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Support Vector Machines

Goal: Understand the possible geometric configurations of support vectors
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Support Vector Machines

The classifier is given by f(x) = wTx+ b where

∙ x: The data points
∙ b: Shift of the hyperplane away from the origin
∙ w: The normal vector defining the hyperplane
∙ yx ∈ {−1, 1}: Labels for our data (used later)

We have three possibilities for f(x):

∙ f(x) = 0: Defines the separating hyperplane
∙ |f(x)| = 1: Defines the support vectors
∙ |f(x)| > 1: Other data points farther away from the separating hyperplane

Note, sign(f(x)) determines which class the data is in
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Support Vector Machines

Requirements for hard margin SVM:

∙ No points can lie inside the margin

∙ Linearly separable data; no misclassification

∙ Data points in Rn
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Support Vector Machines

Mathematically, SVM is an optimization problem. We want to maximize the
margin of the separating hyperplane where the margin is 2

||w|| .

Thus, we minimize 1
2 ||w||

2

argmin
w,b

1
2∥w∥

2 subject to yi
(
wTxi + b

)
≥ 1 for all i.
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The SVM dual and the KKT conditions

Theorem (Karush-Kuhn-Tucker)

Consider an optimization problem in Rn of the form

min(f(x)) subject to gi(x) ≤ 0 for all i = 1, . . . ,m,

where f(x) is a differentiable function of input variables x, and the gi(x) are
affine degree one polynomials. Suppose z is a local minimum of f. Then,
there exist constants α1, α2, . . . , αm ∈ R such that

(1) −∇f(z) =
∑m

i=1 αi∇gi(z) The Lagrangian is 0
(2) gi(z) ≤ 0 for all i, Gives us that the original constraints are satisfied
(3) αi ≥ 0 for all i, and Gives us that the dual constraints are satisfied
(4) αigi(z) = 0 for all i. Support vectors have margin exactly 1
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The SVM dual and the KKT conditions

After translating into the dual we have

L(w,b, α) = 1
2 ||w||

2 +
m∑
j=1

yjαj(⟨w, xj⟩+ b)

=
1
2 ||w||

2 +
m∑
j=1

αj −
m∑
j=1

yjαj(⟨w, xj⟩)−
m∑
j=1

αjyjb.

Utilizing the KKT conditions, this problem simplifies into

L(α) =
m∑
j=1

αj −
1
2

m∑
i=1

m∑
j=1

αiαjyiyj⟨xi, xj⟩,

which is an unbounded maximization problem.
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Radon’s Theorem

Radon’s Theorem: If T is a set of k points in Euclidean n-dimensional space
Rn with k ≥ n+ 2, then there exist disjoint sets T1 and T2 with T = T1 ∪ T2 and
conv(T1) ∩ conv(T2) ̸= ∅.
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Radon’s theorem and SVM configurations

Lemma

If X ⊂ Rn is a set of linearly separable labeled points, then the projections of
the convex hulls of the positive and negative support vectors onto the
separating hyperplane intersect.
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Radon’s theorem and SVM configurations

For points in ”general position”, we want to show there is only one Radon
point.
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Algebraic varieties

Definition

An affine variety is the set of common zeros of a finite family of polynomials.
Given a set S ⊆ A[x1, x2, · · · xn] of polynomials in some affine space An, the
affine variety defined by S is the set

V(S) := {a ∈ An | f(a) = 0 for all f ∈ S}.

Theorem

The intersection of any collection of affine varieties is an affine variety. The
union of any finite collection of affine varieties is an affine variety.
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Algebraic varieties

Definition

The determinant of an n× n matrix A is

det(A) =
∑
σ∈Sn

(
sgn(σ)

∏
ai,σi

)
,

where σ is an element in the symmetric group on n elements, and ai,σi
represents the ith row and σith column entry of A.
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Algebraic varieties

Example

Let A = [ai,j] where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3. Thus,

det(A) =
∑
σ∈S3

(
sgn(σ)

∏
ai,σi

)
= sgn(e)

∏
ai,(e)i + sgn(123)

∏
ai,(123)i + sgn(132)

∏
ai,(132)i

+ sgn(13)
∏

ai,(13)i + sgn(12)
∏

ai,(12)i + sgn(23)
∏

ai,(23)i
=

∏
ai,(e)i +

∏
ai,(123)i +

∏
ai,(132)i −

∏
ai,(13)i −

∏
ai,(12)i −

∏
ai,(23)i

= a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2
− a1,3a2,2a3,1 − a1,2a2,1a3,3 − a1,1a2,3a3,2.
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Algebraic varieties

If M(y) is an m× n matrix with m ≥ n with linear (or even polynomial)
functions in the entries of y, then the determinants of all n× n minors gives
a collection of (mn ) polynomial functions.



f1,1(y) f1,2(y) · · · f1,n(y)
f2,1(y) f2,2(y) · · · f2,n(y)
...

...
. . .

...
fn,1(y) fn,2(y) · · · fn,n(y)
...

...
. . .

...
fm,1(y) fm,2(y) · · · fm,n(y)



Further if our matrix is rank deficient, then the determinants of all n× n
minors are zero. Hence we have a collection of polynomials set equal to zero
and we can use them to define an algebraic variety.
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Algebraic varieties

Definition

Let Vrd(m,n) ⊆ Rmn for m ≥ n be the algebraic variety generated by the set
of polynomials {Ai}i∈I, where I is the set containing all (mn ) choices of n rows,
and Ai is the minor of the submatrix consisting of those rows.

Lemma

Let M(y) be an m× n matrix with m ≥ n, depending on y ∈ Rk. Suppose the
entries of M(y) are linear (or even polynomial) functions in the entries of y.
Then VM(y) := {y ∈ Rk | M(y) is rank deficient} is an algebraic variety.
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Radon’s theorem and SVM configurations

Using the varieties we have defined above, we can say that a set of points in
general position is open and dense in the Euclidean topology, ”aka generic”.

We can also say that a set of points in strong general position is open and
dense in the Euclidean topology, ”aka generic”.

Thus we can perturb all points by some ε such that they remain in (strong)
general position.
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Radon’s theorem and SVM configurations

Definition

A set of points X ⊆ Rn is in strong general position if

(i) for k < n, no k+ 2 subset of X lies in a k-flat
(ii) for any k+ 1 points in X (determining a k-flat), the orthogonal projection

of any other point in X to that k-flat does not hit the affine span of k of
those points

(iii) for k+ l ≤ n, no disjoint k-flats and l-flats contain parallel vectors.
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Radon’s theorem and SVM configurations

Lemma

If X ⊂ Rn is a set of linearly separable labeled points in strong general
position, then the projections of the convex hulls of the positive and
negative support vectors onto the separating hyperplane intersect at a
single Radon point.

Theorem

Suppose X ⊆ Rn is in strong general position, and that X is equipped with
linearly-separable labels. Then there are at most n+ 1 supporting vectors.
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Radon’s theorem and SVM configurations
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Radon’s theorem and SVM configurations
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Radon’s theorem and SVM configurations
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Radon’s theorem and SVM configurations

What is preserved under small perturbations of the data points?

Lemma

If X ⊆ Rn is a set of linearly separable labeled points with positive margin,
then there exists an ε > 0 such that upon perturbing any point by at most ε,
X remains linearly separable.

Conjecture

Let X ⊆ Rn be a set of linearly separable labeled points in strong general
position. Let ε0 > 0 be the minimum distance between any two distinct
points in X. Then there exists an ε > 0 with ε < ε0

2 such that if each point is
perturbed by at most ε, then the set of supporting vectors remains
unchanged.
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Radon’s theorem and SVM configurations

This means figures such as these cannot happen when the data is in strong
general position.
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Extensions

∙ Soft margin support vector machines
∙ Kernel method for linearly inseparable data
∙ Spherical and ellipsoidal support vector machines
∙ Probability of obtaining support vector configuration over another
∙ Firey’s dice problem
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