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Datasets have shapes

G. M. Reaven and R. G. Miller: The Nature of Chemical Diabetes 19 

Fig. 1. Artist's rendition of data as 
seen in three dimensions. View is 
approximately along 45 ~ line as seen 
through Prim 9 program on the com- 
puter; coordinate axes are in the 

 9 background 

Table 1. Classification of the 145 subjects into three groups on the basis of the oral glucose tolerance test 

Metabolic characteristics (mean + SD) 

Group Number Rel.wt. Glucose area Insulin area SSPG 
(mg/100 ml  9 hr) (~tU/ml . hr) (mg/100 ml) 

Normal 76 0.98 + 0.11 350 + 37 173 + 69 114 • 58 
Chemical diabetes 36 1.02 • 0.10 494 _ 55 288 • 158 209 • 60 
Overt diabetes 33 0.98 • 0.12 1044 • 309 106 _+ 93 319 • 88 

the glucose load (chemical diabetes) and (2) a normal  

group. Using the basis of these criteria the patient 

populat ion consisted of 76 normal  subjects, 36 indi- 

viduals with chemical diabetes, and 33 patients with 

diabetes. The mean ( +  SEM) values of the three 

patient  groups for relative weight, glucose and insulin 

responses during the OGq-T, and SSPG are seen in 

Table 1. 

Figure 2 depicts the relationship between the 

plasma glucose and insulin responses in the three 

clinical groups. The patients with chemical diabetes 

seem to be  going off in a different direction (up) as 

compared  to subjects with fasting hyperglycaemia (to 

the right). Figure 3 displays the relationship between 

insulin response and insulin resistance (SSPG). As in 

Figure 2, patients with chemical diabetes and fasting 

hyperglycaemia cluster in different areas. Figure 4 

depicts the relationship between glucose response 

and SSPG. This two-dimensional  representat ion of 

the three-dimensional  relationship is different than 

that seen in Figs. 2 and 3, and is the only view of the 

data consistent with the existence of one diabetic 

patient population. 

It  is obvious that the patient  population has been 

divided into three groups on the basis of diagnostic 

decisions which took into account only one aspect of 

the carbohydrate  metabol ism of these individuals. In 

order  to provide a more  comprehensive description 

of each patient, the plasma insulin response during 

the O G T T  and the estimate of insulin resistance 

(SSPG) were included with the plasma glucose 

response to achieve a new data set which now 

included three metabolic  variables. Fur thermore,  in 

an effort to avoid the rigidity of the arbitrary clinical 

classification that formed the basis of Figs. 2-4 ,  we 

employed the cluster analysis technique described by 

Friedman and Rubin [6]. This enabled us to develop 

a computer  classification of each patient  which took 

into account all three metabolic variables and was 

independent  of a priori clinical judgements.  Initial 

An attempt to define the nature of chemical diabetes using a
multidimensional analysis by G. M. Reaven and R. G. Miller, 1979

Example: Diabetes study
145 points in 5-dimensional space



Example: Cyclo-Octane (C8H16) data

1,000,000+ points in 24-dimensional space
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Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data 
by Shawn Martin and Jean-Paul Watson, 2010.



Example: Cyclo-Octane (C8H16) data

1,000,000+ points in 24-dimensional space

 

Figure 7: Conformation Space of Cyclo-Octane. Here we show how the set of conforma-
tions of cyclo-octane can be represented as a surface in a high dimensional space. On the
left, we show various conformations of cyclo-octane as drawn by PyMol (www.pymol.org).
In the center, these conformations are represented by the 3D coordinates of their atoms.
The coordinates are concatenated into vectors and shown as columns of a data matrix.
As an example, the entry c1,1,x of the matrix denotes the x-coordinate of the first carbon
atom in the first molecule. On the right, the Isomap method is used to obtain a lower
dimensional visualization of the data.

conformation space. Freedman’s method failed because the surface had self-
intersections of the type discussed in this paper. Thus we developed our
method for non-manifold surface reconstruction and applied it to the cyclo-
octane dataset.

To reduce complexity and avoid potential error due to hydrogen place-
ment, we used only ring atoms to obtain a dataset {xi}1,031,644

i=1 ⊂ R24. We ap-
plied our algorithm to this dataset using parameters ε = 0.23, dt = 0.05, dp =
0.01, and εp = 0.02. We used five different values of dl, given by 0.08, 0.09,
0.10, 0.11, and 0.12. We produced five different triangulations with 6,040;
7,114; 8,577; 10,503; and 13,194 vertices.

We used the Plex and Linbox toolboxes to check the accuracy of the
triangulations. For each of the five triangulations, we verified that every
neighborhood Bi (before decomposition) had Betti numbers 1,0,0. This is an
accuracy check because any neighborhood Bi should be homotopic to a point
and should therefore have Betti numbers 1,0,0. We also computed Betti num-
bers for each of the five full triangulations. In all cases we found the Betti
numbers to be 1,1,2. This consistency strongly suggests that the triangula-
tions are all representative of the actual conformation space. A visualization
of the triangulation with 6,044 vertices using the Isomap coordinate represen-
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Datasets have shapes

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data 
by Shawn Martin and Jean-Paul Watson, 2010.
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A donut and coffee mug are “homotopy equivalent”, and 
considered to be the same shape. You can bend and stretch 
(but not tear) one to get the other.
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torus has a Betti sequence (1, 2, 1, 0, I), since it has a
single connected component, two different loops that
cannot be deformed into a point (shown in red in the
bottom panel of Figure 2c), and there is a two-dimensional
surface that cannot be deformed into a point (shown in
orange in Figure 2c). The Klein bottle has the same
sequence as the torus (1, 2, 1, 0, I). This shows that
while two objects that are equivalent must have the same
Betti sequences, two objects that are not equivalent do not
necessarily have different sequences. Finally, a sphere has

a sequence (1, 0, 1, 0, I), as any one-dimensional loop on
its surface can be deformed into a point. The Betti
sequence therefore provides a signature (albeit not unique)
of the underlying topology of the object.
These definitions work for smooth continuous objects.

But suppose now that instead of a continuous rubbery
object we are faced with a finite set of (noisy) points
sampled from it, which may represent actual experimental
data. How can one estimate the Betti numbers of the
original object from these samples? The proposed method

Figure 2. Betti numbers provide a signature of the underlying topology. Illustrated in the figure are five simple objects (topological spaces)
together with their Betti number signatures: (a) a point, (b) a circle, (c) a hollow torus, (d) a Klein bottle, and (e) a hollow sphere. For the
case of the torus (c), the figure shows three loops on its surface. The red loops are “essential” in that they cannot be shrunk to a point, nor
can they be deformed one into the other without tearing the loop. The green loop, on the other hand, can be deformed to a point without
any obstruction. For the torus, therefore, we have b1 = 2. For the case of the sphere, the loops shown (and actually all loops on the
sphere) can be contracted to points, which is reflected by the fact that b1 = 0. Both the sphere and the torus have b2 = 1, this is due to the
fact both surfaces enclose a part of space (a void).

Figure 1. Topological equivalence in rubber-world. The figure illustrates the notion of equivalence by showing several objects (topological
spaces) connected by the symbols È when they are equivalent or by M when they are not. The reader should think that all the objects
shown are made of an elastic material and visualize the equivalence of two spaces by imagining a deformation between to objects.

Journal of Vision (2008) 8(8):11, 1–18 Singh et al. 3

Topological Analysis of Population Activity in Visual Cortex by 
Singh, Memoli, Ishkhanov, Sapiro, Carlsson, and Ringach, 2008.

Topology studies shapes



Torus
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Klein bottle
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Klein bottle

 

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle
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Homology
• i-dimensional homology Hi “counts the number of i-dimensional holes”
• i-dimensional homology Hi actually has the structure of a vector space!

0-dimensional homology H0: rank 1
1-dimensional homology H1: rank 6

0-dimensional homology H0: rank 6
1-dimensional homology H1: rank 0

0-dimensional homology H0: rank 1
1-dimensional homology H1: rank 3



Homology
• i-dimensional homology “counts the number of i-dimensional holes”
• i-dimensional homology actually has the structure of a vector space!

0-dimensional homology H0: rank 1
1-dimensional homology H1: rank 0
2-dimensional homology H2: rank 1

0-dimensional homology H0: rank 1
1-dimensional homology H1: rank 2
2-dimensional homology H2: rank 1

Be careful! (Same as torus over               )

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle
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What shape is this?

S. Martin, J.-P. Watson / Computational Geometry 44 (2011) 427–441 437

Table 2
Example run times. Here we show the run times obtained for the different examples investigated in this section. For each example we provide the number
of points n, number of landmarks L, neighborhood size k, time in seconds for pre-processing, and time in seconds for reconstruction.

Example n L k Pre-proc. Recon.

Sphere 10,000 886 36 1.7 368.2
Torus 10,000 667 28 1.1 220.5
Double torus 20,000 813 26 3.7 263.1

Mobius strip 10,000 416 23 0.9 123.7
Klein figure 8 10,000 1940 33 3.8 778.0
RP2 100,000 753 35 11.7 302.0

Two spheres 83,646 1588 13 446.4 344.4
Klein immersion 61,440 4566 14 295.7 1183.3
Henneberg 13,637 1463 39 40.9 723.4

Fig. 7. Conformation space of cyclo-octane. Here we show how the set of conformations of cyclo-octane can be represented as a surface in a high-
dimensional space. On the left, we show various conformations of cyclo-octane as drawn by PyMol (www.pymol.org). In the center, these conformations are
represented by the 3D coordinates of their atoms. The coordinates are concatenated into vectors and shown as columns of a data matrix. As an example,
the entry c1,1,x of the matrix denotes the x-coordinate of the first carbon atom in the first molecule. On the right, the Isomap method is used to obtain a
lower-dimensional visualization of the data.

3.5. Run times

The run times for the nine examples we have investigated are shown in Table 2. These times were obtained on
a 2.26 GHz Intel Xeon dual quadcore workstation with 16 GB of RAM. The algorithm was implemented in Matlab
(www.mathworks.com) using the optimization toolbox to solve the linear program in (6). Table 2 shows that pre-processing
is negligible except for the non-manifold examples. In the case of the non-manifold examples, the pre-processing is generally
faster than the triangulation.

4. Application

Cyclo-octane is a saturated eight-member cyclic compound with chemical formula C8H16. Cyclo-octane has received
attention in computational chemistry because it has multiple conformations of similar energy, a complex potential energy
surface, and significant (steric) influence from the hydrogen atoms on preferred conformations [32–34]. Cyclo-octane is also
interesting because there are enumerative algorithms available which can provide a dense sampling of the conformation
space [35,36]. These algorithms show from first principles that the resulting conformation space has two degrees of freedom,
suggesting that the space is a surface (but not necessarily a manifold).

Using dimension reduction methods, we have previously analyzed the cyclo-octane conformation space [16]. In our
analysis, we used a dataset of 1,031,644 cyclo-octane conformations, enumerated using the triaxial loop closure algorithm
of Coutsias et al. [35]. Each conformation is placed in Cartesian space via the 3D position coordinates of each atom in the
molecule. The conformations are then aligned to a reference conformation such that the Eckart conditions are satisfied [37].
The final positions of a given conformation are concatenated to obtain a vector in R72. The resulting collection is a dataset
{xi}1,031,644i=1 ⊂ R72 which is presumed to describe a surface. In Brown et al. [16] we applied a variety of dimension reduction
methods to the cyclo-octane dataset, one of which was Isomap [38]. A summary of our analysis using the Isomap reduction
is shown in Fig. 7.

Beyond dimension reduction, the next step in our analysis is surface reconstruction. Unfortunately, the Isomap repre-
sentation of the cyclo-octane conformation space is only a visualization, and is not accurate enough for use with a 3D
surface reconstruction methods. Therefore we applied Freedman’s algorithm for surface reconstruction in the original high-
dimensional conformation space. Freedman’s method failed because the surface had self-intersections of the type discussed
in this paper. Thus we developed our method for non-manifold surface reconstruction and applied it to the cyclo-octane
dataset.
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Cech_graphics.nb 3

Definition

For metric space X and scale r � 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

finite simplex � when diam(�)  r .
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Definition

For metric space X and scale r � 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

finite simplex � when diam(�)  r .
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Definition

For metric space X and scale r � 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

finite simplex � when diam(�)  r .
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Definition

For metric space X and scale r � 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

finite simplex � when diam(�)  r .
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Definition

For metric space X and scale r � 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

finite simplex � when diam(�)  r .
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Definition

For metric space X and scale r � 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

finite simplex � when diam(�)  r .
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Definition

For a data set X ✓ Rn and scale r � 0, the
Čech simplicial complex Čech(X ; r) has

vertex set X

finite simplex {x0, x1, . . . , xk} when \k
i=0B(xi , r) 6= ;.
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For a data set X ✓ Rn and scale r � 0, the
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i=0B(xi , r) 6= ;.
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Definition

For a data set X ✓ Rn and scale r � 0, the
Čech simplicial complex Čech(X ; r) has

vertex set X

finite simplex {x0, x1, . . . , xk} when \k
i=0B(xi , r) 6= ;.
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Definition

For a data set X ✓ Rn and scale r � 0, the
Čech simplicial complex Čech(X ; r) has

vertex set X

finite simplex {x0, x1, . . . , xk} when \k
i=0B(xi , r) 6= ;.
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Definition

For a data set X ✓ Rn and scale r � 0, the
Čech simplicial complex Čech(X ; r) has

vertex set X

finite simplex {x0, x1, . . . , xk} when \k
i=0B(xi , r) 6= ;.
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Definition

For a data set X ✓ Rn and scale r � 0, the
Čech simplicial complex Čech(X ; r) has

vertex set X

finite simplex {x0, x1, . . . , xk} when \k
i=0B(xi , r) 6= ;.
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Nerve Lemma. Čech(X; r) ' union of balls



Persistent homology 

• Input: Increasing spaces. Output: barcode.
• Significant features persist.
• Cubic computation time in the number of simplices.

4 H. Adams et al.

3 Topological Machinery

In this section we describe how to use only a finite sampling from some unknown
underlying space to estimate the underlying space’s topology. The first step is
to build a nested family of simplicial complexes, and the second is to apply per-
sistent homology. This is the same topological approach used to analyze optical
and range image patches in [2, 16]. We refer the interested reader to [4, 24] for
more information on homology, to [14, 20, 21, 36] for introductions to persistent
homology, and to [3, 8, 10, 11, 18, 28, 33–35] for example applications of persistent
homology to sensor networks, machine learning, biology, medical imaging, etc.

3.1 Vietoris–Rips Complexes

Our nested complexes will be Vietoris–Rips simplicial complexes. The main idea
is to define all data points to be vertices of the complex, and to define a sim-
plex � on each finite set of vertices within a given diameter. Indeed, let (X, d)
denote a metric space, and fix a scale parameter r � 0. The Vietoris–Rips sim-
plical complex with vertex set X and scale parameter r, denoted VR(X; r), is
defined as follows. A finite subset � = {x1, . . . , xn} ✓ X is a face of VR(X; r)
whenever diam(�)  r (i.e., whenever sup1ijn{d(xi, xj)}  r). By definition,
VR(X; r) ✓ VR(X; r0) whenever r  r

0, so this family is indeed nested.
Let us consider an example. Let X be 21 points which (unknown to us) are

sampled with noise from a circle. Figure 3 contains four nested Vietoris–rips
complexes built from X, with r increasing from left to right. The black dots
denote X. In (a), r is small enough that a loop has not yet formed. In (b), r is
such that we recover instead a figure-eight. In (c), VR(X; r) recovers a circle. In
(d), r is large enough that the loop has filled to a disk.

In[70]:= Demo[data1, 0, .41]
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Cech simplicialcomplex
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draw Cech complex
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Fig. 3. Four nested Vietoris–Rips complexes, with �0 equal to 1 in all four complexes,
and with �1 equal to 0, 2, 1, and 0.

3.2 Persistent Homology

Betti numbers are one way of distinguishing between di↵erent topological spaces:
a necessary condition for two spaces to be homotopy equivalent is for all of their
Betti numbers to be equal. The k-th Betti number of a topological space, denoted

On the Nonlinear Statistics of Optical Flow 5

0 100 400300200

0 100 400300200

Fig. 4. (Top) The 0-dimensional persistence barcode associated to the dataset in Fig-
ure 3. (Bottom) The 1-dimensional persistence barcode associated to the same dataset.

�k, is the rank of the k-th homology group. Roughly speaking, �k is the number
of “k-dimensional holes” in a space, where the number of 0-dimensional holes is
the number of connected components. For an n-dimensional sphere with n � 1,
we have �0 = 1 and �n = 1.

If we want to estimate the topology of the underlying space by the topology
of VR(X; r), the choice of r is important. However, without knowing the under-
lying space, we do not know how to make this choice. Hence, we use persistent
homology [21, 36], which allows us to compute the Betti numbers over a range of
r-values and display the result as a persistent homology barcode. See Figure 4.

Persistent homology depends on the the fact that the map from a topological
space Y to its k-th homology group Hk(Y ) is a functor. This means that for
r  r

0, the inclusion VR(X; r) ,! VR(X; r0)) of topological spaces induces a
map Hk

�
VR(X; r)

�
! Hk

�
VR(X; r0)

�
between homology groups [20].

The horizontal axis in Figure 4 contains the varying r-values. At a given scale
r, the Betti number �k is the number of intervals in the dimension k plot that
intersect the vertical line through scale r. In the dimension 0 plot, we see the
21 disjoint spaces joining into one connected component as r increases. The two
intervals in the dimension 1 plot correspond to the two loops that appear: each
interval begins when a loop forms and ends when that loop fills to a disk.

The topological profile of this example, �0 = 1 and �1 = 1, is obtained for a
long range of r-values in Figure 4. The idea of persistent homology is that long
intervals in the persistence barcodes correspond to real topological features of
the underlying space. We disregard short intervals as noise. Hence, this barcode
reflects the fact that our points X were noisily sampled from a circle.

3.3 Zigzag Persistent Homology

Zigzag persistence [15, 17] provides a generalization of the theory of persistent
homology. In zigzag persistence, the direction of maps along a sequence of topo-
logical spaces is arbitrary, as opposed to the unidirectional sequence of maps
in persistent homology. Given a large dataset Y , one may attempt to estimate
the topology of Y by instead estimating the topology of a number of smaller

H1

H0
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Fig. 3. Four nested Vietoris–Rips complexes, with �0 equal to 1 in all four complexes,
and with �1 equal to 0, 2, 1, and 0.

3.2 Persistent Homology

Betti numbers are one way of distinguishing between di↵erent topological spaces:
a necessary condition for two spaces to be homotopy equivalent is for all of their
Betti numbers to be equal. The k-th Betti number of a topological space, denoted
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Fig. 4. (Top) The 0-dimensional persistence barcode associated to the dataset in Fig-
ure 3. (Bottom) The 1-dimensional persistence barcode associated to the same dataset.

�k, is the rank of the k-th homology group. Roughly speaking, �k is the number
of “k-dimensional holes” in a space, where the number of 0-dimensional holes is
the number of connected components. For an n-dimensional sphere with n � 1,
we have �0 = 1 and �n = 1.

If we want to estimate the topology of the underlying space by the topology
of VR(X; r), the choice of r is important. However, without knowing the under-
lying space, we do not know how to make this choice. Hence, we use persistent
homology [21, 36], which allows us to compute the Betti numbers over a range of
r-values and display the result as a persistent homology barcode. See Figure 4.

Persistent homology depends on the the fact that the map from a topological
space Y to its k-th homology group Hk(Y ) is a functor. This means that for
r  r

0, the inclusion VR(X; r) ,! VR(X; r0)) of topological spaces induces a
map Hk

�
VR(X; r)

�
! Hk

�
VR(X; r0)

�
between homology groups [20].

The horizontal axis in Figure 4 contains the varying r-values. At a given scale
r, the Betti number �k is the number of intervals in the dimension k plot that
intersect the vertical line through scale r. In the dimension 0 plot, we see the
21 disjoint spaces joining into one connected component as r increases. The two
intervals in the dimension 1 plot correspond to the two loops that appear: each
interval begins when a loop forms and ends when that loop fills to a disk.

The topological profile of this example, �0 = 1 and �1 = 1, is obtained for a
long range of r-values in Figure 4. The idea of persistent homology is that long
intervals in the persistence barcodes correspond to real topological features of
the underlying space. We disregard short intervals as noise. Hence, this barcode
reflects the fact that our points X were noisily sampled from a circle.

3.3 Zigzag Persistent Homology

Zigzag persistence [15, 17] provides a generalization of the theory of persistent
homology. In zigzag persistence, the direction of maps along a sequence of topo-
logical spaces is arbitrary, as opposed to the unidirectional sequence of maps
in persistent homology. Given a large dataset Y , one may attempt to estimate
the topology of Y by instead estimating the topology of a number of smaller
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• Input: Increasing spaces. Output: barcode.
• Significant features persist.
• Cubic computation time in the number of simplices.
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Example: Cyclo-Octane (C8H16) data

1,000,000+ points in 24-dimensional space
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Table 2
Example run times. Here we show the run times obtained for the different examples investigated in this section. For each example we provide the number
of points n, number of landmarks L, neighborhood size k, time in seconds for pre-processing, and time in seconds for reconstruction.

Example n L k Pre-proc. Recon.

Sphere 10,000 886 36 1.7 368.2
Torus 10,000 667 28 1.1 220.5
Double torus 20,000 813 26 3.7 263.1

Mobius strip 10,000 416 23 0.9 123.7
Klein figure 8 10,000 1940 33 3.8 778.0
RP2 100,000 753 35 11.7 302.0

Two spheres 83,646 1588 13 446.4 344.4
Klein immersion 61,440 4566 14 295.7 1183.3
Henneberg 13,637 1463 39 40.9 723.4

Fig. 7. Conformation space of cyclo-octane. Here we show how the set of conformations of cyclo-octane can be represented as a surface in a high-
dimensional space. On the left, we show various conformations of cyclo-octane as drawn by PyMol (www.pymol.org). In the center, these conformations are
represented by the 3D coordinates of their atoms. The coordinates are concatenated into vectors and shown as columns of a data matrix. As an example,
the entry c1,1,x of the matrix denotes the x-coordinate of the first carbon atom in the first molecule. On the right, the Isomap method is used to obtain a
lower-dimensional visualization of the data.

3.5. Run times

The run times for the nine examples we have investigated are shown in Table 2. These times were obtained on
a 2.26 GHz Intel Xeon dual quadcore workstation with 16 GB of RAM. The algorithm was implemented in Matlab
(www.mathworks.com) using the optimization toolbox to solve the linear program in (6). Table 2 shows that pre-processing
is negligible except for the non-manifold examples. In the case of the non-manifold examples, the pre-processing is generally
faster than the triangulation.

4. Application

Cyclo-octane is a saturated eight-member cyclic compound with chemical formula C8H16. Cyclo-octane has received
attention in computational chemistry because it has multiple conformations of similar energy, a complex potential energy
surface, and significant (steric) influence from the hydrogen atoms on preferred conformations [32–34]. Cyclo-octane is also
interesting because there are enumerative algorithms available which can provide a dense sampling of the conformation
space [35,36]. These algorithms show from first principles that the resulting conformation space has two degrees of freedom,
suggesting that the space is a surface (but not necessarily a manifold).

Using dimension reduction methods, we have previously analyzed the cyclo-octane conformation space [16]. In our
analysis, we used a dataset of 1,031,644 cyclo-octane conformations, enumerated using the triaxial loop closure algorithm
of Coutsias et al. [35]. Each conformation is placed in Cartesian space via the 3D position coordinates of each atom in the
molecule. The conformations are then aligned to a reference conformation such that the Eckart conditions are satisfied [37].
The final positions of a given conformation are concatenated to obtain a vector in R72. The resulting collection is a dataset
{xi}1,031,644i=1 ⊂ R72 which is presumed to describe a surface. In Brown et al. [16] we applied a variety of dimension reduction
methods to the cyclo-octane dataset, one of which was Isomap [38]. A summary of our analysis using the Isomap reduction
is shown in Fig. 7.

Beyond dimension reduction, the next step in our analysis is surface reconstruction. Unfortunately, the Isomap repre-
sentation of the cyclo-octane conformation space is only a visualization, and is not accurate enough for use with a 3D
surface reconstruction methods. Therefore we applied Freedman’s algorithm for surface reconstruction in the original high-
dimensional conformation space. Freedman’s method failed because the surface had self-intersections of the type discussed
in this paper. Thus we developed our method for non-manifold surface reconstruction and applied it to the cyclo-octane
dataset.

Persistent homology applied to data

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data 
by Shawn Martin and Jean-Paul Watson, 2010.



Figure 8: Triangulation of Cyclo-Octane Conformation Space. Here we show the triangu-
lation obtained by our surface reconstruction algorithm on the cyclo-octane conformation
space. The triangulation was carried out in 24 dimensions, but is shown using the reduced
dimensional representation provided by Isomap. Self-intersections are shown in black.
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dimensional space. On the left, we show various conformations of cyclo-octane as drawn by PyMol (www.pymol.org). In the center, these conformations are
represented by the 3D coordinates of their atoms. The coordinates are concatenated into vectors and shown as columns of a data matrix. As an example,
the entry c1,1,x of the matrix denotes the x-coordinate of the first carbon atom in the first molecule. On the right, the Isomap method is used to obtain a
lower-dimensional visualization of the data.

3.5. Run times

The run times for the nine examples we have investigated are shown in Table 2. These times were obtained on
a 2.26 GHz Intel Xeon dual quadcore workstation with 16 GB of RAM. The algorithm was implemented in Matlab
(www.mathworks.com) using the optimization toolbox to solve the linear program in (6). Table 2 shows that pre-processing
is negligible except for the non-manifold examples. In the case of the non-manifold examples, the pre-processing is generally
faster than the triangulation.

4. Application

Cyclo-octane is a saturated eight-member cyclic compound with chemical formula C8H16. Cyclo-octane has received
attention in computational chemistry because it has multiple conformations of similar energy, a complex potential energy
surface, and significant (steric) influence from the hydrogen atoms on preferred conformations [32–34]. Cyclo-octane is also
interesting because there are enumerative algorithms available which can provide a dense sampling of the conformation
space [35,36]. These algorithms show from first principles that the resulting conformation space has two degrees of freedom,
suggesting that the space is a surface (but not necessarily a manifold).

Using dimension reduction methods, we have previously analyzed the cyclo-octane conformation space [16]. In our
analysis, we used a dataset of 1,031,644 cyclo-octane conformations, enumerated using the triaxial loop closure algorithm
of Coutsias et al. [35]. Each conformation is placed in Cartesian space via the 3D position coordinates of each atom in the
molecule. The conformations are then aligned to a reference conformation such that the Eckart conditions are satisfied [37].
The final positions of a given conformation are concatenated to obtain a vector in R72. The resulting collection is a dataset
{xi}1,031,644i=1 ⊂ R72 which is presumed to describe a surface. In Brown et al. [16] we applied a variety of dimension reduction
methods to the cyclo-octane dataset, one of which was Isomap [38]. A summary of our analysis using the Isomap reduction
is shown in Fig. 7.

Beyond dimension reduction, the next step in our analysis is surface reconstruction. Unfortunately, the Isomap repre-
sentation of the cyclo-octane conformation space is only a visualization, and is not accurate enough for use with a 3D
surface reconstruction methods. Therefore we applied Freedman’s algorithm for surface reconstruction in the original high-
dimensional conformation space. Freedman’s method failed because the surface had self-intersections of the type discussed
in this paper. Thus we developed our method for non-manifold surface reconstruction and applied it to the cyclo-octane
dataset.
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Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data 
by Shawn Martin and Jean-Paul Watson, 2010.

https://github.com/ds4m/topological-data-analysis/wiki
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• Stability Theorem.
 If      and      are metric spaces, thenX Y

db(PH(Čech(X)),PH(Čech(Y )))  2dGH(X,Y )
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Topology applied to 
image data



Independent component filters of natural images compared with simple cells in 
primary visual cortex by JH van Hateren and A van der Schaaf, 1997

Persistent homology applied to data

The receptive fields of cells in our primary visual cortex 
(V1) are related to the statistics natural images.



3x3 high-contrast patches from images
Points in 9-dimensional space, normalized to have average 
color gray and contrast norm one (on 7-sphere).

 

Persistent homology applied to data

On the Local Behavior of Spaces of Natural Images by Gunnar Carlsson,
Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian, 2008.



1. Densest patches according to a global estimate
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2. Densest patches according to an intermediate estimate
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Interpretation: nature prefers horizontal and vertical directions
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Interpretation: nature prefers horizontal and vertical directions
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3. Densest patches according to a local estimate
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Fig. 8 PLEX results for X(300,30)

we found that the set of densest points projected onto the
first two coordinates (corresponding to linear gradients) of
the DCT basis is also rotated by the same angle as com-
pared with a similar projection of the set of patches coming
from M. However, a strong bias in favor of vertical and hor-
izontal directions (for purely quadratic gradients) remained,
thereby indicating that the choice of patch shape also affects
the density distribution.

In (Carlsson and de Silva 2004) it was also shown that for
higher values of the parameter k (i.e. less localized density
estimation) with the fixed cut parameter p the space X(k,p)

loses both secondary circles. Figure 8 shows the results for
X(300,30). The only interval in the Betti one barcode cor-
responds to a primary circle of linear intensity gradients.

These results raise the question of what happens when
we decrease k below 15. Can we detect the intermediate di-
rections as well? More precisely, can we detect whether the
space X(k,p) spans a two-manifold for some cut parameter
p with k < 15?

Since reducing the value of k below 15 seems unreason-
able due to noise issues we decided to examine the situation
for a much bigger space of patches (recall that the size of
M is 4 × 106). In this new situation the value of k = 15
for a space of size 5 × 104 would correspond to a value
k = 15 × (4 × 106/5 × 104) = 1200 for our space M. Fig-
ure 9 shows the result for the space X(100,10) ∪ Q ⊆ M,
here Q is the set of size |Q| = 30, which is less than 0.01%
of the size of X(100,10). Note that k = 100 corresponds to
k = 1.25 for the space of size 5 × 104.

The size of Q can be thought of as a measure of the
failure of the density function to cut out the 2-dimensional
manifold. To obtain the set Q, we first compute distances
from points of M to 30 points sampled from Q, where Q

is the set of patches with purely quadratic gradients, which
in polynomial representation (cf. Sect. 7) correspond to ei-
ther (ax + by)2 or −(ax + by)2 with neither a nor b equal

Fig. 9 PLEX results for X(100,10) ∪ Q

to 0. Geometrically Q is a pair of circles with neighborhoods
of two points removed from each. These two points corre-
spond to vertical and horizontal gradient directions. Second,
for each of the sampled points, we select the closest point
of M.

The reason that the points of Q have a much lower den-
sity than the rest of the 2-manifold is twofold. On the one
hand, vertical and horizontal directions of intensity gradient
occur more frequently than other directions in natural im-
ages; on the other hand the patch shape was chosen to be a
square with vertical and horizontal sides.

For homological computations, we randomly select a
subset S of size |S| = 10 000 from X(100,10) and add
points of Q to it. We repeat this many times (each time se-
lecting different S) to make sure the results are stable and
capture the actual topology of the space X(100,10) ∪ Q.

The barcode (Fig. 9) reflects the situation where there
are two essential one-dimensional cycles and one two-
dimensional cycle. The presence of an interval in Betti
two implies that the underlying space is no longer one-
dimensional. Moreover, there is a general result from al-
gebraic topology that any two-manifold has b2 = 1 when
homology is taken with coefficients in Z2. The next section
provides explanations for the result shown in Fig. 9.

Combined together, the results of this section suggest
strong evidence that as the density estimation parameter
decreases, the space of densest points with an appropriate
value of the cut parameter fills out a two-manifold: initially,
for large k it consists only of a primary circle of linear gra-
dients; then it acquires two additional circles corresponding
to quadratic gradients in the ‘preferred’ vertical and hori-
zontal directions; finally it admits all the intermediate di-
rections with the exception of non-vertical/non-horizontal
purely quadratic gradients.

Persistent homology applied to data
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Interpretation: nature prefers linear and quadratic patches at all angles
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Image credit: https://plus.maths.org/
content/imaging-maths-inside-klein-bottle



3. Densest patches according to a local estimate
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Why is applied topology popular when few datasets have Klein bottles?

F.C. Motta et al. / Physica D 380–381 (2018) 17–30 27

Fig. 10. Snapshots at early and late times of surfaces (row 1), simplicial complexes at connectivity parameter r = 0.14 for the nandots extracted from the surfaces (row 2),
the corresponding H1 persistence diagrams (row 3), and 2D power spectral density plots of the (mean centered) surfaces (row 4) for one simulation on a 256 ⇥ 256 spatial
grid governed by the system (1) with parameters a = 0.25, c = 1, ⌫ = 0.75, � = 0, ⌘ = 10, b = 0.99bT (columns 1 and 3) or 0.90bT (columns 2 and 4). Persistence pairs
in the green regions of the persistence diagrams correspond to topological holes which were created at a connectivity parameter r  0.14, and which are destroyed at a
connectivity parameter r � 0.14 and thus correspond to the topological holes shown in the simplicial complexes (row 2). Holes in the simplicial complex corresponding to
theH1 features withmaximumpersistence are highlighted in red, and the corresponding persistence pairs are highlighted by red circles. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

and (c) show that the relative insensitivity of ⌃H1 to changes in
the parameter ⌫ is caused by this tension between the number
and significance of topological features: Many small defects ac-
cumulate throughout the domain for ⌫ = 0.75. In contrast, the
raised patterned regions are almost defect free for ⌫ = 1.25.
Instead, the large holes formed for ⌫ = 1.25 by the pattern-free
depressions contribute relatively few, but high-persistence pairs
to the persistence diagrams. In the example shown in Fig. 11, as ⌫
increases, there is an apparent reduction in the persistence ofmost
of the short-lived topological holes, togetherwith a steady increase
in the persistence of a few holes. This is followed by a dramatic
increase in the maximum bar length of the H1 persistence diagram
(max (H1)) by ⌫ = 1.25, as observed in Fig. 11(b) and (d).

3.3. Templated patterns

We now use the six measures of order to study how prepat-
terning the surface prior to ion bombardment affects the strength
of hexagonal order achieved after bombarding for a long time.
We refer to these prepatterned surfaces as templates, and they
correspond to the initial condition of the system (1). The specific
functional form of the templates studied in this work is given by

usin,0(x, y) = 10�2 sin(k0x) + ⇠ (x, y), (4)

where k0 ⌘ 2⇡/�0 is the wave number of the template, �0 is the
wavelength of the initial sinusoid and ⇠ is small amplitude spatial
white noise with amplitude 10�4. A template of this kind could be

Measures of Order for nearly hexagonal lattices by Francis Motta, Rachel Neville, 
Patrick Shipman, Daniel Pearson, and Mark Bradley, 2018.

• Many datasets have clusters & flares (as in the diabetes example)
• Motivates interesting questions in many pure disciplines: 

mathematics, computer science (computational geometry), statistics
• Interest from domain experts in biology, neuroscience, computer 

vision, dynamical systems, sensor networks, ...
• Materials science, pattern formation
• Machine learning: small features matter
• Agent-based modeling (swarming)

Possible answer: Persistent homology measures both the local geometry 
and the global topology of a dataset.
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Persistence Images

where r2 = @2

@x2 + @2

@y2 , and the real parameter r controls the degree of anisotropy. At
a fixed time t

⇤, u(x, y, t⇤) is a patterned surface (periodic in both x and y) defined over
the (x, y)-plane. Visibly, the anisotropy appears as a slight tendency for the pattern to be
elongated in the vertical or horizontal direction.

Figure 6: Plots of height-variance-normalized surfaces u(x, y, ·) resulting from numerical
simulations of the aKS equation (4). Each column represents a different parameter value:
(from left) r = 1, 1.25, 1.5, 1.75 and 2. Each row represents a different time: t = 3 (top)
and t = 5 (bottom). By t = 5 any anisotropic elongation of the surface pattern has visibly
stabilized.

Numerical simulations of the aKS equation for a range of parameter values (columns) and
simulation times (rows) are shown in Figure 6. For all simulations, the initial conditions were
low-amplitude white noise. We employed a Fourier spectral method with periodic boundary
conditions on a 512 ⇥ 512 spatial grid, with a fourth-order exponential time differencing
Runge-Kutta method for the time stepping. Five values for the parameter r were chosen,
namely r = 1, 1.25, 1.5, 1.75 and 2, and thirty trials were performed for each parameter
value. Figure 7 shows the similarity between surfaces associated to two parameter values
r = 1.75 and r = 2 at an early time.

Figure 7: To illustrate the difficulty of our classification task, consider five instances of
surfaces u(x, y, 3) for r = 1.75 or r = 2, plotted on the same color axis. These surfaces
are found by numerical integration of Equation (4), starting from random initial conditions.
Can you group the images by eye?

Answer:(fromleft)r=1.75,2,1.75,2,2.
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Figure 1: Algorithm pipeline to transform data into a persistence image.

Resolution of the image: The resolution of the PI corresponds to the grid being
overlaid on the PD. The classification accuracy in the PI framework appears to be fairly
robust to choice of resolution, as discussed in §6.2 and by Zeppelzauer et al. (2016).

The Distribution: Our method requires the choice of a probability distribution asso-
ciated to each point in the PD. The examples in this paper use a Gaussian centered at each
point, but other distributions may be used. The Gaussian distribution depends on a choice
of variance: we leave this choice as an open problem, though the experiments in §6.2 and
those of Zeppelzauer et al. (2016) show a low sensitivity to the choice of variance.

The Weighting Function: In order for our stability results in §5 to hold, our weighting
function f : R2 ! R must be zero along the horizontal axis (the analogue of the diagonal
in birth-persistence coordinates), continuous, and piecewise differentiable. A simple choice
is a weighting function that depends only on the vertical persistence coordinate y. In order
to weight points of higher persistence more heavily, functions which are nondecreasing in y,
such as sigmoidal functions, are a natural choice. However, in certain ML tasks such as the
work of Bendich et al. (2016) the points of small or medium persistence may perform best,
and hence one may choose to use more general weighting functions. In our experiments
in §6, we use a piecewise linear weighting function f : R2 ! R which only depends on the
persistence coordinate y. Given b > 0, define wb : R ! R via

wb(t) =

8
><

>:

0 if t  0,
t
b if 0 < t < b, and
1 if t � b.

We use f(x, y) = wb(y), where b is the persistence value of the most persistent feature in all
trials of the experiment.

In the event that the birth coordinate is zero for all points in the PD, as is often the
case for H0, it is possible to generate a 1-dimensional (instead of 2-dimensional) PI using
1-dimensional distributions. This is the approach we adopt. Appendix B displays examples
of PIs for the common topological spaces of a circle and a torus with various parameter
choices.

5. Stability of Persistence Surfaces and Images

Due to the unavoidable presence of noise or measurement error, tools for data analysis
ought to be stable with respect to small perturbations of the inputs. Indeed, one reason
for the popularity of PDs in topological data analysis is that the transformation of a data
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Conclusions
• Datasets have shape, which are reflective of patterns within.
• Persistent homology is a way to measure some of the local 

geometry and global topology of a dataset.

“Topology! The stratosphere of human thought! In the twenty-
fourth century it might possibly be of use to someone …”

- Aleksandr Solzhenitsyn, The First Circle



https://www.math.colostate.edu/~adams/advising
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