
THESIS

GENERIC SUPPORT VECTOR MACHINES AND RADON’S THEOREM

Submitted by

Brittany M. Carr

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2019

Master’s Committee:

Advisor: Dr. Henry Adams

Dr. Patrick Shipman
Dr. Anders Fremstad



Copyright by Brittany M. Carr 2019

All Rights Reserved



ABSTRACT

GENERIC SUPPORT VECTOR MACHINES AND RADON’S THEOREM

A support vector machine, (SVM), is an algorithm which finds a hyperplane that optimally

separates labeled data points in Rn into positive and negative classes. The data points on the margin

of this separating hyperplane are called support vectors. We study the possible configurations of

support vectors for points in general position. In particular, we connect the possible configurations

to Radon’s theorem, which provides guarantees for when a set of points can be divided into two

classes (positive and negative) whose convex hulls intersect. If the positive and negative support

vectors in a generic SVM configuration are projected to the separating hyperplane, then these

projected points will form a Radon configuration.
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Chapter 1

Introduction

Support vector machines (SVM) are an algorithm which, when given a set of linearly separable

points in Rn, will find the separating hyperplane with the widest margin of separation between the

two classes. This distance is called the margin of error. The vectors from either the positive or

negative class that minimize the distance to the separating hyperplane are called the supporting

vectors; their positions define the location of the optimal separating hyperplane. SVM has several

different incarnations but this paper will focus on the most classical type of SVM, hard margin

SVM. This type of SVM does not allow for any misclassified points and it is restricted to linearly

separable data. For an example of hard margin SVM in 2-dimensions, see Figure 2.1. We are

interested in the theoretical properties of these support vectors in the hard margin case. To describe

these properties, we need to borrow ideas from geometry and topology, and in particular a result

called Radon’s theorem.

Radon’s theorem is a classical result in geometry and topology that looks at n+ 2 points in n-

dimensional space. Essentially, Radon’s theorem states that given a set T of k points in Euclidean

n-dimensional space Rn with k ≥ n + 2, then there are disjoint sets T1 and T2 with T = T1 ∪ T2

where the intersection of the convex hulls of T1 and T2 is nonempty. In 2-dimensional space, the

convex hull of a set of points can be visualized by putting a rubber band around all of the points in

that set. Radon’s theorem, along with other topological tools, can shed light on the properties of

support vectors in SVM.

In this thesis, we explore the possible configurations of the SVM support vectors when given a

set of points in general position. General position in this context essentially means the points are

randomly spread out and there are no configurations where, for example, three points fall on a line.

Using Radon’s theorem, we show that the projection of the support vectors onto the separating hy-

perplane intersect. After establishing a stronger notion of points in general position, and studying

its properties using classical algebraic geometry, we show that linearly separable points in strong
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general position in Rn can have anywhere from 2 to at most n+ 1 support vectors. Further, in this

generic case, we show that the projections of our support vectors onto the separating hyperplane

have the convex hulls intersecting at a unique point. Finally, we conjecture that perturbing the

support vectors by an arbitrarily small amount leaves the set of support vectors unchanged.
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Chapter 2

Background on support vector machines

Support vector machines are a popular supervised learning technique that have seen success

in a wide variety of applications; see [1] for a small sampling of examples. First we establish

our definition of Rn and general position. Then we provide a brief introduction to support vector

machines (SVM)s as background to this work, but we refer the interested reader to one of several

resources for further information: [2–5].

2.1 Preliminaries
For our work with support vector machines, our focus will be restricted to Rn. Let Rn denote

Euclidean space of dimension n. For x ∈ Rn we let ‖x‖ =
√
x21 + . . .+ x2n denote its length, and

for x,y ∈ Rn we let 〈x,y〉 = x1y1 + . . . + xnyn denote their inner product. Note 〈x,y〉 = xTy,

where the superscript T denotes the matrix transpose. Another name for the inner product is the

dot product, and indeed we also denote 〈x,y〉 by x · y.

A linear subspace of Rn is a vector space subset of Rn; any linear subspace V ⊆ Rn can be

written as V = {
∑k

i=1 civi | ci ∈ R} for some collection of vectors v1, . . . ,vk ∈ Rn with 0 ≤ k ≤

n; the subspace has dimension k if the vectors are linearly independent1. In this setting we may

also denote the linear subspace V by span(v1, . . . ,vk), or by span(S) where S = {v1, . . . ,vk}.

An affine subspace of Rn is a translation of a linear subspace. More explicitly, an affine subspace

is of the form x+V := {x+v | v ∈ V }, where V is a linear subspace of Rn. If {v1, . . . ,vk} spans

the linear subspace V , and if S = {x, x+v1, . . . , x+vk}, then we may write aff span(S) := x+V

to denote the affine span of the vectors in S.

Any linear subspace of dimension n − 1 in Rn can be written as {x ∈ Rn | wTx = 0} for

some normal vector w ∈ Rn. Similarly, any affine subspace of dimension n − 1 in Rn can be

1When k = 0, then V is a single point, the origin in Rn.
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Figure 2.1: Linearly separable two-class data, along with a linear classifier (a separating hyperplane) with
the maximal margin of separation.

written as {x ∈ Rn | wTx = b} for some normal vector w ∈ Rn and offset b ∈ R. We refer to

(n− 1)-dimensional affine subsets of Rn as hyperplanes.

Further, we want to examine datasets with generic configurations of points. Thus a collection

of points X ⊆ Rn is typically said to be in “general position” (for a particular property) if there

exists some ε > 0 such that for any ε-perturbation of the points, the particular property remains

unchanged. Some of the most common notions of general position can be rephrased in terms of

the number of points lying in an affine subspace, or alternatively affine subspaces and spheres. For

example, in [6] a finite set S ⊆ Rn is in general position if, for any k < n, no (k + 2)-subset of S

lies in a k-dimensional affine subspace.

2.2 SVMs in the linearly separable case
We begin with the most basic definition of support vector machines, and discuss more general

versions later in the paper. Consider a set of training data {xi}mi=1 drawn from a space X and

associated classes {yi}mi=1; for now, we assume X ⊆ Rn and each yi ∈ {−1, 1}. From this data,

we train a support vector machine, which will be a linear classifier maximizing the separation

between the two classes of training data. For the moment, we assume the data classes are linearly
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separable — that is, we assume there exists a hyperplane2 in Rn such that each data point xi with

yi = 1 is on one side of the hyperplane, and each data point xi with yi = −1 is on the opposite

side of the hyperplane. See Figure 2.1 for an example of linearly separable two-class data.

We construct the support vector machine as a nonlinear optimization problem with constraints

in the following way. First, define the classifier as f(x) = wTx + b, where w and b are the

parameters that must be ‘learned.’ Note that f(x) = 0 defines a linear decision boundary and that

the sign of f(x), namely sign(f(x)) ∈ {−1, 1}, determines which of the two classes the classifier

predicts as the true membership class of data point x.

Note that for any constant c 6= 0, the parameters cw and cb would define the same hyperplane

as w and b. Thus, we introduce the notion of a canonical hyperplane as in [3]: Given a set of data

xi ∈ X, a hyperplane representation is canonical if minxi
|wTxi + b| = 1. We define support

vectors for such a hyperplane to be precisely those xi for which this minimum is achieved.

w
xi

resP(xi)

projP(xi)

P : w · x+ b = 0

Figure 2.2: Decision boundary hyperplane along with support vector xi and decomposition.

Recall that the support vector machine defined by f(x) = wTx+ b should be a linear classifier

with maximal margin of separation between two data classes. Therefore, by characterizing the

margin of separation between the classes, we can determine the form the appropriate optimization

problem should take. Consider the canonical hyperplane P defined by

P = {x ∈ Rn | wTx + b = 0},

2Recall a hyperplane is an (n− 1)-dimensional affine subspace of Rn
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and let xi be a support vector with angle less than π/2 with w (thus, xi is on the same side of the

hyperplane as w). Since our hyperplane representation is canonical, this gives w · xi = 1 − b.

As in Figure 2.2, note that xi can be decomposed orthogonally into a component in P and its

residual: xi = projP(xi) + resP(xi). The minimum distance d from the hyperplane P to X is then

d = ‖resP(xi)‖. Note that by construction, we have resP(xi) = d w
‖w‖ , where w

‖w‖ is the unit vector

in the direction of w. Taking the dot product of the decomposition of xi with w and using the fact

that xi is a support vector, we have

1− b = w · xi

= w · projP(xi) + w · resP(xi)

= −b+ w ·
(
d

w

‖w‖

)
since projP(xi) ∈ P

= −b+ d‖w‖.

Adding b to both sides gives 1 = d‖w‖, i.e., d = 1
‖w‖ .

A similar argument produces the same conclusion when xi is assumed to be a support vector

with angle θ ∈ (π/2, π] with w. Thus, we have that the minimum distance from the linear decision

boundary to any point xi inX is 1
‖w‖ . This means that the margin of separation between the classes

is 2
‖w‖ ; consequently, in order to maximize the margin of separation, we seek to minimize the norm

of w. For convenience, we will instead minimize 1
2
‖w‖2.

To characterize correct classification of all xi ∈ X , we observe that if yi = 1, a support vector

machine with perfect classification must have f(xi) > 0 and if yi = −1, we require f(xi) < 0.

But our definition of canonical hyperplane requires that |f(xi)| ≥ 1 for all i. So classification

of all points is correct if yif(xi) ≥ 1 for all i. That is, classification of all points is correct if

yi
(
wTxi + b

)
≥ 1 for all i.

Therefore, the support vector machine optimization problem is

arg min
w,b

1

2
‖w‖2 subject to yi

(
wTxi + b

)
≥ 1 for all i.
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2.3 Solving the SVM optimization problem
Now that we have an optimization problem, we need some additional tools to solve it. The

Karush-Kuhn-Tucker (KKT) theorem can be applied to the SVM optimization problem and provide

an optimal solution, provided the original problem satisfies certain conditions. The KKT theorem

works in a similar fashion to Lagrange multipliers. Under the right conditions, it takes a bounded

lower-dimensional problem and turns it into a higher-dimensional, unbounded problem which can

be solved using calculus. The development of the dual problem will follow the argument in [7],

which follows the paper [8].

Theorem 2.3.1 (Karush-Kuhn-Tucker). Consider an optimization problem in Rn of the form

min(f(x)) subject to gi(x) ≤ 0 for all i = 1, . . . ,m,

where f(x) is a differentiable function of input variables x, and the gi(x) are affine degree one

polynomials. Suppose z is a local minimum of f . Then, there exist constants α1, α2, . . . , αm ∈ R

such that

(1) −∇f(z) =
∑m

i=1 αi∇gi(z)

(2) gi(z) ≤ 0 for all i,

(3) αi ≥ 0 for all i, and

(4) αigi(z) = 0 for all i.

The four results of the KKT theorem apply directly to the SVM optimization problem. Con-

dition (1) gives that the Lagrangian is zero. Conditions (2) and (3) guarantee that the original and

dual constraints are satisfied. The final condition guarantees that the support vectors must have

margin exactly 1. Each original constraint corresponds to a Lagrange multiplier and a new con-

straint for the dual problem. Instead of optimizing the original SVM problem, we will instead be

optimizing the dual.
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To optimize the dual problem, we first need to define it. Because of some additional constraints

on the SVM problem, solving the dual will directly solve the original problem. Further, the dual

will be a maximization problem as opposed to the minimization problem. The entries of the dual

are α = (α1, α2, . . . , αm), with one αi for each constraint of the SVM problem. By the KKT

theorem, we know that αj ≥ 0 for all j. Thus, our generalized Lagrangian (dual for our SVM

problem) is

L(w, b, α) =
1

2
||w||2 +

m∑
j=1

yjαj(〈w,xj〉+ b)

=
1

2
||w||2 +

m∑
j=1

αj −
m∑
j=1

yjαj(〈w,xj〉)−
m∑
j=1

αjyjb.

By condition (1) of the KKT theorem, our Lagrangian must be 0. Thus, ∂L
∂b

=
∑m

j=1 αjyj = 0.

Now for each wi, we have ∂L
∂wi

= wi −
∑m

j=1 yjαjxj,i, where xj,i is the i-th coordinate of vector

xj . Again by condition (1), setting this to 0 gives us w =
∑m

j=1 yjαjxj . We want to write our

optimal solution in terms of Lagrange multipliers since our support vector criteria, condition (4),

dictates that several of our αi terms will be 0. Using our new definition of w, we construct our

dual function as,

L(α) =
m∑
j=1

αj −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj〈xi,xj〉.

From here, we can solve the unbounded optimization problem using a variety of methods. The

non-zero αj’s are the solutions to the dual, and they correspond to the xj’s which serve as the

support vectors. This defines the desired linear hyperplane which best divides the two classes of

data.

2.4 SVMs in the general case (soft margins)
The most common versions of support vector machines do not require the hypothesis that the

data be linearly separable — indeed, the optimization problem is edited to optimize over two pref-

erences: maximizing the margin of separation, i.e. the “width of the road”, while also minimizing
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the amount to which points lie within the margin (or are misclassified). To do so, we look at the

hinge loss function, max(0, 1 − yi(w · xi − b)) which yields 0 if the point is on the correct side

of the margin, and if the point is on the incorrect side, the function provides the loss which is

proportional to how far away the point is from the margin. As discussed in [2], the soft-margin

optimization problem is to minimize

[
1

n

n∑
i=1

max(0, 1− yi(w · xi − b))

]
+ λ||w||2,

where λ is a variable which compensates for the compromise of a wide margin as opposed to

classifying points incorrectly.

Given this new optimization problem, we could ask what support vector configurations are

possible in the soft-margin case, and whether or not those configurations produce a Radon point.

Further, we could compare the soft margin support configurations to those found in the hard margin

case. But this paper will focus on the hard margin support vector machines, restricted to linearly

separable data, which is the mathematically simpler case.

2.5 SVMs and VC dimension
The Vapnik–Chervonenkis (VC) dimension, first introduced by Vapnik and Chervonenkis in

1971 [9], is a measure of the complexity of a classification model. Given a set of points X , note

that there are 2|X| ways to label the points with labels +1 or−1. We say that a classification model

can shatter a set of points X if no matter how the labels +1 or −1 are assigned to X , we can find

a classifier from that model that correctly recovers the assigned labels. The VC dimension of a

classification model is the cardinality of the largest set of points that model can shatter [10].

As an example, consider the VC dimension of affine separators (binary classifiers that are

defined by which side of an affine hyperplane a data point lives in) in R2. Note that support vector

machines are a particular type of affine separators in which the affine hyperplane is chosen in a

particular way. Consider first a set X ⊆ R2 of three points, namely |X| = 3, that do not lie on a

9



single line. Note there are 23 = 8 ways to label these points with values in {−1, 1}. No matter

how those three points are labelled with values in {−1, 1}, there exists an affine line that correctly

separates the two classes (+1 and −1). Thus, the VC dimension of affine separators in R2 is at

least three.

Figure 2.3: Examples of two sets of size 4 that cannot be shattered. Consider the labeled classes as drawn
in red and blue. In each example, the convex hulls of the two classes intersect at the origin. As we explain
below, this implies that no affine separator can correctly classify according to these labels.

We now argue that the VC dimension of affine separators in R2 exactly three [11]. To do this,

we must show that for any set X ⊆ R2 with |X| = 4, the set X cannot be shattered. Radon’s

theorem, which is discussed in Chapter 3, states that since X is a set of 4 points in R2, there must

be disjoint sets X+ and X− with X = X+ ∪X− and conv(X+)∩ conv(X−) 6= ∅ (see Figure 2.3).

If we label all the points in X+ as belonging to the positive class +1, and all the points in X− as

belonging to the negative class −1, then no affine separator will be able to correctly classify these

labels. Indeed, any affine separator assigning each point in X+ the label +1 must also assign all

of conv(X+) the label +1, and any affine separator assigning each point in X− the label −1 must

also assign all of conv(X−) the label −1. This contradicts the fact that conv(X+) ∩ conv(X−) is

nonempty! Hence no set of four points in R2 can be shattered by an affine separator, and so the

VC dimension of affine separators in R2 is three.

More generally, Radon’s theorem states if X is a set of k points in Euclidean n-dimensional

space Rn with k ≥ n + 2, then there are disjoint sets X+ and X− with X = X+ ∪ X− and

conv(X+) ∩ conv(X−) 6= ∅. So, if we label the points in X with X+ as the positive class and

10



with X− as the negative class, then since their convex hulls intersect, this set of points cannot be

shattered by an affine separator. Thus, no configuration of n + 2 or more points in Rn can be

shattered. It follows that n+ 1 is an upper bound for the VC dimension of affine separators in Rn.

It is also true that so long as n + 1 points in Rn do not lie in a (n − 1)-dimensional affine plane

(for example, if those points live at the vertices of a regular n-simplex), then those points can be

shattered by an affine separator, whose VC dimension is therefore exactly n+ 1.
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Chapter 3

Background on Radon’s theorem

Radon’s theorem is a classical result in topology that has applications across a variety of fields.

We proceed with some definitions, Radon’s theorem, and additional corollaries that pertain to

classifying support vectors in Rn.

In Euclidean space Rn of dimension n, a hyperplane is a (n−1)-dimensional affine subspace. A

set S ⊆ Rn is said to be convex if for all x,y ∈ S and t ∈ (0, 1), we also have that tx+(1−t)y ∈ S.

Let conv(T ) denote the convex hull of a set of points T ⊆ Rn, which is the minimal convex set in

Rn containing T . Equivalently, conv(T ) is the intersection of all convex sets in Rn containing T .

Furthermore, let conv(T1) ∩ conv(T2) denote the intersection of two convex hulls. We begin with

a lemma that allows us to partition our set to separate any two points.

Lemma 3.0.1 (Separation Lemma [6]). If T = {v0,v1, ...,vn+1} is a subset of n+ 2 points in Rn

that does not lie in a hyperplane, then there is a hyperplane passing through n of the points of T

which separates the remaining two points.

With this in mind, we state and prove Radon’s theorem. The original reference is [12], and

modern references include, for example, [13].

Theorem 3.0.2 (Radon’s Theorem). If T is a set of k points in Euclidean n-dimensional space Rn

with k ≥ n+2, then there are disjoint sets T1 and T2 with T = T1∪T2 and conv(T1)∩conv(T2) 6= ∅.

Proof. It suffices to prove the case k = n+ 2. Let T = {x0,x1, . . . ,xn+1} be a set of n+ 2 points

in Rn. There exists coefficients, (a0, ..., an+1), such that

n+1∑
i=0

aixi = ~0 and
n+1∑
i=0

ai = 0, (3.1)

and for at least one i, ai 6= 0. Indeed, this is because (3.1) is a collection of n + 1 homogeneous

linear equations with n + 2 unknowns. Consider a specific non-trivial solution, (a0, ..., an+1) and

12
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Figure 3.1: Two Radon configurations in R2.

define the set S = {a0, ..., an+1}. We partition S such that S1 contains all positive coefficients and

S2 contains all zero-valued and negative coefficients. Since the sum of the coefficients must be 0,

there exists a point v ∈ Rn such that

v =
∑
i∈S1

ai
A
xi = −

∑
j∈S2

aj
A
xj,

where A =
∑
i∈S1

ai = −
∑
j∈S2

aj . Thus v is an intersection point of the two convex hulls, since

each sum is the representation of v as a convex combination for points in T1 and T2, respectively.

Therefore, conv(T1) ∩ conv(T2) 6= ∅.

In other words, given a set of points containing at least n + 2 points, there exists a partition of

the set such that the convex hulls intersect. Additional proofs of Radon’s theorem can be found in

a variety of sources; for example a geometric proof can be found in a paper by Peterson [6]. The

points in the intersection of the convex hulls will be relevant throughout the rest of the paper. We

call them Radon points since they are guaranteed by Radon’s theorem.

Definition 3.0.3. Given a finite set T ⊆ Rn with disjoint labeled subsets T1 and T2, a Radon point

is any point v ∈ conv(T1) ∩ conv(T2).

Some applicable corollaries follow from the proof of Radon’s theorem. For this section, we

use the following definition of general position.

Definition 3.0.4. A finite set X ⊆ Rn is in general position if, for any k < n, no (k+ 2)-subset of

X lies in a k-dimensional affine subspace, also known as a k-flat.
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Theorem 3.0.5 ( [6]). Let T be a (n+ 2)-set in Rn. Then T is in general position if and only if the

partition {T1, T2} guaranteed by Radon’s Theorem is unique.

This uniqueness goes even further. Not only is the partition unique, general position also

implies that the intersection of the convex hulls is a unique single point.

Theorem 3.0.6 ( [6]). Let {T1, T2} be the Radon partition of a set of n + 2 points in general

position in Rn. Then conv(T1) ∩ conv(T2) is a single point.

In the context of support vector machines, in the following chapter we will show that if our

support vectors are in general position, then upon projecting them onto the (n − 1)-dimensional

separating hyperplane, their convex hulls intersect at a single Radon point.
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Chapter 4

Radon’s theorem and SVMs

Radon’s theorem can be used as a tool to identify and classify support vector configurations.

The support vectors in SVM are points in general position as defined in Definition 3.0.4. Further,

the support vectors are already partitioned into two different classes, the positive class and the neg-

ative class. As such, we can say a few new things about their configurations and their projections

onto the separating hyperplane. For example, Lemma 4.0.1 shows the projection of the convex

hulls of the support vectors from the two classes intersect. In R3, the support vector configura-

tions will look like the figures found in Figure 4.1, and when we project those configurations onto

the separating hyperplane we get a Radon point. To say more about the properties of the Radon

points (such as uniqueness), we will need some additional definitions and concepts which will be

discussed in Chapters 5 and 6.

Lemma 4.0.1. If X ⊂ Rn is a set of linearly separable labeled points, then the projections of the

convex hulls of the positive and negative support vectors onto the separating hyperplane intersect.

Proof. By the KKT conditions we have (1) w =
∑

j yjαjxj and (2)
∑

j αjyj = 0. Let P =

{j | yj = 1} be the set of indices in the positive class, and let N = {j | yj = −1} be the set

of indices in the negative class. Reorganizing equation (2), we may define C :=
∑

j∈P αj =∑
j∈N αj . Since the intersection patterns of projections of the convex hulls are unchanged by

translation, we may asume in our SVM model that the translation vector b is the zero vector.

Let ρ : Rn → Rn be the orthogonal projection onto the orthogonal complement of w, that is, the

orthogonal projection onto the separating hyperplane. Then equation (1) gives that ~0 = ρ(w) =

ρ(
∑

j yjαjxj), which we may reorganize using the linearity of ρ to get

ρ

(∑
j∈P

αjxj

)
= ρ

(∑
j∈N

αjxj

)
.
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Figure 4.1: The four possible generic support vector configurations in R3. For each configuration, the
supporting hyperplanes are drawn on top with the corresponding support vectors. Below the hyperplanes
are the projections of the support vectors (forming a Radon configuration) onto the separating hyperplane.
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We may rescale by 1
C

to obtain the same equality for convex combinations

ρ

(∑
j∈P

αj
C
xj

)
= ρ

(∑
j∈N

αj
C
xj

)
,

where note that these combinations are convex since 1 =
∑

j∈P
αj

C
=
∑

j∈N
αj

C
. Hence we have

shown that the projections of the convex hulls of the positive and negative support vectors onto the

separating hyperplane intersect.

Similar to the definition of a Radon point in Chapter 3, we define a Radon point in the SVM

setting.

Definition 4.0.2. Given a linearly separable set of labeled points, X ∈ Rn, where X = X− ∪X+,

a Radon point is a point v ∈ Rn such that v ∈ ρ(conv(X−)) ∩ ρ(conv(X+)), where ρ is the

projection onto the separating hyperplane.

(a) Incorrect support vectors (b) Correct support vectors

Figure 4.2: The same dataset with two different separating hyperplanes. Note that the one on the left does
not contain a Radon point in the projection of the convex hulls whereas the one on the right does. Further,
the margin on the right example is larger than the one on the left.

17



Thus if we have a “claimed” support vector configuration where the projection of the convex

hulls does not result in at least one Radon point, then we know the choice of support vectors was

incorrect. Consider Figure 4.2. The two datasets in (a) and (b) are the same, but Figure 4.2a has

support vectors where if one projects the convex hulls, they do not intersect. By Lemma 4.0.1,

these must not be the correct support vectors. Indeed, Figure 4.2b does have a Radon point in

the projection of the convex hulls and the margin between the two datasets is wider. Furthermore,

Figure 4.2b has the optimal separating hyperplane.

To get stronger results, namely that in SVM the intersection of the projected convex hulls of

the support vectors is a single Radon point and no more, we will need to add genericity assump-

tions. Indeed, we will need our set of data points to be in not only in general position, but also in

strong general position. We introduce these genericity assumptions in Chapter 6 after giving some

preliminaries involving algebraic geometry.
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Chapter 5

Background on algebraic geometry and the Zariski

topology

Our further exploration of general position and support vector machines relies on different

aspects of algebraic geometry. All of the content in this section follows from [14–16].

The focus of this paper is restricted to the field R, and all following definitions will reflect that

focus. Nevertheless, certain definitions can be extended to other fields, such as C and Q. For this

reason, for some definitions we let A denote an arbitrary field, even though we will later restrict

attention to the case A = R. The n-fold product space An is called affine space.

Definition 5.0.1. An affine variety is the set of common zeros of a finite family of polynomials.

Given a set S ⊆ A[x1, x2, · · ·xn] of polynomials in some affine space An, the affine variety defined

by S is the set

V(S) := {a ∈ An | f(a) = 0 for all f ∈ S}.

For the applications in this paper, An will be Rn.

It is important to note that we defined affine varieties in terms of sets, but we can also recast

them in terms of ideals. If I = 〈S〉 is the ideal generated by the polynomials in S, then V (I) =

V (S).

Some of the nice properties of closed and open sets that hold in Euclidean topology also hold

for algebraic varieties equipped with the Zariski topology. The Zariski topology on An is the

topology whose closed sets are the affine varieties, called Zariski closed sets, in An.

Lemma 5.0.2. Given two ideals I and J , we have V(I · J) = V(I ∩ J)

Proof. Since I · J ⊆ I ∩ J , it follows that V(I ∩ J) ⊆ V(I · J).

Let p ∈ V(I · J) ⊆ An be a point in V(I · J). We show that for any polynomial h ∈ I ∩ J , we

have h(p) = 0. Note if f ∈ I and g ∈ J , i.e. if f · g ∈ I · J , then f(p)g(p) = 0. In particular we
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have h · h ∈ I · J . Thus h(p) · h(p) = 0, which implies that h(p) = 0 and p ∈ V(I ∩ J). Therefore

V(I · J) ⊆ V(I ∩ J).

Together these two containments imply V(I · J) = V(I ∩ J).

Theorem 5.0.3. The intersection of any collection of affine varieties is an affine variety. The union

of any finite collection of affine varieties is an affine variety.

Proof. Let {Is}s∈S be a collection of ideals in An[x1, x2, · · · , xn], indexed by the elements s ∈ S.

It is not hard to see that ⋂
s∈S

V(Is) = V

(⋃
s∈S

Is

)
.

Hence, the intersection of any collection of affine varieties is an affine variety.

Recall that by Lemma 5.0.2, we have

V (Is1 · Is2) = V(Is1 ∩ Is2) = V(Is1) ∪ V(Is2).

Proceeding via induction, assume V(Is1) ∪ . . . ∪ V(Isx) = V(Is1 ∩ . . . ∩ Isx). Now, consider

V(Is1) ∪ . . . ∪ V(Isx) ∪ V(Isx+1). Thus,

V(Is1) ∪ . . . ∪ V(Isx) ∪ V(Isx+1) = V(Is1 ∩ . . . ∩ Isx) ∪ V(Isx+1)

= V(Is1 · . . . · Isx) ∪ V(Isx+1)

= V(Is1 · . . . · Isx · Isx+1)

= V(Is1 ∩ . . . ∩ Isx ∩ Isx+1).

Therefore the union of any finite collection of affine varieties is an affine variety.

We now restrict attention to the field A = R for the remainder of the paper.

To show why the union of infinite affine varieties is not always a variety, consider

X := ∪a∈N V(x− a) = N.
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On one hand, V is an infinite union of affine varieties, but N is not an affine variety. To see this, note

that affine varieties over R are a set of solutions to a set of polynomial equations. In R, a nonzero

polynomial can have at most n solutions. Thus we have two cases, either the set of solutions must

be finite or if all polynomials are the zero polynomial, the affine variety must be R. Hence, N

cannot be an affine variety.

Algebraic varieties are defined by the zero sets of polynomials. One way to construct a polyno-

mial is to take the determinant of an n× n matrix with variable entries. Connecting determinants

to algebraic varieties requires one to find where the determinant is equal to 0. This provides a

polynomial with a zero set, which in turn provides an algebraic variety.

Definition 5.0.4. The determinant of an n× n matrix A is

det(A) =
∑
σ∈Sn

(
sgn(σ)

∏
ai,σi

)
,

where σ is an element in the symmetric group on n elements, and ai,σi represents the ith row and

σith column entry of A (see for example [17, Page 437]).

For an example, we show how this works on a 3 × 3 matrix. Let A = [ai,j] where 1 ≤ i ≤ 3

and 1 ≤ j ≤ 3. Thus,

det(A) =
∑
σ∈S3

(
sgn(σ)

∏
ai,σi

)
= sgn(e)

∏
ai,(e)i + sgn(123)

∏
ai,(123)i + sgn(132)

∏
ai,(132)i

+ sgn(13)
∏

ai,(13)i + sgn(12)
∏

ai,(12)i + sgn(23)
∏

ai,(23)i

=
∏

ai,(e)i +
∏

ai,(123)i +
∏

ai,(132)i −
∏

ai,(13)i −
∏

ai,(12)i −
∏

ai,(23)i

= a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2 − a1,3a2,2a3,1 − a1,2a2,1a3,3 − a1,1a2,3a3,2.

Note, the determinant is zero if and only if the rows and columns are linearly dependent, which

occurs if and only if the matrix A has deficient rank. Setting the determinant of an arbitrary matrix
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A in Rn×n to 0, we can construct an algebraic variety from det(A) =
∑
σ∈Sn

(sgn(σ)
∏
ai,σi) = 0,

which is a polynomial in the entries of A.

Now let M be a matrix of size m× n, where m ≥ n. We say that matrix M has deficient rank

if the rank of M is less than n, i.e. if the columns of M are linearly dependent. Furthermore, the

columns of M are linearly dependent if and only if all of the n × n minors (determinants of the

corresponding n× n submatrix) of M are zero. See [18] for a full proof of this fact. The set of all

(m
n) different n × n minors of an m × n matrix M with m ≥ n thus defines an algebraic variety

whose members are the matrices M of deficient rank.

Thus we have proved the variety defined below contains precisely those m × n matrices M

with deficient rank.

Definition 5.0.5. Let Vrd(m,n) ⊆ Rmn for m ≥ n be the algebraic variety generated by the set of

polynomials {Ni}i∈I , where I is the set containing all (m
n) choices of n rows, and Ni is the minor

of the submatrix consisting of those rows.

Lemma 5.0.6. Let M(y) be an m × n matrix with m ≥ n, depending on y ∈ Rk. Suppose the

entries of M(y) are linear (or even polynomial) functions in the entries of y. Then VM(y) := {y ∈

Rk |M(y) is rank deficient} is an algebraic variety.

Proof. Let M(y) ∈ Rm×n with m ≥ n be a matrix with entries of polynomial functions in terms

of y. Suppose M(y) has deficient rank. Thus all n× n submatrices A of M(y) have det(A) = 0,

which gives a system of
(
m
n

)
polynomials in y, each polynomial being set equal to 0. Thus the set of

(m
n) different n×nminors defines an algebraic variety. Thus, VM(y) = {y |M(y) is rank deficient}

is an algebraic variety.

In the following section we will be studying configurations of points in general position, which

is connected to algebraic geometry for example via the following theorem.

Theorem 5.0.7 (Proposition 1 of Appendix A of [19], or Theorem 1.3.2 of [16], for example). The

nonempty complement of a algebraic variety in Rn is open and dense in the Euclidean topology on

Rn.
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Recall that an algebraic variety is a closed set in the Zariski topology, and therefore the com-

plement of of an algebraic variety is an open set in the Zariski topology. The above theorem says

that a nonempty open set in the Zariski topology is both open and dense in the Euclidean topology

on Rn. In the next chapter we will use this theorem to show that collections of points in general

position (or strong general position) in Rn form an open and dense subset of all possible collections

of points in Rn.
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Chapter 6

SVMs for points in general position

There are a wide variety of notions of general position; in Definition 3.0.4 we gave only one

such notion. We begin in Subsection 6.1 by defining and studying a stronger notion of general

position that will be useful for studying SVMs. In Subsection 6.2, we give the basic properties

of SVMs that hold in this slightly more restrictive setting of strong general position. Finally,

in Subsection 6.3, we conjecture that for points in strong general position, an arbitrarily small

perturbation cannot change the set of support vectors.

6.1 General position and a stronger notion
Roughly speaking, a certain property is generic if it holds on a countable intersection of open

dense sets. We begin this section by showing that the notion of general position in Definition 3.0.4,

as well as with a stronger notion in Definition 6.1.2, both hold on an open dense set.

By a small abuse of notation, we identify each subset X = {x1, . . . , xm} ⊆ Rn of cardinality

m with a point X ∈ Rmn, and also with a m × n matrix X ∈ Rm×n. Hence we identify {X ⊆

Rn | |X| = m} with Rmn.

Lemma 6.1.1. The collection of all subsets X ⊆ Rn in general position (Definition 3.0.4) and

with |X| = m is an open and dense subset of Rmn. Further, if X ⊆ Rn is in general position, then

there exists an ε > 0 such that perturbing any point by at most ε does not remove X from general

position.

Proof. We will show that the collection of all configurations not in general position forms an

algebraic variety.

By definition,X is not in general position if and only if k+2 of the points inX lie in a k-flat (for

some k < n). So X is not in general position if and only if there exists a set S = {xi1 , . . . , xik+1
}

and a point x ∈ X \S such that x ∈ aff span(S), for some k < n. This can be recast algebraically
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as follows. Consider the n × (k + 1) matrix MS,x =
[
xi1 − x, xi2 − x, . . . , xik+1

− x
]

whose

columns are the vectors xij − x for each 1 ≤ j ≤ k + 1. It follows, for example from [20,

Lemma 1.3.2], that x ∈ aff span(S) if and only if the matrix MS,x has deficient rank, i.e., if and

only if MS,x ∈ Vrd(k+1, n) (recall Definition 5.0.5). Therefore, X is not in general position if and

only if some such matrix MS,x belongs to the algebraic variety Vrd(k + 1, n).

We will define Vng(m,n) ⊆ Rmn to be the algebraic variety of all matrices X ∈ Rm×n such

that the points determined by X are not in general position. This definition will require some

additional notation which we will provide below. If a (k + 2) × n matrix N describes a set of

k + 2 points in Rn, then those points lie in a k-flat if and only if for any choice of row, subtracting

that row from all others and then deleting that row gives a matrix in Vrd(k + 1, n). Let Ñ be the

(k + 1)× n matrix obtained from N by subtracting the last row from all others, and then deleting

the last row. Next, let Uk+2 be the collection of all subsets I of {1, . . . ,m} of size |I| = k + 2.

Given an m × n matrix M and I ∈ Uk+2, let MI be the (k + 2) × n submatrix of M formed by

selecting out the rows given by I . For I ∈ Uk+2, let

V(m,n)I := {M ∈ Rm×n | M̃I ∈ Vrd(k + 1, n)}.

We define Vrd(m,n)k+2 = ∪I∈Uk+2
V(m,n)I . Since Vrd(m,n)k+2 is a finite union of algebraic vari-

eties, by Theorem 5.0.3, it is also an algebraic variety. Now define Vng(m,n) := ∪k<nVrd(m,n)k+2.

Similarly Vng(m,n) is the finite union of algebraic varieties, and thus is also an algebraic variety.

A matrix X ∈ Rm×n belongs to Vng(m,n) precisely when the points determined by X are not in

general position.

Now, since MS,x ∈ V(m,n)I , taking the union over all choices of k and selection of k subsets

implies X ∈ Vng(m,n). Since Vng(m,n) is an algebraic variety this implies that Vng(m,n) is a

Zariski closed set.

We next consider the complement of Vng(m,n), i.e., all subsets of X in general position, First

we show that the Zariski open set of all configurations of points not in general position is nonempty.

Indeed, we can find one set of points in general position by choosing points on the moment curve:
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γ(t) = {t, t2, . . . , td | t ∈ R} ∈ Rmn [21]. Theorem 5.0.7 then implies that the set of all

configurations of points in general position are open and dense in the Euclidean topology on Rmn.

Therefore since X is open in the Euclidean topology, there exists ε > 0 such that perturbing any

point by ε does not remove X from general position.

We now provide the following definition for a stronger form of general position.

Definition 6.1.2. A set of points X ⊆ Rn is in strong general position if

(i) for k < n, no k + 2 subset of X lies in a k-flat

(ii) for any k+ 1 points in X (determining a k-flat), the orthogonal projection of any other point

in X to that k-flat does not hit the affine span of k of those points

(iii) for k + l ≤ n, no disjoint k-flats and l-flats contain parallel vectors.

Lemma 6.1.3. The collection of all subsets X ⊆ Rn with |X| = m in strong general position is

an open and dense subset of Rmn. It follows that if X ⊆ Rn is in strong general position, then

there exists an ε > 0 such that perturbing any point by at most ε does not remove X from strong

general position.

Proof. We will construct an algebraic variety for each of the three conditions in Definition 6.1.2.

The union of these three algebraic varieties will be an algebraic variety of all configurations not

in general position. After showing that the complement is nonempty, the result will follow from

Theorem 5.0.7.

For the first condition (i), the algebraic variety is the one provided in the proof of Lemma 6.1.1.

For condition (ii), denote S = {xi1 , . . . , xik+1
} ⊆ X , and let πS : Rn → aff span (xi1 , . . . , xik+1

)

be the orthogonal projection onto the affine span. Consider the set of all points x ∈ X \ S such

that πS(x) lives in aff span(xi1 , . . . , x̂ij , . . . , xik+1
) for some 1 ≤ j ≤ k + 1, where x̂ij denotes

the deletion of the xth
ij

term. Since πS is a linear operator and aff span(xi1 , . . . , x̂ij , . . . , xik+1
) is

an affine subspace, it follows that π−1S (aff span(xi1 , . . . , x̂ij , . . . , xik+1
)) is an affine subspace [22].
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Thus, if πS(x) lives in aff span(xi1 , . . . , x̂ij , . . . , xik+1
) for some 1 ≤ j ≤ k + 1, then

x ∈ π−1S (aff span(xi1 , . . . , x̂ij , . . . , xik+1
)).

This space forms an algebraic variety, VS = ∪k+1
j=1π

−1
S (aff span(xi1 , . . . , x̂ij , . . . , xik+1

)). Thus, the

finite union VX = ∪S⊆X with |S|=k+1VS is an algebraic variety containing all the sets of points that

do not satisfy condition (ii).

Finally, for condition (iii) consider two disjoint sets of points T1 = {xi1 , . . . , xik+1
} ⊆ X and

T2 = {xj1 , . . . , xjl+1
} ⊆ X such that k + l ≤ n. We define v1 = xi1 − xik+1

, v2 = xi2 − xik+1
,

. . . , vk = xik − xik+1
to be k difference vectors from T1, and similarly we define u1 = xj1 − xjl+1

,

. . . , ul = xjl − xjl+1
to be l difference vectors for T2. Geometrically, we are shifting aff span(T1)

by −xik+1
and shifting aff span(T2) by −xjl+1

, thus aligning both to contain the origin. From

a more algebraic perspective, consider span(v1, . . . , vk, u1, . . . , ul). If the span is not (k + l)-

dimensional, then condition (iii) is not satisfied. This is equivalent to constructing the matrix

MT = [v1, . . . , vk, u1, . . . , ul] and examining its rank. If the rank of MT is deficient, then (by an

argument analogous to that in Lemma 6.1.1) we can use Lemma 5.0.6 to construct an algebraic

variety V(k, l)T of all subsets of X that do not satisfy condition (iii).

Thus, since the finite union of varieties is a variety, V(m,n)I ∪ VX ∪ V(k, l)T is an algebraic

variety, and hence a Zariski closed set, of all the configurations not in strong general position.

After observing that the complement is non-empty, it follows from Theorem 5.0.7 that the set of

all configurations of points in strong general position in Rmn is open and dense in the Euclidean

topology on Rmn. Therefore since X is open in the Euclidean topology, there exists ε > 0 such

that perturbing any point by ε does not remove X from strong general position.
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6.2 Properties of support vector machines for points in strong

general position
Now that we have a stronger notion of general position, we can say more about the possible

configurations of support vectors. In this section we will show that we can have anywhere from 2

to at most n+ 1 support vectors.

Lemma 6.2.1. If X ⊂ Rn is a set of linearly separable labeled points in strong general posi-

tion, then the projections of the convex hulls of the positive and negative support vectors onto the

separating hyperplane intersect at a single Radon point.

Proof. As shown in Lemma 4.0.1, the projections of the convex hulls of the positive and negative

support vectors onto the separating hyperplane intersect in at least one point. We will now show

that, given strong general position, the intersection is exactly one point. In search of contradiction,

suppose the intersection of the projections of the convex hulls contains at least two distinct points,

x 6= x′. Note that the intersection of the two projections of convex hulls is convex, and hence the

intersection contains the entire line segment between x and x′. It follows that the affine span of

the positive support vectors contains a 1-flat parallel to a 1-flat in the affine span of the negative

support vectors. This is a contradiction since X is in strong general position; see Definition 6.1.2

(iii). Hence there is a unique Radon point.

We will use the following lemma to show that there are at most n + 1 support vectors for

linearly separable points in strong general position.

Lemma 6.2.2. Let X ∈ Rn be a set of points, with |X| ≥ n + 2, and such that X is a subset of

two parallel (n− 1)-dimensional hyperplanes. Then X cannot be in strong general position.

Proof. Let k = |X|. Suppose first that we have k = n + 2 points contained in two parallel

(n− 1)-flats.

We proceed with two cases. First, suppose we have either no points or only one point contained

in one of the two parallel hyperplanes. Then we have either n + 2 or n + 1 points in the other

(n− 1)-flat. This violates the first condition of strong general position, Definition 6.1.2(i).

28



Now suppose we have k+ 1 ≥ 2 points in one flat and l+ 1 = (n+ 2)− (k+ 1) ≥ 2 points in

the other flat. Projecting the l-flat onto the other (n− 1)-flat gives a k flat and an l flat living in an

(n− 1)-flat. Since (k + 1) + (l + 1) = n + 2, this implies that k + l = n > n− 1, which means

that the projected k and l-flats intersect in at least a line, contradicting Definition 6.1.2(iii).

The proof above in the setting of k = n+ 2 also holds for any k ≥ n+ 2. Hence, X cannot be

in strong general position.

Theorem 6.2.3. Suppose X ⊆ Rn is in strong general position, and that X is equipped with

linearly-separable labels. Then there are at most n+ 1 supporting vectors.

Proof. Suppose we have k ≥ n + 2 support vectors. Then we have at least n + 2 points in two

parallel (n−1)-flats. By Lemma 6.2.2, this is a contradiction since X is in strong general position.

Therefore we can have at most n+ 1 support vectors.

The following lemma shows that any number of support vectors, from 2 up to n + 1, can

generically occur.

Lemma 6.2.4. Let 2 ≤ k ≤ n + 1 and 1 ≤ i ≤ k − 1. Then there is a labeled subset X ⊆ Rn in

strong general position with i supporting vectors from the positive class and with k− i supporting

vectors from the negative class.

Proof. Since k ≤ n + 1, it is possible to find a (k − 1)-simplex linearly embedded in Rn so that

all of the vertex locations are equidistant. Assign i labels to the positive class and k − i labels to

the negative class arbitrarily.

6.3 Stability of the support vectors
Now that the possible configurations of support vectors have been established, it remains to

show that these configurations are stable. We begin by showing that points which are linearly sep-

arable with a positive margin remain linearly separable under any arbitrarily small perturbation.

We define a notion of what it means for a support vector to be stable under arbitrarily small pertur-

bations. We show that general position is not enough in order to guarantee that the support vectors
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are stable, and we conjecture that strong general position will guarantee that the set of support

vectors is stable.

Lemma 6.3.1. If X ⊆ Rn is a set of linearly separable labeled points with positive margin,

then there exists an ε > 0 such that upon perturbing any point by at most ε, X remains linearly

separable.

Proof. Let X ⊆ Rn be a set of linearly separable, labeled points, and let H denote the separating

hyperplane. Let ε1 = minx∈Xd(x,H), where the distance between point x and set H is defined

as d(x,H) = infh∈H d(x, h), where d(x, h) = ‖x − h‖. By the assumption that X is linearly

separable with positive margin, we have ε1 > 0. Thus, we choose ε = ε1
2

to be the maximum

distance that we will allow the points to be perturbed. Upon perturbing by at most ε, note that the

perturbed points are still linearly separable (and still with positive margin) by the same separating

hyperplane H . Therefore, there exists an ε > 0 such that if every point is perturbed by at most ε,

the points remain linearly separable.

Definition 6.3.2. A support vector v is called stable if there exists an ε > 0 such that any ε-

perturbation (of all the points) leaves v as a support vector.

We propose to use this notion of stability to address the issue of numerically finding (too) many

support vectors in software when, in reality, there should be a small number. Software programs

such as Matlab often return more than n+1 support vectors, but we showed in Lemma 6.2.3 that we

can have at most n+ 1 support vectors when given points in strong general position. So to identify

the true support vectors, we would need to increase our precision of our algorithms. Furthermore,

we can probably look at which vectors are needed for a Radon configuration in order to identify

which support vectors v are stable and which are extraneous.

Conjecture 6.3.3. Let X ⊆ Rn be a set of linearly separable labeled points in strong general

position. Let ε0 > 0 be the minimum distance between any two distinct points in X . Then there

exists 0 < ε < ε0
2

such that if each point is perturbed by at most ε, then the set of supporting

vectors remains unchanged.
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Defining what it means for the set of supporting vectors to “remain unchanged" requires a bit

of care, since the vectors are being moved. What we mean is the following. Since the points in

X are perturbed by less than ε0
2

, it follows that each ball of radius ε0
2

centered at each point in X

contains exactly one point in the perturbed collection of points X̃ . This gives a bijection between

X and the perturbed points X̃ . Conjecture 6.3.3 is then saying that a point x ∈ X is a support

vector for X if and only if its corresponding point x̃ ∈ X̃ is a support vector for X̃ .

Remark 6.3.4. In this remark we give two different types of examples of why general position (as

opposed to strong general position) is not sufficient for the conclusion of Conjecture 6.3.3 to hold.

(We’ll refer to (i)–(iii) in the definition of strong general position, Definition 6.1.2.)

As the first example, consider a linearly separable set of five labeled points in R3, (0, 0, 0),

(0, 2, 0), (0, 0, 3) in the positive class and (2, 1, 1), (2, 0.5, 0.5) in the negative class. All five of the

points are support vectors since the line spanned by the two points in the negative class is parallel

to some vector inside the span of the three points in the negative class. Even though these points

are in general position, perturbing any single point in the x direction will change the number of

support vectors, leaving only four support vectors.

For a second example, consider a set of 4 points where the single support vector of the positive

class, (0, 0, 0) lies on the boundary the triangle formed by the support vectors of the negative class,

(−1, 2, 0), (1, 2, 0), and (0, 2, 1). Perturbing the point (0, 0, 0) to anywhere outside the projected

boundary of the triangle formed by the three negative support vectors changes the set of support

vectors. Indeed, this follows from Lemma 4.0.1, which says that the projections of the convex

hulls of the support vectors must intersect. Hence there is no ε > 0 for which this set of support

vectors can be stabily perturbed.
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Chapter 7

Conclusion

In this paper, we examined support vector machines and some of their theoretical properties.

After establishing background on SVM, Radon’s theorem, and some additional algebraic tools in

Chapters 2, 3,and 5, we were able to prove some new properties about support vectors and their

possible configurations in Chapters 4 and 6. Given a set of linearly separable data, the projection

of the convex hulls of the support vectors to the separating hyperplane intersect. Furthermore, if the

points are in strong general position, then there is a unique point of intersection, the Radon point.

Also for points in strong general position, we show there can be at most n + 1 support vectors in

Rn dimensional space. Finally, we conjecture that given linearly separable data in strong general

position, there exists an ε > 0 such that perturbing the data points by at most ε keeps the set of

support vectors the same. These results lead to additional problems and questions that we can ask.

Support vector machines are a common machine learning algorithm used to look at separable

classes of data. Understanding some properties of the support vectors allows us to take a closer look

at the possible configurations of data. Several software programs, such as Matlab, pull too many

support vectors from the data set. Our research shows that there is a maximum number of support

vectors, for generic points, and that we are guaranteed to get certain (Radon) configurations. If

we do not have a Radon configuration or we have too many support vectors, that would imply our

points are not in general position. Thus since that happens with probability 0, our error estimation

would have been incorrect and we would need to increase our precision.

We share a list of questions that are natural to ask following our results.

Question 7.0.1. What can be said for spherical or ellipsoidal SVM? See for example [23], espe-

cially Figure 3 within. In spherical SVM, we suppose that the two classes of data can be separated

with one class inside a sphere, and with the second class outside. Ellipsoidal SVM is analogous,

except that the sphere is generalized to also allow for separating ellipsoids. What is the maximal

number of possible support vectors for separable points in general position for spherical and ellip-
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soidal SVM, where “general position" will have to be carefully defined for this new context? Is

there a version of Radon’s theorem that relates to spherical or ellipsoidal SVM?

Question 7.0.2. Is there anything precise that can be said when the data is not linearly separable,

and hence one uses soft margin SVM (allowing errors) instead of hard margins? There are several

different ways one could define support vectors in this context.

Question 7.0.3. Which of the possible Radon configurations (say one support vector in each class,

or one support vector in the positive class and two in the negative class, or two support vectors in

each class, etc.) is the most likely? For this question to make sense, we need a random model of

labeled data points that are linearly separable. What are reasonable such models? There is almost

certainly no canonical such model, but instead a zoo of random models of linearly separable data

that one could consider.

One class of probability models could be as follows. Select two different probability distribu-

tions in Rn with linearly separable supports. Sample positively labeled points from one distribu-

tion, and negatively labeled points from the second. The resulting points will be linearly separable.

A second class of probability models could to consider two arbitrary probability distributions

in Rn, one corresponding to each of the positive and negative classes. Upon sampling a point from

a distribution, if that new point makes it so that the data are no longer linearly separable, then reject

that point and sample again at random.

Under any such random model for linearly separable labeled points, we are interested in the

following question. Which Radon configurations occur with positive probability, and what are

those probabilities? The answers will of course depend on the random model selected.

The paper [24] considers the problem of computing the probability that two probabilistic point

sets are linearly separable.

Question 7.0.4. If you toss two 6-sided die into the air and they collide, then (with probability one)

they either collide vertex-to-face or edge-to-edge. The probability of a vertex-to-face collision is

46%, and the probability of an edge-to-edge collision 54%. The answer is computed using integral

geometry. This is called Firey’s dice problem; see [25–27] and [28, Pages 358–359].
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When the two dice collide, it is analogous to a very special case of SVM where the support

vectors from both classes all lie on the same hyperplane, i.e. the width of the margin is zero. A

question that is perhaps more closely related to SVM is: what is the probability of the different

types of “closest point configurations" when we specify that the dice are at exactly distance d

apart? Once d > 0, the two closest points can both be vertices with positive probability, or the

two closest points can be a vertex and a point on an edge. The vertex-and-face and edge-and-

edge configurations still occur with positive probability. The Firey dice problem can perhaps be

considered as a limit as d → 0. This problem is also interesting for dice of any convex shape, for

example tetrahedral dice.

There are many new directions to extend this research and we hope to pursue them at a later

date.
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