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Datasets have shapes

Example: Diabetes study
145 points 1n 5-dimensional space
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An attempt to define the nature of chemical diabetes using a
multidimensional analysis by G. M. Reaven and R. G. Miller, 1979



Datasets have shapes
Example: Cyclo-Octane (CgH, ) data

1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.



Datasets have shapes
Example: Cyclo-Octane (C¢H () data
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Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.
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Topology studies shapes

A donut and coffee mug are “homotopy equivalent”, and
considered to be the same shape. You can bend and stretch
(but not tear) one to get the other.
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Topology studies shapes
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Topological Analysis of Population Activity in Visual Cortex by U)}N Q
Singh, Memoli, Ishkhanov, Sapiro, Carlsson, and Ringach, 2008. il



Topology studies shapes

Torus




Topology studies shapes
Klein bottle
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Topology studies shapes
Klein bottle

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle



Homology

* i-dimensional homology H; “counts the number of i-dimensional holes™

* i-dimensional homology H; actually has the structure of a vector space!

0-dimensional homology H: rank 6
1-dimensional homology H;: rank 0

0-dimensional homology H,: rank 1

1-dimensional homology H,: rank 3

0-dimensional homology H,: rank 1
1-dimensional homology H;: rank 6




Homology

* i-dimensional homology “counts the number of i-dimensional holes”™
* i-dimensional homology actually has the structure of a vector space!

0-dimensional homology H,: rank 1
1-dimensional homology H;: rank 0
2-dimensional homology H,: rank 1

0-dimensional homology H,: rank 1
1-dimensional homology H;: rank 2
2-dimensional homology H,: rank 1

Be careful! (Same as torus over 7, / 27,)

' Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle



Topology studies shapes
What shape 1s this?
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For a data set X C R"” and scale r > 0, the
Cech simplicial complex Cech(X; r) has

@ vertex set X

o finite simplex {xg, x1, ..., Xk} when ﬂff:OB(X,-, r) # 0.
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For a data set X C R"” and scale r > 0, the
Cech simplicial complex Cech(X; r) has

@ vertex set X

@ finite simplex {xp, x1, ..., Xk} when ﬂffzoB(X,-, r) # 0.




Nerve Lemma. Cech(X;r) ~ union of balls

Definition

For a data set X C R"” and scale r > 0, the
Cech simplicial complex Cech(X; r) has

@ vertex set X

o finite simplex {xg, x1, ..., Xk} when ﬂff:OB(X,-, r) # 0.
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Persistent homology
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Input: Increasing spaces. Output: barcode.
Significant features persist.
Cubic computation time in the number of simplices.



Persistent homology
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* |nput: Increasing spaces. Output: barcode.

e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology
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* |nput: Increasing spaces. Output: barcode.
e Significant features persist.
°

Cubic computation time in the number of simplices.



Persistent homology
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Betti plot: Dimension 2

* |nput: Increasing spaces. Output: barcode.
e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology applied to data
Example: Cyclo-Octane (CgH, () data
1,000,000+ points in 24-dimensional space

lazyCydoOdane (dimension 0)
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Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.
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Persistent homology applied to data

Example: Cyclo-Octane (CgH, ) data
1,000,000+ points in 24-dimensional space

lazyCydoOdane (dimension 0)
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Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.



Persistent homology applied to data

Persistence intervals in dimension 0:
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Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.



Persistent homology applied to data

Example: Cyclo-Octane (C¢H () data
1,000,000+ pomts in 24- d1mens1onal space
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Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data

by Shawn Martin and Jean-Paul Watson, 2010.



Persistent homology applied to data
Example: Cyclo-Octane (CgH, ) data
1,000 000+ points 1n 24-dimensional space
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Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.




Persistent homology applied to data

Example: Cyclo-Octane (CgH, ) data
1,000,000+ points in 24-dimensional space

[ R S o e O Ot

©= @ l'.-‘:‘@z':: ® 27 O~ ..@ ‘.@. YL@y ven | TEC
Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.




Persistent homology applied to data
Example: Cyclo-Octane (C¢H () data
1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.



Persistent homology applied to data

Example: Equilateral pentagons 1n the plane

A

Image credit: Clayton Shonkwiler
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Persistent homology applied to data

Example: Equilateral pentagons 1n the plane
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pentagon (dimension 0)
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pentagon (dimension 1)
1 1 A 1 1 1
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pentagon (dimension 2)
1 1 L 1 1 ——r
0.5 0.6

Image credit: Clayton Shonkwiler 5 0.1

0.2 0.3 0.4



Persistent homology applied to data

Image credit: Clayton Shonkwiler
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Persistent homology applied to data

 Stability Theorem.
If X and Y are metric spaces, then

dy(PH(Cech(X)),PH(Cech(Y))) < 2dgu(X,Y)



Topology applied to

image data
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Persistent homology applied to data

The receptive fields of cells in our primary visual cortex
(V1) are related to the statistics natural images.

Independent component filters of natural images compared with simple cells in
primary visual cortex by JH van Hateren and A van der Schaaf, 1997



Persistent homology applied to data

3x3 high-contrast patches from images

Points 1n 9-dimensional space, normalized to have average
color gray and contrast norm one (on 7-sphere).

On the Local Behavior of Spaces of Natural Images by Gunnar Carlsson,
Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian, 2008.



Persistent homology applied to data

1. Densest patches according to a global estimate
IazyWitnessfnk300c300ct (Dimension: 0) |

lazyWitness_nk300c¢30Dct (Dimension: 1)
lazyWitness_nk300c30Dct (Dimension: 2)
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Persistent homology applied to data

1. Densest patches according to a global estimate

Interpretation: nature prefers linearity




Persistent homology applied to data

2. Densest patches according to an intermediate estimate
lazyWitness_nk15c¢30Dct (Dimension: 0)

lazyWitness_nk15¢30Dct (Dimension: 1)
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Persistent homology applied to data

2. Densest patches according to an intermediate estimate

Interpretation: nature prefers horizontal and vertical directions




Persistent homology applied to data

2. Densest patches according to an intermediate estimate

PN

.
....
.
", P )
......

Interpretation: nature prefers horizontal and vertical directions




Persistent homology applied to data

3. Densest patches according to a local estimate
2.

N
o
|

00005 01 015 02 025 03 035 04 045

0 005 01 015 02 025 03 035 04 045



Persistent homology applied to data

3. Densest patches according to a local estimate
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Persistent homology applied to data

3. Densest patches according to a local estimate
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Persistent homology applied to data

3. Densest patches according to a local estimate
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Interpretation: nature prefers linear and quadratic patches at all angles



Persistent homology applied to data

3. Densest patches according to a local estimate
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Interpretation: nature prefers linear and quadratic patches at all angles



Why is applied topology popular when few datasets have Klein bottles?

* Many datasets have clusters & flares (as in the diabetes example)

* Motivates interesting questions in many pure disciplines:
mathematics, computer science (computational geometry), statistics

* Interest from domain experts in biology, neuroscience, computer
vision, dynamical systems, sensor networks, ...

* Materials science, pattern formation
* Machine learning: small features matter

* Agent-based modeling (swarming)

Possible answer: Persistent homology measures both the local geometry
and the global topology of a dataset.
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Measures of
Patrick Shipman, Daniel Pearson, and Mark Bradley, 2018.
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Conclusions

* Datasets have shape, which are reflective of patterns within.

* Persistent homology is a way to measure some of the local
geometry and global topology of a dataset.
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“Topology! The stratosphere of human thought! In the twenty-

fourth century it might possibly be of use to someone ...”
- Aleksandr Solzhenitsyn, The First Circle



Where can | find resources if | am
interested in applied topology?

e You may be interested in the Applied Algebraic Topology
Research Network. Become a member to receive email
invites to the online research seminars. Recorded talks are
available at the YouTube Channel. There is also a forum.

» Another source of applied topology news is
appliedtopology.org.

» A second online research seminar is GEOTOP-A:
Applications of Geometry and Topology.

« Mailing lists with announcements in applied topology
include WinCompTop and ALGTOP-L.

https://www.math.colostate.edu/~adams/advising
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