An Introduction to Applied Topology

Henry Adams University of Florida

Datasets have shapes 145 points in 5-dimensional space Example: Diabetes study

multidimensional analysis by G. M. Reaven and R. G. Miller, 1979 *An attempt to define the nature of chemical diabetes using a*

Example: Cyclo-Octane (C_8H_{16}) data 1,000,000+ points in 24-dimensional space Datasets have shapes

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

 $\mathbf{F} = \mathbf{F} \mathbf$ tion-manyola surface Reconstruction from High Dimensional I omi Cloud Dala by shawn iviarini and Jean-Faur watson, 2010 . *Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data* by Shawn Martin and Jean-Paul Watson, 2010.

Datasets have shapes

Topology studies shapes

A donut and coffee mug are "homotopy equivalent", and considered to be the same shape. You can bend and stretch (but not tear) one to get the other.

Topology studies shapes

A donut and coffee mug are "homotopy equivalent", and considered to be the same shape. You can bend and stretch (but not tear) one to get the other.

Klein bottle Topology studies shapes

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle

Homology

- *i*-dimensional homology H*ⁱ* "counts the number of *i*-dimensional holes"
- *i*-dimensional homology H*ⁱ* actually has the structure of a vector space!

0-dimensional homology H_0 : rank 6 1-dimensional homology H_1 : rank 0

0-dimensional homology H_0 : rank 1 1-dimensional homology H_1 : rank 3

0-dimensional homology H_0 : rank 1 1-dimensional homology H_1 : rank 6

Homology

- *i*-dimensional homology "counts the number of *i*-dimensional holes"
- *i*-dimensional homology actually has the structure of a vector space!

0-dimensional homology H_0 : rank 1 1-dimensional homology H_1 : rank 0 2 -dimensional homology H_2 : rank 1

0-dimensional homology H_0 : rank 1 1-dimensional homology H_1 : rank 2 2-dimensional homology H_2 : rank 1 r
k 2 $\begin{array}{c} \n\hline\n\end{array}$

Be careful! (Same as torus over $\mathbb{Z}/2\mathbb{Z}$)

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle

What shape is this? Topology studies shapes

- \bullet vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- \bullet vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- \bullet vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- \bullet vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- \bullet vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- \bullet vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- \bullet vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- \bullet vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- · Input: Increasing spaces. Output: barcode.
- **e** Significant features persist. \bullet - Significant reatures persist.
	- Cubic computation time in the number of simplices.

- **e** Significant features persist. \bullet - Significant reatures persist.
	- Cubic computation time in the number of simplices.

Persistent homology

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

Persistent homology

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

Example: Cyclo-Octane (C_8H_{16}) data $1,000,000+$ points in 24-dimensional space Dorcictont homology ar Persistent homology applied to data $1,000,000 \pm \text{points in } 27$ -unichsion

Fig. 7. Fig. 7. Conformation space of cyclo-octane. Here we show the set of conformation of conformations of cont
Parties on a surface in a high dimensional space. On the left, we show various conformations of cyclo-octane as drawn by PyMol (www.pymol.org). In the center, these conformations are *Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data* by Shawn Martin and Jean-Paul Watson, 2010.

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

of points *n*, number of landmarks *L*, neighborhood size *k*, time in seconds for pre-processing, and time in seconds for reconstruction.

 N_{Q} Manifold Surface Reconstruction from High Dimensional Point Cloud Data Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Persistent homology applied to data Example: Equilateral pentagons in the plane

Image credit: Clayton Shonkwiler

Persistent homology applied to data Example: Equilateral pentagons in the plane

• Stability Theorem.

If X and Y are metric spaces, then

 $d_b(PH(\text{Čech}(X)), PH(\text{Čech}(Y))) \leq 2d_{GH}(X, Y)$

Topology applied to image data

The receptive fields of cells in our primary visual cortex (V1) are related to the statistics natural images.

Independent component filters of natural images compared with simple cells in primary visual cortex by JH van Hateren and A van der Schaaf, 1997

3x3 *high-contrast* patches from images Points in 9-dimensional space, normalized to have average color gray and contrast norm one (on 7-sphere).

On the Local Behavior of Spaces of Natural Images by Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian, 2008.

1. Densest patches according to a global estimate Persistent homology applied to data

Interpretation: nature prefers linearity

2. Densest patches according to an intermediate estimate lazyWitness_nk15c30Dct (Dimension: 0)

2. Densest patches according to an intermediate estimate Persistent homology applied to data

Interpretation: nature prefers horizontal and vertical directions

2. Densest patches according to an intermediate estimate

Interpretation: nature prefers horizontal and vertical directions

3. Densest patches according to a local estimate

3. Densest patches according to a local estimate Persistent homology applied to data

3. Densest patches according to a local estimate

3. Densest patches according to a local estimate

Image credit: https://plus.maths.org/ content/imaging-maths-inside-klein-bottle

Interpretation: nature prefers linear and quadratic patches at all angles

3. Densest patches according to a local estimate

Interpretation: nature prefers linear and quadratic patches at all angles

Why is applied topology popular when few datasets have Klein bottles?

- Many datasets have clusters $\&$ flares (as in the diabetes example)
- Motivates interesting questions in many pure disciplines: mathematics, computer science (computational geometry), statistics
- Interest from domain experts in biology, neuroscience, computer vision, dynamical systems, sensor networks, ...
- Materials science, pattern formation
- Machine learning: small features matter
- Agent-based modeling (swarming) 17–31 27–302 27–302 27–302 27–302 27–302

Possible answer: Persistent homology measures both the local geometry and the global topology of a dataset.

 \mathcal{Y}

Measures of Order for nearly hexagonal lattices by Francis Motta, Rachel Neville, Patrick Shipman, Daniel Pearson, and Mark Bradley, 2018.

• Agent-based modeling (swarming)

Possible answer: Persistent homology measures both the local geometry and the global topology of a dataset. Descible aparter Developted hameleav measures heth the legal geameter **Possible answer: Persistent homology measures both the local geometry**

Why is applied topology popular when few datasets have Klein bottles?

- Many datasets have clusters $\&$ flares (as in the diabetes example)
- Motivates interesting questions in many pure disciplines: mathematics, computer science (computational geometry), statistics
- Interest from domain experts in biology, neuroscience, computer vision, dynamical systems, sensor networks, ...
- Materials science, pattern formation
- Machine learning: small features matter
- Agent-based modeling (swarming) \mathbf{B} modeling (swarming)

Possible answer: Persistent homology measures both the local geometry and the global topology of a dataset.

Conclusions

- Datasets have shape, which are reflective of patterns within.
- Persistent homology is a way to measure some of the local geometry and global topology of a dataset.

"Topology! The stratosphere of human thought! In the twentyfourth century it might possibly be of use to someone …"

- Aleksandr Solzhenitsyn, *The First Circle*

Where can I find resources if I am interested in applied topology?

- You may be interested in the Applied Algebraic Topology Research Network. Become a member to receive email invites to the online research seminars. Recorded talks are available at the YouTube Channel. There is also a forum.
- Another source of applied topology news is appliedtopology.org.
- A second online research seminar is GEOTOP-A: Applications of Geometry and Topology.
- Mailing lists with announcements in applied topology include WinCompTop and ALGTOP-L.

https://www.math.colostate.edu/~adams/advising