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Morse Theory Overview

• Morse theory provides a cellular model for the sublevelsets 

of an energy landscape.

• Nearby critical points of low persistence can be cancelled.
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• Morse function

•       is homotopy equivalent to a CW complex with one cell of 

dimension     for each critical point of      of index   . 

Morse Theory Overview
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CW complexes
Stick figure example

• A CW complex is formed by inductively 

attaching 0-cells, 1-cells, 2-cells, 3-cells, … 

along their boundaries.



CW complex with hundreds 
of vertices, edges, 2-cells

CW complex with one vertex, 
two edges, one 2-cell

CW complexes

• A CW complex is formed by inductively 

attaching 0-cells, 1-cells, 2-cells, 3-cells, … 

along their boundaries.



A non-degenerate saddle point A degenerate monkey saddle

Morse Theory
• Let        be a manifold. A smooth function                         is a 

Morse function if all of its critical points are non-degenerate 

(the Hessian matrix of second derivatives is non-singular).
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Resolving a monkey saddle into 
two standard saddles

Morse Theory
• Let        be a manifold. A smooth function                         is a 

Morse function if all of its critical points are non-degenerate 

(the Hessian matrix of second derivatives is non-singular).
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The index i of a critical point is the 

number of “linearly independent 

decreasing directions.”
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Example with i=0 (m=2).

The index i of a critical point is the 

number of “linearly independent 

decreasing directions.”



Morse Theory
• Let        be a manifold. A smooth function                         is a 

Morse function if all of its critical points are non-degenerate 

(the Hessian matrix of second derivatives is non-singular).

• Morse Lemma. If p is a non-degenerate critical point of f, then 

locally there is a coordinate chart so that  

Image from https://www.offconvex.org/2016/03/22/saddlepoints/

Example with i=2 (m=2).

The index i of a critical point is the 

number of “linearly independent 

decreasing directions.”



Saddle points in 2D
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Saddle points in 2D

Minimum Index 1 saddle Maximum

Regular point
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medial axis of a shape in three-dimensional Euclidean space.

As introduced by Blum [1], it is the set of centers of spheres

that touch the boundary of the shape in at least two points

without crossing it. Medial axes are used in a wide variety

of applications, including shape representation [4, 18], mesh

generation [19], geometric modeling [20], motion planning

[10], image processing [15] and computer vision [24]. If

the boundary is an orientable 2-manifold embedded in three-

dimensional Euclidean space, we may define the signed dis-

tance as a function over the space. The medial axis then con-

sists of arcs and quadrangles in the Morse-Smale complex.

Results. A fundamental difficulty in applying Morse theo-

retic ideas to scientific problems is the lack of smoothness in

real data. Most commonly, information is gathered by point

probes, and to turn these probes into a generic smooth func-

tion is a formidable task. We argue that the construction of

such a function is also a questionable step if the goal is to

compute and study topological features in the data, mostly

because understanding the latter seems necessary to success-

fully do the former. Instead, we take a combinatorial ap-

proach and simulate smoothness to the extent necessary to

make things work. The main results of this paper are combi-

natorial and algorithmic in nature:

(i) the introduction of quasi Morse-Smale complexes as

combinatorial analogs of the CW complexes defined

by the descending and ascending manifolds of smooth

functions;

(ii) a combinatorial algorithm for constructing a quasi

Morse-Smale complex with guaranteed structural cor-

rectness.

We believe that these results lay the ground-work for a large-

scale application of Morse theoretic ideas to data sets in the

sciences, engineering and medicine.

Outline. Sections 2 and 3 present the necessary back-

ground from Morse theory and combinatorial topology. Sec-

tions 4 to 7 describe the algorithm for constructing a quasi

Morse-Smale complex for three-dimensional piecewise lin-

ear density data. Section 8 concludes the paper.

2 Smooth 3-Manifolds

In this section, we introduce the Morse theoretic concepts

used in this paper. We refer to [12, 13] for further back-

ground.

Morse functions. Let be a smooth compact 3-manifold

without boundary. Examples are the 3-sphere, which con-

sists of all points at unit distance from the origin in 4 , and

the 3-torus, which can be obtained by identifying opposite

square faces of a three-dimensional cube. Let f : → be

a smooth map. The differential of f at a point p ∈ is a lin-

ear map from the tangent space at p to , df p : T p → .

A point p ∈ is critical if df p is the zero map, otherwise it

is regular. Given a local coordinate system, the Hessian at p

is the matrix of second order partial derivatives:

H (p) =

⎡

⎢
⎢
⎣

∂ 2 f

∂ x 2
1

(p) ∂ 2 f
∂ x 1 ∂ x 2

(p) ∂ 2 f
∂ x 1 ∂ x 3

(p)

∂ 2 f
∂ x 2 ∂ x 1

(p) ∂ 2 f

∂ x 2
2

(p) ∂ 2 f
∂ x 2 ∂ x 3

(p)

∂ 2 f
∂ x 3 ∂ x 1

(p) ∂ 2 f
∂ x 3 ∂ x 2

(p) ∂ 2 f

∂ x 2
3

(p)

⎤

⎥
⎥
⎦ .

A critical point p is non-degenerate if the Hessian at p is

non-singular. The function f is called aMorse function if all

critical points are non-degenerate and f (p) ̸= f (q) whenever

p ̸= q are critical. The Morse Lemma states that if p is non-

degenerate we can choose local coordinates and signs such

that

f (x1, x2, x3) = f (p) ± x2
1 ± x2

2 ± x2
3

in a local neighborhood of p. Note this implies that non-

degenerate critical points are isolated. The number of mi-

nuses is the index of the critical point. It is independent of the

coordinate system and equals the number of negative eigen-

values of H (p).

In three dimensions, there are four types of non-degener-

ate critical points: minima have index 0, 1-saddles have in-

dex 1, 2-saddles have index 2, andmaxima have index 3. We

get intuitive local pictures by drawing a small sphere around

the point p. The level curve of points x with f (x) = f (p)

decomposes the sphere into oceans, consisting of points x

with f (x) < f (p), and continents, consisting of points x

with f (x) > f (p). Figure 1 shows the local pictures of a

regular point and of the four types of non-degenerate critical

points.

Figure 1: The local pictures with shaded oceans and white conti-

nents of a regular point, a minimum, a 1-saddle, a 2-saddle, and a

maximum. Take notice of the symbols used to mark the different

types of vertices at the centers of the spheres.

Descending and ascending manifolds. Given a Rieman-

nian metric on and a local coordinate system with or-

2
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• Let                                         be the sublevelset at height a. 

• Morse Theorem 1 If there are no critical points with values in 

[a, b], then          and         are homotopy equivalent.
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Image from Using the CW complex to represent the topological
structure of implicit surfaces and solids by John C Hart



Topological Simplification

A structure-preserving visual representation of scalar fields
by Carlos Correra, Peter Lindstrom, Peer-Timo Bremer.



Topological Simplification

Fair Morse functions for extracting the topological structure of a surface mesh by Ni et al.

Left: 3,605 critical points.

Right: One minimum, one 
maximum, 12 saddles
(minimal possible for genus 6 
surface).



Topological Simplification

Topological hierarchy for functions on triangulated surfaces by Peer Timo-Brener,
Herbert Edelsbrunner, Bernd Hamann, and Valerio Pasucci



Topological Simplification

A topological approach to simplification of three-dimensional scalar functions
by Attila Gyulassy, Vijay Natarajan, Valerio Pasucci, Peer Timo-Brener, Bernd Hamann



Topological Simplification

Multiscale Morse Theory for science discovery by Valerio Pasucci and Ajith Mascarenhas
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