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MOTIVATION

For any molecule, chemists want to understand the structure of its energy
landscape.

This quickly becomes rather difficult as the size of the molecule increases.
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MOTIVATION

Goal: Use tools from topology to provide information about the structure of
energy landscapes.

1

1

32

2

1 θ

4



Background
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ENERGY LANDSCAPES

What is an Optimized Potentials for Liquid Simulations - United Atom
(OPLS-UA) energy landscape?
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V1-2-2-1(ϕ1) = c0 + c1[1+ cos(ϕ1)] + c2[1− cos(2ϕ1)] + c3[1+ cos(3ϕ1)]
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ENERGY LANDSCAPES

What is a branched alkane?
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f(ϕ1) = V1-3-2-1(ϕ2 + θ) + V1-3-2-1(ϕ2 − θ)
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ENERGY LANDSCAPES

What does a bigger branched alkane energy landscape look like?
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PERSISTENT HOMOLOGY

Goal: Calculate the sublevelset persistent homology of branched alkane
energy landscapes.
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MORSE THEORY AND SUBLEVELSET PERSISTENCE

Lemma 1
If f : M→ R is a Morse function, then the birth and non-infinite death times
in the sublevelset persistent homology correspond to the critical points of f.
Each k-dimensional bar has birth time corresponding to a critical point of
index k, and death time either equal to infinity or otherwise corresponding to
a critical point of index k+ 1. Furthermore, the number of semi-infinite bars
in dimension k is given by the k-dimensional homology of M.

=
==

=

Figure: Nudged elastic band in topological data analysis. Henry Adams, Atanas
Atanasov, and Gunnar Carlsson. Topological Methods in Nonlinear Analysis 45 (2015),
247-272.
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ADDITIVE FUNCTIONS ON A PRODUCT SPACE

Definition 2
If gi : Xi → R is a collection of functions for i = 1, . . . ,n, then one can define
their sum f on the product space by f : X1 × . . .× Xn → R given by
f(x1, . . . , xn) = g1(x1) + . . .+ gn(xn).
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g1 : S1 → R g2 : S1 → R
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f : (S1)2 → R
f(ϕ1, ϕ2) = g1(ϕ1) + g2(ϕ2)
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ADDITIVE FUNCTIONS ON A PRODUCT SPACE
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f(ϕ1, ϕ2) = V1-2-2-1(ϕ1) + [V1-3-2-1(ϕ2 + θ) + V1-3-2-1(ϕ2 − θ)]
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ADDITIVE FUNCTIONS ON A PRODUCT SPACE

Additionally, we know that the critical points of the component functions
make up the critical points of the additive function.

Lemma 3
Let X1, . . . Xn be manifolds, let fi : Xi → R be Morse functions, and let
f : X1 × · · · × Xn → R be the additive function over a product space defined by
f(x1, . . . , xn) =

∑n
i=1 fi(xi). Then f is a Morse function. Further, the point

(x1, x2, . . . , xn) is a critical point of f if and only if each coordinate xi is a
critical point of fi. Finally, the index of a critical point (x1, x2, . . . , xn), denoted
by µf(x1, x2, . . . , xn), is equal to the sum of all indices of the component
functions,

µf(x1, x2, . . . , xn) =
n∑
i=1

µfi(xi).
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KÜNNETH FORMULA

Theorem 4 (Persistent Künneth Formula [GP19])
There is a natural short exact sequence of graded modules

0→
⊕
i+j=n

(PHi(X)⊗ PHj(Y)) → PHn(X⊗f Y)

→
⊕
i+j=n

Tor(PHi(X), PHj−1(Y)) → 0.

If Hi(X) and Hj(Y) are point-wise finite, then
bcdn(X⊗f Y)

=
⊔
i+j=n

{
(ℓJ + I) ∩ (ℓI + J) | I ∈ bcdi(X), J ∈ bcdj(Y)

}
⊔

⊔
i+j=n

{
(rJ + I) ∩ (rI + J) | I ∈ bcdi(X), J ∈ bcdj−1(Y)

}
=

⊔
i+j=n

{
[ℓI + ℓJ,min(ℓJ + rI, ℓI + rJ)) | I ∈ bcdi(X), J ∈ bcdj(Y)

}
⊔

⊔
i+j=n

{
[max(ℓI + rJ, ℓJ + rI), rI + rJ) | I ∈ bcdi(X), J ∈ bcdj−1(Y)

}
.

Here ℓ and r are the left and right endpoints of the interval.
14



The Process
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PERSISTENT HOMOLOGY

Goal: Calculate the sublevelset persistent homology of branched alkane
energy landscapes.
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THE PROCESS VIA GUDHI

� Calculate good approximations for each base bond energy landscape
� Use GUDHI to calculate the persistence diagrams

∙ Input: Number of each type of bond
∙ Internal process: Construct mesh, construct energy function, evaluate function
over the mesh, compute the cubical complex, compute sublevelset persistence

∙ Output: Sublevelset persistence barcode, diagram, and/or birth, death, and
homological dimension of each bar

� Limitations: 9 internal bonds max (takes hours, will address), very
idealized (1-x-y-1, non-bonded atom interactions, will not address)

� Goal: Characterize the energy landscapes without having to go through
this process

17



THE PROCESS VIA GUDHI

� Calculate good approximations for each base bond energy landscape
� Use GUDHI to calculate the persistence diagrams

∙ Input: Number of each type of bond
∙ Internal process: Construct mesh, construct energy function, evaluate function
over the mesh, compute the cubical complex, compute sublevelset persistence

∙ Output: Sublevelset persistence barcode, diagram, and/or birth, death, and
homological dimension of each bar

� Limitations: 9 internal bonds max (takes hours, will address), very
idealized (1-x-y-1, non-bonded atom interactions, will not address)

� Goal: Characterize the energy landscapes without having to go through
this process

17



INTERNAL BASE BOND TYPES

1-2-2-1: butane 1-3-2-1: isopentane
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1-3-3-1: 2,3-dimethylbutane 1-4-2-1: 2,2-dimethylbutane
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1-4-3-1: triptane 1-4-4-1: tetramethylbutane
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EL’S AND SUBLEVELSET PERSISTENCE OF BASE BONDS

1-2-2-1 1-3-2-1 1-3-3-1
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EL’S AND SUBLEVELSET PERSISTENCE OF BASE BONDS

1-4-2-1 1-4-3-1 1-4-4-1
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2,2-METHYLPENTANE
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2,2-METHYLPENTANE
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2,2-METHYLPENTANE
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2,2-DIMETHYLPENTANE
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2,2-DIMETHYLPENTANE
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General Results
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RESULTS – GENERAL

Remark 1
The energy landscape for any branched alkane, f : (S1)n → R has

(n
k
)

semi-infinite bars in dimension k.

Theorem 5 (S.)
The energy function of any branched alkane, f : (S1)n → R can be
decomposed into functions on each bond x-y where each function consists
of dihedral types w-x-y-z. Thus, if ci is the number of critical points for each
bond, we have

2n semi-infinite bars+

n∏
i=1
ci − 2n

2 finite bars.
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RESULTS – GENERAL (CONTINUED)

Theorem 6 (S.)
The sublevelset persistent homology on any analytical branched alkane with
n internal bonds with potential energy landscape f : (S1)n 7→ R has(n
k
)
+ (3n − 1)

(n−1
k
)
persistent homology bars in dimension k.

Theorem 7 (S.)
Let X1, . . . , Xn be a set of energy landscapes. Let {bcd(Xq)}nq=1 be the
corresponding set of barcodes with bar lengths {ℓr}mr=0, where ℓ0 = ∞ and
all other lengths are ordered greatest to least (i.e. ℓr > ℓr+1). Let xq,r be the
number of bars in bcd(Xq) with length ℓr. Then, the number of bars of length
ℓr in bcd(X1)⊗f · · · ⊗f bcd(Xq) is

countn(r, 0)− countn(r− 1, 0) + countn(r, 1)− countn(r− 1, 1).
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An example of sublevelset persistence
characterization
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CHARACTERIZING MOLECULES WITH 3-2 INTERNAL BONDS

Goal: Completely characterize the sublevelset persistent homology of all
branched alkanes consisting exclusively of 3-2 internal bonds

Original motivation: Polypropylene and Polybutylene (Plastics)

Internal bond 3-2

27



EXAMPLE: TWO 3-2 INTERNAL BOND
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NECESSARY NOTATION

Definition 8
Let f : (S1)n → R be the branched alkane energy function with n internal 3-2
bonds, and let k ≤ n be the index of a critical point. Let i1 + i2 ≤ k and let
j1 + j2 ≤ n− k. We say that an index k critical point (ϕ1, . . . , ϕn) of f is of
class(n, k, i1, i2, j1, j2) if the list of points, (ϕ1, . . . , ϕn), consists of the
breakdown of critical points of the 3-2 bond, outlined below.

Type 1-3-2-1
Critical Point Feature Type Number of copies

d1 Local Max* i1
d2 Global Max i2
c Local Max k− i1 − i2
a1 Global Min j1
a2 Local Min* j2
b Local Min n− k− j1 − j2

Note, the * denotes that the critical point has been shifted by ε, and hence,
has switched from global to local.
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NUMBER OF POINTS AND ENERGY VALUE PER CLASS

Lemma 9 (S.)
The number of critical points of f in each class(n, k, i1, i2, j1, j2) is(

n
j1, j2,n− k− j1 − j2, i1, i2, k− i1 − i2

)
.

Lemma 10 (S.)
For f : (S1)n → R where f(ϕ1, . . . , ϕn) =

n∑
i=1
f1-3-2-1(ϕi), all critical points of

class(n, k, i1, i2, j1, j2) have energy value

E(n, k, i1, i2, j1, j2) = (j1)α+(j2)α′+(n−k− j1− j2)β+(k− i1− i2)γ+(i1)δ+(i2)δ′.
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RESULTS – COPIES OF 3-2 BONDS

Theorem 11 (S.)
For any branched alkane consisting of n 3-2 internal bonds, consider the
k-dimensional sublevelset persistent homology barcodes of the branched
alkane energy landscape, fn : (S1)n → R. Let k ≤ n, i1 + i2 ≤ k, and
j1 + j2 ≤ n− k. Hence, for any class(n, k, i1, i2, j1, j2), the birth time of any
k-dimensional bars in that class is

E(n, k, i1, i2, j1, j2) = (j1)α+(j2)α+(n−k− j1− j2)β+(k− i1− i2)γ+(i1)δ+(i2)δ,

where the number of bars in that class is given below by:
� i1 = 0, i2 = k, j1 = n− k, j2 = 0 gives(

n
j1, j2,n− k− j1 − j2, i1, i2, k− i1 − i2

)

semi-infinite bars,
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RESULTS – COPIES OF 3-2 BONDS

Theorem 11 (S. – continued)

� i1 + i2 = k, j2 = 0, n− k < j1 gives

i1∑
ℓ=0

(−1)ℓ
(

n
j1, j2,n− k− j1 − j2 + ℓ, i1 − ℓ, i2, k− i1 − i2

)

bars of length δ − β,
� j2 6= 0 gives

k−i1−i2∑
ℓ=0

(−1)ℓ
(

n
j1, j2 + ℓ,n− k− j1 − j2, i1, i2, k− i1 − i2 − ℓ

)

bars of length γ − α, and
� 0 bars born for any other type of critical point.
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PROOF

∙ Split critical points into appropriate classes
∙ Introduce perturbation by ε

∙ Identify which classes correspond to which bar lengths
∙ For example, j2 ̸= 0 gives classes that correspond to bars of length γ − α

∙ Figure out which classes results in the death of bars from other classes
∙ For γ − α length bars, class(n, k, i1, i2, j1, j2) kills bars from
class(n, k− 1, i1, i2, j1, j2 + 1)

∙ Count via induction on number of internal bonds

33



Another example of sublevelset
persistence characterization
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CHARACTERIZING MOLECULES WITH 2-2 AND 3-2 INTERNAL BONDS

Goal: Completely characterize the sublevelset persistent homology of all
branched alkanes consisting exclusively of 2-2 and 3-2 internal bonds

Motivation: Show how we can characterize for two different internal types.
This will allow us to describe the characterization process.

Internal bond 2-2 Internal bond 3-2

35



EXAMPLE: ONE 2-2 INTERNAL BOND WITH ONE 3-2 INTERNAL BOND
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DEFINING THE CLASS

Just like last time, we define a class of critical points:

class
([

n1 k1 i11 0 j11 0
n2 k2 i21 i22 j21 j22

])
.

We count the number of points in each class,∣∣∣∣class([
n1 k1 i11 0 j11 0
n2 k2 i21 i22 j21 j22

])∣∣∣∣ =
2n1−i11−j11

( n1
i11, k1 − i11, j11, n1 − k1 − j11

)( n2
i21, i22, k2 − i21 − i22, j21, j22, n2 − k2 − j21 − j22

)
We also find the energy value associated to each class:

E
(
class

([
n1 k1 i11 0 j11 0
n2 k2 i21 i22 j21 j22

]))
=

(j11)α1 + (n11 − k11 − j11)β1 + (k1 − i11)γ1 + (i11)δ1
+ (j21)α2 + (j22)α′

2 + (n2 − k2 − j21 − j22)β2 + (k2 − i21 − i22)γ2 + (i21)δ2 + (i22)δ′2.
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RESULTS – COPIES OF 3-2 AND 2-2 BONDS

Theorem 12 (S.)
For any branched alkane consisting of n1 internal bonds of type 2-2 and n2
internal bonds of type 3-2, consider the k-dimensional sublevelset persistent
homology barcodes of the branched alkane energy landscape, f : (S1)n → R.
Let k = k1 + k2, k1 + k2 ≤ n1 + n2, i11 + i21 + i22 ≤ k1 + k2, i11 ≤ k1, i21 + i22 ≤ k2,
j11 + j21 + j22 ≤ n1 + n2 − k1 − k2, j21 + j22 ≤ n2 − k2, and j11 ≤ n1 − k1. Hence,

for any class
([

n1 k1 i11 0 j11 0
n2 k2 i21 i22 j21 j22

])
, the birth time of any

k-dimensional bars in that class is

E
(
class

([
n1 k1 i11 0 j11 0
n2 k2 i21 i22 j21 j22

]))
=

(j11)α1 + (n11 − k11 − j11)β1 + (k1 − i11)γ1 + (i11)δ1
+ (j21)α2 + (j22)α′

2 + (n2 − k2 − j21 − j22)β2 + (k2 − i21 − i22)γ2 + (i21)δ2 + (i22)δ′2.

where the number of bars born in that class is given below by:
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RESULTS – COPIES OF 3-2 AND 2-2 BONDS

Theorem 12 (S. – Continued)

1. i11 + i22 = k1 + k2, i21 = 0, j22 = 0, (n1 + n2)− (k1 + k2) = j11 + j21 gives∣∣∣∣∣class
([

n1 k1 i11 0 j11 0
n2 k2 i21 i22 j21 j22

])∣∣∣∣∣
semi-infinite bars,

2. i11 + i22 = k1 + k2, j22 = 0, n1 − k1 − j11 = 0, and
(n1 + n2)− (k1 + k2) > j11 + j21 gives

i21∑
ℓ′=0

(−1)ℓ
[(

n1
i11, k1 − i11, j11,n1 − k1 − j11

)
(

n2
i21 − ℓ, i22, k2 − i21 − i22, j21, j22,n2 − k2 − j21 − j22 + ℓ

)]

bars of length δ2 − β2,
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RESULTS – COPIES OF 3-2 AND 2-2 BONDS

Theorem 12 (S. – Continued)

3. j22 > 0 and i11 + j11 > 0 gives

k2−i21−i22∑
ℓ=0

(−1)ℓ
[(

n1
i11, k1 − i11, j11,n1 − k1 − j11

)
(

n2
i21, i22, k2 − i21 − i22 − ℓ, j21, j22 + ℓ,n2 − k2 − j21 − j22)!

)]

bars of length γ2 − α2, and
4. n1 − k1 − j11 > 0 gives

2n1−i11−j11
k1−i11∑
ℓ=0

(−1)ℓ
[(

n1
i11, k1 − i11 − ℓ, j11,n1 − k1 − j11 + ℓ

)
(

n2
i21, i22, k2 − i21 − i22, j21, j22,n2 − k2 − j21 − j22

)]

bars of length γ1 − β1, and
5. 0 bars born for any other type of critical point. 40



GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

Let f be an energy landscape such that f : (S1)n → R where
f(ϕ1, . . . , ϕn) = g1(ϕ1) + . . .+ gn(ϕn). To characterize the sublevelset
persistence,

1. Identify the different bar lengths in all component functions. These
lengths will be used to partition the classes.
–For the 3-2/2-2 case, we had 4; semi-infinite, δ2 − β2, γ2 − α2, and γ1 − β1

2. Construct the class matrix.

–class
([

n1 k1 i11 0 j11 0
n2 k2 i21 i22 j21 j22

])
3. Determine the number of points in each class.
–Start with the multinomial coefficient and adjust as needed (2n1−i11−j11)

4. Identify which classes correspond to which bar length and energy value.
–These are the restrictions on j22, j11, etc.

5. Count the number of bars created by each class.
–The alternating sums in both theorems, birth classes will pair with death
classes and each pair is dependent on bar length
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classes and each pair is dependent on bar length
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GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

Let f be an energy landscape such that f : (S1)n → R where
f(ϕ1, . . . , ϕn) = g1(ϕ1) + . . .+ gn(ϕn). To characterize the sublevelset
persistence,
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–For the 3-2/2-2 case, we had 4; semi-infinite, δ2 − β2, γ2 − α2, and γ1 − β1
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–class
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n1 k1 i11 0 j11 0
n2 k2 i21 i22 j21 j22

])
3. Determine the number of points in each class.
–Start with the multinomial coefficient and adjust as needed (2n1−i11−j11)

4. Identify which classes correspond to which bar length and energy value.
–These are the restrictions on j22, j11, etc.

5. Count the number of bars created by each class.
–The alternating sums in both theorems, birth classes will pair with death
classes and each pair is dependent on bar length
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FUTURE WORK

∙ Applications to polymers and plastics – in progress with Adams, Clark, and
Sadhu

∙ Change generalization of 1-x-y-1 to w-x-y-z
∙ Look at other inputs: bond length, type of bond, etc.
∙ Other structures: alkenes, alkynes, cyclo-alkanes, etc.
∙ Non-organic compounds
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