sigma(j) \\ 0 & \text{otherwise} \end{cases}$$

where $\lambda_i \in \mathbb{R}$ for $1 \leq i \leq n$.

Left Invariant Metrics, and Milnor Frames

▲口 ▶ ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲日 ● ● ● ●

What if we replace σ in the previous definition with any permutation in S_n ?

For $\sigma \in S_n$, we may present σ as a product of disjoint cycles $\sigma = \sigma_1 \cdots \sigma_k$

For $\sigma \in S_n$, we may present σ as a product of disjoint cycles $\sigma = \sigma_1 \cdots \sigma_k$ Each σ_i generates a Lie algebra \mathfrak{g}_i with a Milnor frame

For $\sigma \in S_n$, we may present σ as a product of disjoint cycles $\sigma = \sigma_1 \cdots \sigma_k$ Each σ_i generates a Lie algebra \mathfrak{g}_i with a Milnor frame Notice that for $i \in \{1, \dots, n\}$ such that $\sigma(i) = i$

$$[X_i, X_{\sigma(i)}] = \overbrace{[X_i, X_i]}^0 = [X_{\sigma^{-1}(i)}, X_i]$$

so that $\operatorname{ad}_{X_i} = 0$

For $\sigma \in S_n$, we may present σ as a product of disjoint cycles $\sigma = \sigma_1 \cdots \sigma_k$ Each σ_i generates a Lie algebra \mathfrak{g}_i with a Milnor frame Notice that for $i \in \{1, \dots, n\}$ such that $\sigma(i) = i$

$$[X_i, X_{\sigma(i)}] = \overbrace{[X_i, X_i]}^0 = [X_{\sigma^{-1}(i)}, X_i]$$

so that $\operatorname{ad}_{X_i} = 0$

The span of $\{X_i | \sigma(i) = i\}$ generates an abelian subalgebra \mathfrak{a} .

For $\sigma \in S_n$, we may present σ as a product of disjoint cycles $\sigma = \sigma_1 \cdots \sigma_k$ Each σ_i generates a Lie algebra \mathfrak{g}_i with a Milnor frame Notice that for $i \in \{1, \dots, n\}$ such that $\sigma(i) = i$

$$[X_i, X_{\sigma(i)}] = [X_i, X_i] = [X_{\sigma^{-1}(i)}, X_i]$$

so that $\operatorname{ad}_{X_i} = 0$

The span of $\{X_i | \sigma(i) = i\}$ generates an abelian subalgebra \mathfrak{a} .

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_k \oplus \mathfrak{a}$$

For $\sigma \in S_n$, we may present σ as a product of disjoint cycles $\sigma = \sigma_1 \cdots \sigma_k$ Each σ_i generates a Lie algebra \mathfrak{g}_i with a Milnor frame

Notice that for $i \in \{1, ..., n\}$ such that $\sigma(i) = i$

$$[X_i, X_{\sigma(i)}] = \overbrace{[X_i, X_i]}^0 = [X_{\sigma^{-1}(i)}, X_i]$$

so that $\operatorname{ad}_{X_i} = 0$

The span of $\{X_i | \sigma(i) = i\}$ generates an abelian subalgebra \mathfrak{a} .

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_k \oplus \mathfrak{a}$$

Thus we only need to consider the case where σ is cyclic.

Left Invariant Metrics, and Milnor Frames

æ

(日)

- If a is an abelian Lie algebra of dimension $n \ge 1$ then $\mathfrak{h}^3 \oplus \mathfrak{a}$ is a $n \ge 4$ dimensional Lie algebra with a Milnor Frame
- Let \mathfrak{h}^4 be a fourth dimensional Lie algebra which admits a frame with the following non-trivial bracket relations (up to anti-symmetry)

$$[X_1, X_2] = X_3, \quad [X_2, X_3] = X_4.$$

 \mathfrak{h}^4 is sometimes known as the 4-dimensional filiform Lie algebra.

Main Theorems

Left Invariant Metrics, and Milnor Frames

• • • • • • • •

æ

Main Theorems

Theorem (H.)

For any Lie algebra \mathfrak{g} of dimension $n \ge 4$ with a Milnor frame, $\mathfrak{g} \cong (\oplus \mathfrak{h}^3) \oplus (\oplus \mathfrak{h}^4) \oplus \mathfrak{a}$ where \mathfrak{h}^3 is the Lie algebra of the Heisenberg Group, \mathfrak{h}^4 is a Lie algebra with a Milnor frame and two non-trivial structure constants, and \mathfrak{a} is an abelian Lie Alebra. Moreover, these Lie algebras are at most 3-step nilpotent.

Main Theorems

Theorem (H.)

For any Lie algebra \mathfrak{g} of dimension $n \ge 4$ with a Milnor frame, $\mathfrak{g} \cong (\oplus \mathfrak{h}^3) \oplus (\oplus \mathfrak{h}^4) \oplus \mathfrak{a}$ where \mathfrak{h}^3 is the Lie algebra of the Heisenberg Group, \mathfrak{h}^4 is a Lie algebra with a Milnor frame and two non-trivial structure constants, and \mathfrak{a} is an abelian Lie Alebra. Moreover, these Lie algebras are at most 3-step nilpotent.

The Lie algebras \mathfrak{h}^3 and \mathfrak{h}^4 are at most 3-step nilpotent.

Left Invariant Metrics, and Milnor Frames

▲口 ▶ ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲日 ● ● ● ●

Let g be a metric Lie algebra with a Milnor frame $\{X_1, \ldots, X_n\}$ and structure constants $\{\lambda_1, \ldots, \lambda_n\}$ with $n \ge 4$. For each $1 \le i \le n$, $\lambda_i \lambda_{i+2} = 0$

副下 《注下《耳

Let g be a metric Lie algebra with a Milnor frame $\{X_1, \ldots, X_n\}$ and structure constants $\{\lambda_1, \ldots, \lambda_n\}$ with $n \ge 4$. For each $1 \le i \le n$, $\lambda_i \lambda_{i+2} = 0$

For $X, Y, Z \in \mathfrak{g}$ let

J(X, Y, Z) = [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]]

Let g be a metric Lie algebra with a Milnor frame $\{X_1, \ldots, X_n\}$ and structure constants $\{\lambda_1, \ldots, \lambda_n\}$ with $n \ge 4$. For each $1 \le i \le n$, $\lambda_i \lambda_{i+2} = 0$

For $X, Y, Z \in \mathfrak{g}$ let

J(X, Y, Z) = [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]]

 $0 = J(X_{i+1}, X_{i-2}, X_{i-1}) = [X_{i+1}, [X_{i-2}, X_{i-1}]] = \lambda_i [X_{i+1}, X_i] = -\lambda_i \lambda_{i+2}$

「ア・イヨト・イヨト・ヨー

Let g be a metric Lie algebra with a Milnor frame $\{X_1, \ldots, X_n\}$ and structure constants $\{\lambda_1, \ldots, \lambda_n\}$ with $n \ge 4$. For each $1 \le i \le n$, $\lambda_i \lambda_{i+2} = 0$

For $X, Y, Z \in \mathfrak{g}$ let

$$J(X, Y, Z) = [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]]$$

$$0 = J(X_{i+1}, X_{i-2}, X_{i-1}) = [X_{i+1}, [X_{i-2}, X_{i-1}]] = \lambda_i [X_{i+1}, X_i] = -\lambda_i \lambda_{i+2}$$

Theorem

Let $(\lambda_1, \ldots, \lambda_n) \in \{0, 1\}^n$ such that $\lambda_i \lambda_{i+2} = 0$ for any *i*. There exists a Lie algebra \mathfrak{g} with a Milnor frame whose structure constants are $\lambda_1, \ldots, \lambda_n$.

500

・ 山 ・ ・ ・ ・ ・

Graph Representations for Milnor Frames

æ .

・ロト ・四ト ・ヨト ・ヨト

Geometric Properties of Lie Algebras with Milnor Frames

Geometric Properties of Lie Algebras with Milnor Frames

Theorem (H.)

There exists a metric g such that \mathfrak{h}^4 does not admit an orthonormal Milnor frame with respect to g. Furthermore there exists a metric g such that $\mathfrak{h}^3 \oplus \mathfrak{h}^3$ does not admit an orthonormal Milnor frame with respect to g.

Geometric Properties of Lie Algebras with Milnor Frames

Theorem (H.)

There exists a metric g such that \mathfrak{h}^4 does not admit an orthonormal Milnor frame with respect to g. Furthermore there exists a metric g such that $\mathfrak{h}^3 \oplus \mathfrak{h}^3$ does not admit an orthonormal Milnor frame with respect to g.

Theorem (H.)

Let \mathfrak{g} be a non-abelian Lie algebra with a Milnor frame. If $\mathfrak{g} \ncong \mathfrak{h}^3 \oplus \mathfrak{a}$ where \mathfrak{a} is an abelian Lie algebra, there exists a metric g on \mathfrak{g} such that (\mathfrak{g}, g) does not admit an orthonormal Milnor frame.

.

 John Milnor. "Curvatures of left invariant metrics on Lie groups". In: Advances in Math. 21.3 (1976), pp. 293–329.

Thank you!

æ

▲□▶ ▲圖▶ ▲厘▶