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Motivation



MOTIVATION

For any molecule, chemists want to understand the structure of its energy

landscape.
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MOTIVATION

For any molecule, chemists want to understand the structure of its energy
landscape.

2-methypentane Energy Landscape
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This quickly becomes rather difficult as the size of the molecule increases.



MOTIVATION

Goal: Use tools from topology to provide information about the structure of
energy landscapes.
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Background



ENERGY LANDSCAPES

What is an Optimized Potentials for Liquid Simulations - United Atom
(OPLS-UA) energy landscape?



ENERGY LANDSCAPES

What is an Optimized Potentials for Liquid Simulations - United Atom
(OPLS-UA) energy landscape?

Butane
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V1727271(¢1) = Co + (1 [1 + COS(¢1)] + C2[1 = COS(2¢1)] + C3[1 + COS(3¢1)]



ENERGY LANDSCAPES

What is a branched alkane?

CH3-CH-CH-(CHa);

Energy (kcal/mol)

Dihedral angle (°)

fl¢1) = Visoi(po +0) + Visoi(e —6)



ENERGY LANDSCAPES

What does a bigger branched alkane energy landscape look like?

2-methypentane Energy Landscape

Energy




PERSISTENT HOMOLOGY

Goal: Calculate the sublevelset persistent homology of branched alkane
energy landscapes.
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MORSE THEORY AND SUBLEVELSET PERSISTENCE

Lemma 1

If f: M — R is a Morse function, then the birth and non-infinite death times
in the sublevelset persistent homology correspond to the critical points of f.
Each k-dimensional bar has birth time corresponding to a critical point of
index k, and death time either equal to infinity or otherwise corresponding to
a critical point of index kR + 1. Furthermore, the number of semi-infinite bars
in dimension R is given by the k-dimensional homology of M.

Figure: Nudged elastic band in topological data analysis. Henry Adams, Atanas
Atanasov, and Gunnar Carlsson. Topological Methods in Nonlinear Analysis 45 (2015),
247-272.



ADDITIVE FUNCTIONS ON A PRODUCT SPACE

Definition 2
If gi: Xi — R is a collection of functions for i = 1,...,n, then one can define

their sum fon the product space by f: X; x ... x X, — R given by

fCa, .. s Xn) = gi(x1) -+ gn(Xn).
? @p
ST SR g:S' =R
f: (S =R

f(1, ¢2) = gi(é1) + ga2(92) ;



ADDITIVE FUNCTIONS ON A PRODUCT SPACE

fl1,82) = Viao1(d1) + [Visa1(p2 +0) + Visoi(d — 6)]



ADDITIVE FUNCTIONS ON A PRODUCT SPACE

Additionally, we know that the critical points of the component functions
make up the critical points of the additive function.

Lemma 3

Let X1, ... X, be manifolds, let f;: X; — R be Morse functions, and let

f: X1 x --- x Xp — R be the additive function over a product space defined by
f(xa, ..., xn) = S0, fi(xi). Then fis a Morse function. Further, the point
(x1,X%2, ..., Xn) Is a critical point of f if and only if each coordinate x; is a
critical point of fi. Finally, the index of a critical point (X1, %2, ..., Xa), denoted
by pg(x1,%2, ..., Xn), is equal to the sum of all indices of the component
functions,

(X1,X2a" Xn)—Z,LLf,(X;



KUNNETH FORMULA

Theorem 4 (Persistent Kiinneth Formula [GP19])
There is a natural short exact sequence of graded modules
0= @P (PHi(X) ® PH;(Y)) = PHa(X &7 Y)
i+j=n
— @B Tor(PHi(X), PHj_1(Y)) — 0.
i+j=n

If Hi(X) and H;(Y) are point-wise finite, then

beds (X @5 Y)
= || {+nn+1)1ebedi(X),) € bedj(¥)}
i+j=n
U L] {ts+nnri+))|1€bedi(X),) € bed;_1(V)}
i+j=n
= | {te&+ ¢, min(¢) + 1,6+ 1)) | | € bedi(X),J € bed;(V)}
i+j=n
U || {Imax(é + 1, &+ 1), 11+ 1) | | € bedi(X),J € bed;_1(Y)} -
i+j=n

Here ¢ and r are the left and right endpoints of the interval.



The Process



PERSISTENT HOMOLOGY

Goal: Calculate the sublevelset persistent homology of branched alkane
energy landscapes.




THE PROCESS VIA GUDHI

o Calculate good approximations for each base bond energy landscape
o Use GUDHI to calculate the persistence diagrams
- Input: Number of each type of bond
- Internal process: Construct mesh, construct energy function, evaluate function
over the mesh, compute the cubical complex, compute sublevelset persistence
- Output: Sublevelset persistence barcode, diagram, and/or birth, death, and
homological dimension of each bar



THE PROCESS VIA GUDHI

o Calculate good approximations for each base bond energy landscape
o Use GUDHI to calculate the persistence diagrams
- Input: Number of each type of bond
- Internal process: Construct mesh, construct energy function, evaluate function
over the mesh, compute the cubical complex, compute sublevelset persistence
- Output: Sublevelset persistence barcode, diagram, and/or birth, death, and
homological dimension of each bar
o Limitations: 9 internal bonds max (takes hours, will address), very
idealized (1-x-y-1, non-bonded atom interactions, will not address)

o Goal: Characterize the energy landscapes without having to go through
this process



1-2-2-1: butane
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1-3-2-1: isopentane
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1-3-3-1: 2,3-dimethylbutane

1-4-2-1: 2,2-dimethylbutane
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EL'S AND SUBLEVELSET PERSISTENCE OF BASE BONDS
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EL'S AND SUBLEVELSET PERSISTENCE OF BASE BONDS

Energy (keal/mol)
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2,2-METHYLPENTANE
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2,2-METHYLPENTANE
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General Results
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RESULTS — GENERAL

Remark 1
The energy landscape for any branched alkane, f: (S")" — R has (2)
semi-infinite bars in dimension k.
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RESULTS — GENERAL

Remark 1
The energy landscape for any branched alkane, f: (S")" — R has (2)
semi-infinite bars in dimension k.

Theorem 5 (S.)

The energy function of any branched alkane, f: (S")" — R can be
decomposed into functions on each bond x-y where each function consists
of dihedral types w-x-y-z. Thus, if ¢; is the number of critical points for each
bond, we have

n
HC,’—2”

2" semi-infinite bars + % finite bars.

2%



RESULTS — GENERAL (CONTINUED)

Theorem 6 (S.)

The sublevelset persistent homology on any analytical branched alkane with
n internal bonds with potential energy landscape f: (S")" — R has
() + (3" =1)(";") persistent homology bars in dimension k.

25



RESULTS — GENERAL (CONTINUED)

Theorem 6 (S.)

The sublevelset persistent homology on any analytical branched alkane with
n internal bonds with potential energy landscape f: (S")" — R has

() + (3" =1)(";") persistent homology bars in dimension k.

Theorem 7 (S.)

Let Xa,..., X, be a set of energy landscapes. Let {bcd(Xq)}q—1 be the
corresponding set of barcodes with bar lengths {¢;}/,, where £, = oo and
all other lengths are ordered greatest to least (i.e. £r > £r11). Let xq,r be the
number of bars in bcd(Xq) with length ¢.. Then, the number of bars of length
£rin bed(Xh) ®f - - - @ bed(Xq) is

county(r,0) — count,(r —1,0) + count(r, 1) — counta(r —1,1).

25



An example of sublevelset persistence
characterization

26



CHARACTERIZING MOLECULES WITH 3-2 INTERNAL BONDS

Goal: Completely characterize the sublevelset persistent homology of all
branched alkanes consisting exclusively of 3-2 internal bonds

Original motivation: Polypropylene and Polybutylene (Plastics)

Internal bond 3-2

>

d d,

Energy
o

ag

Dihedral Angle
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NECESSARY NOTATION

Definition 8

Letf: (S)" — R be the branched alkane energy function with n internal 3-2
bonds, and let kR < n be the index of a critical point. Let iy + i, < k and let
j1+j> < n—k We say that an index k critical point (¢1, ..., ¢n) of fis of
class(n, k, ir, iz, j1, j2) if the list of points, (¢, ..., ¢n), consists of the
breakdown of critical points of the 3-2 bond, outlined below.

Type 1-3-2-1
Critical Point \ Feature Type \ Number of copies

dh Local Max* I

d, Global Max 173

c Local Max R—ir—1y

aq Global Min J1

a, Local Min* 2

b Local Min n—Rk—ji—j

Note, the * denotes that the critical point has been shifted by ¢, and hence,

has switched from global to local.
29



NUMBER OF POINTS AND ENERGY VALUE PER CLASS

Lemma 9 (S.)
The number of critical points of f in each class(n, R, i1, i, j1,J2) IS

n
(/1,127” —RkR—ji—j2, i R— i1 — /‘2)‘

30



NUMBER OF POINTS AND ENERGY VALUE PER CLASS

Lemma 9 (S.)
The number of critical points of f in each class(n, R, i1, i, j1,J2) IS

n
<j1aj27n - k _jT _j25i17i2,k_ i1 — /2) ’
Lemma 10 (S.)

For f: (S')" — R where f(¢n, ..., én) = Zn:fm-z-w(d),-), all critical points of
i=

class(n, k, ir, i2, J1, j2) have energy value

E(n, R, v, i2, j1,12) = (M) (2)a’ +(n—kR—ji—j2) B+ (R—i1—i2)y+ ()8 +(i2)d".

30



RESULTS — COPIES OF 3-2 BONDS

Theorem 11 (S.)

For any branched alkane consisting of n 3-2 internal bonds, consider the
k-dimensional sublevelset persistent homology barcodes of the branched
alkane energy landscape, fn: (S)" — R. Let k < n, i1 + i, < k and

j1+Jj2 < n— R Hence, for any class(n, R, i, i2, j1,J2), the birth time of any
k-dimensional bars in that class is

E(n, R, i, iz, j1,j2) = ()a+ (2)a+ (n—kR—j1—j2) B4+ (R—ih — i)y + (i1)d + (i2)d,

where the number of bars in that class is given below by:

o i1=0h=Rkj1=n—~k j,=0gives

n
<j1aj27n - k _jT _jZ,ihiZ,l?_ i1 — I2>

semi-infinite bars,

31



RESULTS — COPIES OF 3-2 BONDS

Theorem 11 (S. - continued)
o1+ =~Rkj>=0n—Rk<jgives
i
S o
=0 ]11j2>n_k_1‘\_]2+€7’1_Z,/2,k—l1—12
bars of length § — 33,
o jo # 0 gives

R—iy—iy

S S
Jisjo+€,n—R—j1—jo, o, R—Ih—ip — £

£=0
bars of length v — «, and

o 0 bars born for any other type of critical point.

32



PROOF

- Split critical points into appropriate classes
- Introduce perturbation by e
- Identify which classes correspond to which bar lengths
- For example, j; # 0 gives classes that correspond to bars of length v — «
- Figure out which classes results in the death of bars from other classes
- For v — a length bars, class(n, R, i1, i2, j1,j2) kills bars from
class(n,k — 1, in, iz, j1,j2 + 1)

- Count via induction on number of internal bonds

CH5-CH-CH-(CH3); 4 1-3-2-1

Energy (kcal/mol)

Dihedral angle (°) 0

33



Another example of sublevelset
persistence characterization
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CHARACTERIZING MOLECULES WITH 2-2 AND 3-2 INTERNAL BONDS

Goal: Completely characterize the sublevelset persistent homology of all
branched alkanes consisting exclusively of 2-2 and 3-2 internal bonds

Motivation: Show how we can characterize for two different internal types.
This will allow us to describe the characterization process.

Internal bond 2-2 Internal bond 3-2

Energy (kcal/mol)
Energy

—— CH;3-CH-CH-CH;

as,

Dihedral angle (°)

Dihedral Angle

35



EXAMPLE: ONE 2-2 INTERNAL BOND WITH ONE 3-2 INTERNAL BOND
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DEFINING THE CLASS

Just like last time, we define a class of critical points:

class([n1 fa im0 n O])
Ny Ry i i Jjn 2

We count the number of points in each class,

class([n1 &m0 .0])‘:
ny Ry iy in jn 2

2”1*"11*/11(_ ) .”71 _ )( ) ) _ -ﬂz- ] ) )
T, Rl = i1, j11, M — Ry — jir/ Nij, i22, Ry — i21 — 22, J21,J22, N2 — Ra — jo1 — J22

We also find the energy value associated to each class:

E(class ([m f im0 n 0}) ) =
Ny Ry i i a1 2
(m)ar + (N1 = Ry — j1) B + (k1 — i) + (i)
+ (j1)oo + (2)ah + (2 — Ry — jo1 — j22) B2 + (R — i1 — )2 + (i1)82 + (i22) 5.

37



RESULTS — COPIES OF 3-2 AND 2-2 BONDS

Theorem 12 (S.)

For any branched alkane consisting of ny internal bonds of type 2-2 and n,
internal bonds of type 3-2, consider the k-dimensional sublevelset persistent
homology barcodes of the branched alkane energy landscape, f: (S')" — R.
Let k = Ry + f?z, R+ Ry < Ny 4+ ny, 11 4 i1 + i < Ry + /?2, In < k1, In + i < I?L
Jun 242 <m4n— R — Ry, jo1 4+ j22 < ny — Ry, and ju < nq — Ry Hence,

n kim0 ju O

for any class . ) the birth time of any

n, Ry iy im jn j»
kR-dimensional bars in that class is

E(class ([m fa im0 n 0})) =
Ny Ry i 2 a1 j2
(i)er + (N1 = ki — jin)Br + (R — i) y1 + (i)
+ (jn1)on + (j2)0 + (N2 — Ry — o1 — j22) B2 + (Ro — i1 — i) 2 + (121)82 + (i22)85-

where the number of bars born in that class is given below by:

38



RESULTS — COPIES OF 3-2 AND 2-2 BONDS

Theorem 12 (S. - Continued)
Toin+ i =R+ Ry, i1 =0, j2 =0, (M + n2) — (R + R2) = ju + jm gives

m R in 0 jn O
class . . . .
N, Ry in ix J21 J2

2. im+in=R + Ry, j2n=0n—Fk —jn=0and
(14 n2) — (Ri 4+ R2) > jn + o gives

N
i, R — 1, i, mo— Ry — jn

n;
</21 — L0, Ry — I — i, j21, j22, M2 — Ry — jo1 — j22 +f>

semi-infinite bars,

i1

> =

bars of length & — /3,

39



RESULTS — COPIES OF 3-2 AND 2-2 BONDS

Theorem 12 (S. - Continued)
3. j > 0and in + jin > 0 gives

e "
i, R1 — i, ji, N1 — R — jn

£=0

n;
<f21, i, Ry — i1 — i — £, jor, Joo + £,n2 — Ry — —jzz)!)]

bars of length v, — s, and
4. ny— Ry —jn > 0gives

Ry —in
o n
9M=i—in 1 L ] ) ] )
[Z:%( ) I, Re — i — £, jn, N1 — Ry — jn + £

Nz
i, 2, Ry — 21 — I, J21, )22, M2 — Ry — jn — 2

bars of length v« — 5y, and

5. 0 bars born for any other type of critical point. -



GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

Let f be an energy landscape such that f: (S')" — R where
flpr,. .., én) = gi(n) + ... + gn(én). To characterize the sublevelset
persistence,

4



GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

Let f be an energy landscape such that f: (S')" — R where
flpr,. .., én) = gi(n) + ... + gn(én). To characterize the sublevelset
persistence,

1. Identify the different bar lengths in all component functions. These
lengths will be used to partition the classes.
—For the 3-2/2-2 case, we had 4; semi-infinite, 6 — 32, 72 — az, and v — B
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GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

Let f be an energy landscape such that f: (S')" — R where
flpr,. .., én) = gi(n) + ... + gn(én). To characterize the sublevelset

persistence,

1. Identify the different bar lengths in all component functions. These

lengths will be used to partition the classes.
—For the 3-2/2-2 case, we had 4; semi-infinite, 6 — 32, 72 — az, and v — B

2. Construct the class matrix.

n kom0 Jju 0
—class . . . .
N, ky in in ju
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GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

Let f be an energy landscape such that f: (S')" — R where
flpr,. .., én) = gi(n) + ... + gn(én). To characterize the sublevelset

persistence,

1. Identify the different bar lengths in all component functions. These
lengths will be used to partition the classes.
—For the 3-2/2-2 case, we had 4; semi-infinite, 6 — 32, 72 — az, and v — B
2. Construct the class matrix.

n kom0 Jju 0
—class . . . .
N, ky in in ju

3. Determine the number of points in each class.
-Start with the multinomial coefficient and adjust as needed (2" ~"—/n)

41



GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

Let f be an energy landscape such that f: (S')" — R where
flpr,. .., én) = gi(n) + ... + gn(én). To characterize the sublevelset
persistence,

1. Identify the different bar lengths in all component functions. These
lengths will be used to partition the classes.
—For the 3-2/2-2 case, we had 4; semi-infinite, 6 — 32, 72 — az, and v — B
2. Construct the class matrix.

n kom0 i 0:|>
—class . . .

N, ky in in ju
3. Determine the number of points in each class.
-Start with the multinomial coefficient and adjust as needed (2" ~"—/n)
4. Identify which classes correspond to which bar length and energy value.
-These are the restrictions on jx, ji, etc.

41



GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

Let f be an energy landscape such that f: (S')" — R where
flpr,. .., én) = gi(n) + ... + gn(én). To characterize the sublevelset
persistence,

1. Identify the different bar lengths in all component functions. These
lengths will be used to partition the classes.
—For the 3-2/2-2 case, we had 4; semi-infinite, 6 — 32, 72 — az, and v — B
2. Construct the class matrix.
~class [ | i I:ﬂ ‘0 }.Aﬂ O])
N, ky in in ju
3. Determine the number of points in each class.
-Start with the multinomial coefficient and adjust as needed (2" ~"—/n)
4. Identify which classes correspond to which bar length and energy value.
-These are the restrictions on jx, ji, etc.
5. Count the number of bars created by each class.
-The alternating sums in both theorems, birth classes will pair with death

classes and each pair is dependent on bar length
41



FUTURE WORK

- Applications to polymers and plastics - in progress with Adams, Clark, and
Sadhu

- Change generalization of 1-x-y-1 to w-x-y-z
- Look at other inputs: bond length, type of bond, etc.
- Other structures: alkenes, alkynes, cyclo-alkanes, etc.

- Non-organic compounds
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