MOLECULAR CONFIGURATIONS AND PERSISTENCE: BRANCHED ALKANES AND ADDITIVE ENERGIES

Brittany Story

Advisor: Dr. Henry Adams

Committee: Dr. Patrick Shipman, Dr. Jeff Achter, and Dr. Anders Fremstad

March 29, 2022

Colorado State University

OUTLINE

- Motivation
- Background
 - · Energy landscapes and branched alkanes
 - · Sublevelset persistent homology
 - · Morse theory and sublevelset persistent homology
- · Characterizing energy landscapes of branched alkanes
 - · General results
 - · Example with 3-2
 - · Example with 2-2/3-2
 - · Generalizing the process
- · Future work
- · Acknowledgements

1

Motivation

MOTIVATION

For any molecule, chemists want to understand the structure of its energy landscape.

MOTIVATION

For any molecule, chemists want to understand the structure of its energy landscape.

This quickly becomes rather difficult as the size of the molecule increases.

MOTIVATION

Goal: Use tools from topology to provide information about the structure of energy landscapes.

1

Background

What is an Optimized Potentials for Liquid Simulations - United Atom (OPLS-UA) energy landscape?

What is an Optimized Potentials for Liquid Simulations - United Atom (OPLS-UA) energy landscape?

$$V_{1\text{-}2\text{-}2\text{-}1}(\phi_1) = c_0 + c_1[1 + \cos(\phi_1)] + c_2[1 - \cos(2\phi_1)] + c_3[1 + \cos(3\phi_1)]$$

What is a branched alkane?

$$f(\phi_1) = V_{1-3-2-1}(\phi_2 + \theta) + V_{1-3-2-1}(\phi_2 - \theta)$$

What does a bigger branched alkane energy landscape look like?

PERSISTENT HOMOLOGY

Goal: Calculate the sublevelset persistent homology of branched alkane energy landscapes.

Morse Theory and Sublevelset Persistence

Lemma 1

If $f: M \to \mathbb{R}$ is a Morse function, then the birth and non-infinite death times in the sublevelset persistent homology correspond to the critical points of f. Each k-dimensional bar has birth time corresponding to a critical point of index k, and death time either equal to infinity or otherwise corresponding to a critical point of index k+1. Furthermore, the number of semi-infinite bars in dimension k is given by the k-dimensional homology of k.

Figure: Nudged elastic band in topological data analysis. Henry Adams, Atanas Atanasov, and Gunnar Carlsson. Topological Methods in Nonlinear Analysis 45 (2015), 247-272.

ADDITIVE FUNCTIONS ON A PRODUCT SPACE

Definition 2

If $g_i: X_i \to \mathbb{R}$ is a collection of functions for i = 1, ..., n, then one can define their sum f on the product space by $f: X_1 \times ... \times X_n \to \mathbb{R}$ given by $f(x_1, ..., x_n) = g_1(x_1) + ... + g_n(x_n)$.

ADDITIVE FUNCTIONS ON A PRODUCT SPACE

$$f(\phi_1, \phi_2) = V_{1\text{-}2\text{-}2\text{-}1}(\phi_1) + [V_{1\text{-}3\text{-}2\text{-}1}(\phi_2 + \theta) + V_{1\text{-}3\text{-}2\text{-}1}(\phi_2 - \theta)]$$

ADDITIVE FUNCTIONS ON A PRODUCT SPACE

Additionally, we know that the critical points of the component functions make up the critical points of the additive function.

Lemma 3

Let X_1, \ldots, X_n be manifolds, let $f_i \colon X_i \to \mathbb{R}$ be Morse functions, and let $f \colon X_1 \times \cdots \times X_n \to \mathbb{R}$ be the additive function over a product space defined by $f(x_1, \ldots, x_n) = \sum_{i=1}^n f_i(x_i)$. Then f is a Morse function. Further, the point (x_1, x_2, \ldots, x_n) is a critical point of f if and only if each coordinate x_i is a critical point of f_i . Finally, the index of a critical point (x_1, x_2, \ldots, x_n) , denoted by $\mu_f(x_1, x_2, \ldots, x_n)$, is equal to the sum of all indices of the component functions,

$$\mu_f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^n \mu_{f_i}(x_i).$$

Theorem 4 (Persistent Künneth Formula [GP19])

There is a natural short exact sequence of graded modules

$$0 \to \bigoplus_{i+j=n} (PH_i(X) \otimes PH_j(Y)) \to PH_n(X \otimes_f Y)$$
$$\to \bigoplus_{i+j=n} \operatorname{Tor}(PH_i(X), PH_{j-1}(Y)) \to 0.$$

If $H_i(X)$ and $H_i(Y)$ are point-wise finite, then

$$\begin{split} &\operatorname{bcd}_n(X \otimes_f Y) \\ &= \bigsqcup_{i+j=n} \big\{ (\ell_J + I) \cap (\ell_I + J) \mid I \in \operatorname{bcd}_i(X), J \in \operatorname{bcd}_j(Y) \big\} \\ &\sqcup \bigsqcup_{i+j=n} \big\{ (r_J + I) \cap (r_I + J) \mid I \in \operatorname{bcd}_i(X), J \in \operatorname{bcd}_{j-1}(Y) \big\} \\ &= \bigsqcup_{i+j=n} \big\{ [\ell_I + \ell_J, \min(\ell_J + r_I, \ell_I + r_J)) \mid I \in \operatorname{bcd}_i(X), J \in \operatorname{bcd}_j(Y) \big\} \\ &\sqcup \bigsqcup_{i+j=n} \big\{ [\max(\ell_I + r_J, \ell_J + r_I), r_I + r_J) \mid I \in \operatorname{bcd}_i(X), J \in \operatorname{bcd}_{j-1}(Y) \big\} \,. \end{split}$$

Here ℓ and r are the left and right endpoints of the interval.

The Process

PERSISTENT HOMOLOGY

Goal: Calculate the sublevelset persistent homology of branched alkane energy landscapes.

THE PROCESS VIA GUDHI

- ♦ Calculate good approximations for each base bond energy landscape
- Use GUDHI to calculate the persistence diagrams
 - · Input: Number of each type of bond
 - Internal process: Construct mesh, construct energy function, evaluate function over the mesh, compute the cubical complex, compute sublevelset persistence
 - Output: Sublevelset persistence barcode, diagram, and/or birth, death, and homological dimension of each bar

THE PROCESS VIA GUDHI

- Calculate good approximations for each base bond energy landscape
- Use GUDHI to calculate the persistence diagrams
 - · Input: Number of each type of bond
 - Internal process: Construct mesh, construct energy function, evaluate function over the mesh, compute the cubical complex, compute sublevelset persistence
 - Output: Sublevelset persistence barcode, diagram, and/or birth, death, and homological dimension of each bar
- Limitations: 9 internal bonds max (takes hours, will address), very idealized (1-x-y-1, non-bonded atom interactions, will not address)
- Goal: Characterize the energy landscapes without having to go through this process

INTERNAL BASE BOND TYPES

1-2-2-1: butane	1-3-2-1: isopentane
1	1 1
2 - 2	3-2
1	1
1-3-3-1: 2,3-dimethylbutane	1-4-2-1: 2,2-dimethylbutane
	1 1
3-3	1 4 2
	1
1-4-3-1: triptane	1-4-4-1: tetramethylbutane
1 1	1 1
1-4-3	1 4 4 1
1	

EL'S AND SUBLEVELSET PERSISTENCE OF BASE BONDS

EL'S AND SUBLEVELSET PERSISTENCE OF BASE BONDS

2,2-METHYLPENTANE

2,2-METHYLPENTANE

2,2-METHYLPENTANE

2,2-DIMETHYLPENTANE

2,2-DIMETHYLPENTANE

General Results

RESULTS - GENERAL

Remark 1

The energy landscape for any branched alkane, $f:(S^1)^n \to \mathbb{R}$ has $\binom{n}{k}$ semi-infinite bars in dimension k.

RESULTS - GENERAL

Remark 1

The energy landscape for any branched alkane, $f:(S^1)^n \to \mathbb{R}$ has $\binom{n}{k}$ semi-infinite bars in dimension k.

Theorem 5 (S.)

The energy function of any branched alkane, $f:(S^1)^n \to \mathbb{R}$ can be decomposed into functions on each bond x-y where each function consists of dihedral types w-x-y-z. Thus, if c_i is the number of critical points for each bond, we have

$$2^n \text{ semi-infinite bars} + \frac{\prod\limits_{i=1}^n c_i - 2^n}{2} \text{ finite bars}.$$

RESULTS – GENERAL (CONTINUED)

Theorem 6 (S.)

The sublevelset persistent homology on any analytical branched alkane with n internal bonds with potential energy landscape $f: (S^1)^n \mapsto \mathbb{R}$ has $\binom{n}{k} + \binom{3^n}{k}$ persistent homology bars in dimension k.

RESULTS - GENERAL (CONTINUED)

Theorem 6 (S.)

The sublevelset persistent homology on any analytical branched alkane with n internal bonds with potential energy landscape $f\colon (S^1)^n\mapsto \mathbb{R}$ has $\binom{n}{k}+(3^n-1)\binom{n-1}{k}$ persistent homology bars in dimension k.

Theorem 7 (S.)

Let X_1,\ldots,X_n be a set of energy landscapes. Let $\{bcd(X_q)\}_{q=1}^n$ be the corresponding set of barcodes with bar lengths $\{\ell_r\}_{r=0}^m$, where $\ell_0=\infty$ and all other lengths are ordered greatest to least (i.e. $\ell_r>\ell_{r+1}$). Let $x_{q,r}$ be the number of bars in $bcd(X_q)$ with length ℓ_r . Then, the number of bars of length ℓ_r in $bcd(X_1)\otimes_f\cdots\otimes_f bcd(X_q)$ is

$$count_n(r, 0) - count_n(r - 1, 0) + count_n(r, 1) - count_n(r - 1, 1).$$

An example of sublevelset persistence characterization

CHARACTERIZING MOLECULES WITH 3-2 INTERNAL BONDS

Goal: Completely characterize the sublevelset persistent homology of all branched alkanes consisting exclusively of 3-2 internal bonds

Original motivation: Polypropylene and Polybutylene (Plastics)

EXAMPLE: TWO 3-2 INTERNAL BOND

Definition 8

Let $f: (S^1)^n \to \mathbb{R}$ be the branched alkane energy function with n internal 3-2 bonds, and let $k \le n$ be the index of a critical point. Let $i_1 + i_2 \le k$ and let $j_1 + j_2 \le n - k$. We say that an index k critical point (ϕ_1, \ldots, ϕ_n) of f is of class $(n, k, i_1, i_2, j_1, j_2)$ if the list of points, (ϕ_1, \ldots, ϕ_n) , consists of the breakdown of critical points of the 3-2 bond, outlined below.

Type 1-3-2-1		
Critical Point	Feature Type	Number of copies
d ₁	Local Max*	i ₁
d ₂	Global Max	i ₂
С	Local Max	$k-i_1-i_2$
a_1	Global Min	J ₁
a_2	Local Min*	j ₂
Ь	Local Min	$n-k-j_1-j_2$

Note, the * denotes that the critical point has been shifted by ε , and hence, has switched from global to local.

NUMBER OF POINTS AND ENERGY VALUE PER CLASS

Lemma 9 (S.)

The number of critical points of f in each class $(n, k, i_1, i_2, j_1, j_2)$ is

$$\binom{n}{j_1, j_2, n-k-j_1-j_2, i_1, i_2, k-i_1-i_2}.$$

NUMBER OF POINTS AND ENERGY VALUE PER CLASS

Lemma 9 (S.)

The number of critical points of f in each class $(n, k, i_1, i_2, j_1, j_2)$ is

$$\binom{n}{j_1, j_2, n-k-j_1-j_2, i_1, i_2, k-i_1-i_2}$$
.

Lemma 10 (S.)

For $f: (S^1)^n \to \mathbb{R}$ where $f(\phi_1, \dots, \phi_n) = \sum_{i=1}^n f_{1-3-2-1}(\phi_i)$, all critical points of class $(n, k, i_1, i_2, j_1, j_2)$ have energy value

$$E(n, k, i_1, i_2, j_1, j_2) = (j_1)\alpha + (j_2)\alpha' + (n - k - j_1 - j_2)\beta + (k - i_1 - i_2)\gamma + (i_1)\delta + (i_2)\delta'.$$

Theorem 11 (S.)

For any branched alkane consisting of n 3-2 internal bonds, consider the k-dimensional sublevelset persistent homology barcodes of the branched alkane energy landscape, $f_n: (S^1)^n \to \mathbb{R}$. Let $k \le n$, $i_1 + i_2 \le k$, and $j_1 + j_2 \le n - k$. Hence, for any class $(n, k, i_1, i_2, j_1, j_2)$, the birth time of any k-dimensional bars in that class is

$$E(n, k, i_1, i_2, j_1, j_2) = (j_1)\alpha + (j_2)\overline{\alpha} + (n - k - j_1 - j_2)\beta + (k - i_1 - i_2)\gamma + (i_1)\delta + (i_2)\overline{\delta},$$

where the number of bars in that class is given below by:

$$\diamond i_1 = 0, i_2 = k, j_1 = n - k, j_2 = 0$$
 gives

$$\begin{pmatrix} n \\ j_1, j_2, n-k-j_1-j_2, i_1, i_2, k-i_1-i_2 \end{pmatrix}$$

semi-infinite bars,

RESULTS - COPIES OF 3-2 BONDS

Theorem 11 (S. - continued)

$$\diamond i_1 + i_2 = k, j_2 = 0, n - k < j_1 \text{ gives}$$

$$\sum_{\ell=0}^{i_1} (-1)^{\ell} \binom{n}{j_1, j_2, n-k-j_1-j_2+\ell, i_1-\ell, i_2, k-i_1-i_2}$$

bars of length $\delta - \beta$,

 $\diamond j_2 \neq 0$ gives

$$\sum_{\ell=0}^{k-i_1-i_2} (-1)^{\ell} \binom{n}{j_1, j_2+\ell, n-k-j_1-j_2, i_1, i_2, k-i_1-i_2-\ell}$$

bars of length $\gamma - \alpha$, and

0 bars born for any other type of critical point.

PROOF

- · Split critical points into appropriate classes
 - · Introduce perturbation by ε
- · Identify which classes correspond to which bar lengths
 - · For example, $j_2 \neq 0$ gives classes that correspond to bars of length $\gamma \alpha$
- · Figure out which classes results in the death of bars from other classes
 - For $\gamma \alpha$ length bars, class $(n, k, i_1, i_2, j_1, j_2)$ kills bars from class $(n, k 1, i_1, i_2, j_1, j_2 + 1)$
- · Count via induction on number of internal bonds

Another example of sublevelset persistence characterization

CHARACTERIZING MOLECULES WITH 2-2 AND 3-2 INTERNAL BONDS

Goal: Completely characterize the sublevelset persistent homology of all branched alkanes consisting exclusively of 2-2 and 3-2 internal bonds

Motivation: Show how we can characterize for two different internal types. This will allow us to describe the characterization process.

EXAMPLE: ONE 2-2 INTERNAL BOND WITH ONE 3-2 INTERNAL BOND

Just like last time, we define a class of critical points:

class
$$\begin{pmatrix} \begin{bmatrix} n_1 & k_1 & i_{11} & 0 & j_{11} & 0 \\ n_2 & k_2 & i_{21} & i_{22} & j_{21} & j_{22} \end{bmatrix} \end{pmatrix}$$
.

We count the number of points in each class,

$$\left| class \left(\begin{bmatrix} n_1 & k_1 & i_{11} & 0 & j_{11} & 0 \\ n_2 & k_2 & i_{21} & i_{22} & j_{21} & j_{22} \end{bmatrix} \right) \right| =$$

$$2^{n_1-i_{11}-j_{11}}\binom{n_1}{i_{11},k_1-i_{11},j_{11},n_1-k_1-j_{11}}\binom{n_2}{i_{21},i_{22},k_2-i_{21}-i_{22},j_{21},j_{22},n_2-k_2-j_{21}-j_{22}}$$

We also find the energy value associated to each class:

$$\begin{split} E\bigg(class\left(\begin{bmatrix} n_1 & k_1 & i_{11} & 0 & j_{11} & 0 \\ n_2 & k_2 & i_{21} & i_{22} & j_{21} & j_{22} \end{bmatrix}\right)\bigg) = \\ (j_{11})\alpha_1 + (n_{11} - k_{11} - j_{11})\beta_1 + (k_1 - i_{11})\gamma_1 + (i_{11})\delta_1 \\ + (j_{21})\alpha_2 + (j_{22})\alpha_2' + (n_2 - k_2 - j_{21} - j_{22})\beta_2 + (k_2 - i_{21} - i_{22})\gamma_2 + (i_{21})\delta_2 + (i_{22})\delta_2'. \end{split}$$

Theorem 12 (S.)

For any branched alkane consisting of n_1 internal bonds of type 2-2 and n_2 internal bonds of type 3-2, consider the k-dimensional sublevelset persistent homology barcodes of the branched alkane energy landscape, $f: (S^1)^n \to \mathbb{R}$. Let $k = k_1 + k_2$, $k_1 + k_2 \le n_1 + n_2$, $i_{11} + i_{21} + i_{22} \le k_1 + k_2$, $i_{11} \le k_1$, $i_{21} + i_{22} \le k_2$, $j_{11} + j_{21} + j_{22} \le n_1 + n_2 - k_1 - k_2$, $j_{21} + j_{22} \le n_2 - k_2$, and $j_{11} \le n_1 - k_1$. Hence, for any class $\begin{pmatrix} n_1 & k_1 & i_{11} & 0 & j_{11} & 0 \\ n_2 & k_2 & i_{21} & i_{22} & j_{21} & j_{22} \end{pmatrix}$, the birth time of any k-dimensional bars in that class is

$$\begin{split} E\bigg(\text{class}\left(\begin{bmatrix} n_1 & k_1 & i_{11} & 0 & j_{11} & 0 \\ n_2 & k_2 & i_{21} & i_{22} & j_{21} & j_{22} \end{bmatrix}\right)\bigg) = \\ & (j_{11})\alpha_1 + (n_{11} - k_{11} - j_{11})\beta_1 + (k_1 - i_{11})\gamma_1 + (i_{11})\delta_1 \\ & + (j_{21})\alpha_2 + (j_{22})\alpha_2' + (n_2 - k_2 - j_{21} - j_{22})\beta_2 + (k_2 - i_{21} - i_{22})\gamma_2 + (i_{21})\delta_2 + (i_{22})\delta_2'. \end{split}$$

where the number of bars born in that class is given below by:

RESULTS - COPIES OF 3-2 AND 2-2 BONDS

Theorem 12 (S. - Continued)

1.
$$i_{11} + i_{22} = k_1 + k_2$$
, $i_{21} = 0$, $j_{22} = 0$, $(n_1 + n_2) - (k_1 + k_2) = j_{11} + j_{21}$ gives
$$\begin{vmatrix} class \left(\begin{bmatrix} n_1 & k_1 & i_{11} & 0 & j_{11} & 0 \\ n_2 & k_2 & i_{21} & i_{22} & j_{21} & j_{22} \end{bmatrix} \right) \end{vmatrix}$$

semi-infinite bars,

2.
$$i_{11} + i_{22} = k_1 + k_2$$
, $j_{22} = 0$, $n_1 - k_1 - j_{11} = 0$, and $(n_1 + n_2) - (k_1 + k_2) > j_{11} + j_{21}$ gives

$$\sum_{\ell'=0}^{i_{21}} (-1)^{\ell} \left[\binom{n_{1}}{i_{11}, k_{1} - i_{11}, j_{11}, n_{1} - k_{1} - j_{11}} \right]$$

$$\binom{n_{2}}{i_{21} - \ell, i_{22}, k_{2} - i_{21} - i_{22}, j_{21}, j_{22}, n_{2} - k_{2} - j_{21} - j_{22} + \ell} \right]$$

bars of length $\delta_2 - \beta_2$,

RESULTS - COPIES OF 3-2 AND 2-2 BONDS

Theorem 12 (S. – Continued)

3. $j_{22} > 0$ and $i_{11} + j_{11} > 0$ gives

$$\sum_{\ell=0}^{k_2-i_{21}-i_{22}} (-1)^{\ell} \left[\binom{n_1}{i_{11}, k_1 - i_{11}, j_{11}, n_1 - k_1 - j_{11}} \right]$$

$$\binom{n_2}{i_{21}, i_{22}, k_2 - i_{21} - i_{22} - \ell, j_{21}, j_{22} + \ell, n_2 - k_2 - j_{21} - j_{22})!} \right]$$

bars of length $\gamma_2 - \alpha_2$, and

4. $n_1 - k_1 - j_{11} > 0$ gives

$$2^{n_{1}-i_{11}-j_{11}} \sum_{\ell=0}^{k_{1}-i_{11}} (-1)^{\ell} \begin{bmatrix} n_{1} \\ i_{11}, k_{1}-i_{11}-\ell, j_{11}, n_{1}-k_{1}-j_{11}+\ell \end{bmatrix} \\ \begin{pmatrix} n_{2} \\ i_{21}, i_{22}, k_{2}-i_{21}-i_{22}, j_{21}, j_{22}, n_{2}-k_{2}-j_{21}-j_{22} \end{pmatrix} \end{bmatrix}$$

bars of length $\gamma_1 - \beta_1$, and

5. 0 bars born for any other type of critical point.

GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

- 1. Identify the different bar lengths in all component functions. These lengths will be used to partition the classes.
 - -For the 3-2/2-2 case, we had 4; semi-infinite, $\delta_2 \beta_2$, $\gamma_2 \alpha_2$, and $\gamma_1 \beta_1$

GENERALIZING THE SUBLEVELSET PERSISTENCE FOR ANY BRANCHED ALKANE

- 1. Identify the different bar lengths in all component functions. These lengths will be used to partition the classes.
 - -For the 3-2/2-2 case, we had 4; semi-infinite, $\delta_2 \beta_2$, $\gamma_2 \alpha_2$, and $\gamma_1 \beta_1$
- 2. Construct the class matrix.

$$-class \left(\begin{bmatrix} n_1 & k_1 & i_{11} & 0 & j_{11} & 0 \\ n_2 & k_2 & i_{21} & i_{22} & j_{21} & j_{22} \end{bmatrix} \right)$$

- 1. Identify the different bar lengths in all component functions. These lengths will be used to partition the classes.
 - -For the 3-2/2-2 case, we had 4; semi-infinite, $\delta_2 \beta_2$, $\gamma_2 \alpha_2$, and $\gamma_1 \beta_1$
- 2. Construct the class matrix.

$$-class \left(\begin{bmatrix} n_1 & k_1 & i_{11} & 0 & j_{11} & 0 \\ n_2 & k_2 & i_{21} & i_{22} & j_{21} & j_{22} \end{bmatrix} \right)$$

- 3. Determine the number of points in each class.
 - -Start with the multinomial coefficient and adjust as needed $(2^{n_1-i_{11}-j_{11}})$

- 1. Identify the different bar lengths in all component functions. These lengths will be used to partition the classes.
- -For the 3-2/2-2 case, we had 4; semi-infinite, $\delta_2-\beta_2$, $\gamma_2-\alpha_2$, and $\gamma_1-\beta_1$
- 2. Construct the class matrix.

$$-class\left(\begin{bmatrix} n_1 & k_1 & i_{11} & 0 & j_{11} & 0 \\ n_2 & k_2 & i_{21} & i_{22} & j_{21} & j_{22} \end{bmatrix}\right)$$

- 3. Determine the number of points in each class.
 - -Start with the multinomial coefficient and adjust as needed $(2^{n_1-i_{11}-j_{11}})$
- 4. Identify which classes correspond to which bar length and energy value.
 - -These are the restrictions on j_{22} , j_{11} , etc.

- 1. Identify the different bar lengths in all component functions. These lengths will be used to partition the classes.
 - -For the 3-2/2-2 case, we had 4; semi-infinite, $\delta_2 \beta_2$, $\gamma_2 \alpha_2$, and $\gamma_1 \beta_1$
- 2. Construct the class matrix.

$$-class \left(\begin{bmatrix} n_1 & k_1 & i_{11} & 0 & j_{11} & 0 \\ n_2 & k_2 & i_{21} & i_{22} & j_{21} & j_{22} \end{bmatrix} \right)$$

- 3. Determine the number of points in each class.
 - -Start with the multinomial coefficient and adjust as needed $(2^{n_1-i_{11}-j_{11}})$
- 4. Identify which classes correspond to which bar length and energy value.
 - -These are the restrictions on j_{22} , j_{11} , etc.
- 5. Count the number of bars created by each class.
 - -The alternating sums in both theorems, birth classes will pair with death classes and each pair is dependent on bar length

FUTURE WORK

- · Applications to polymers and plastics in progress with Adams, Clark, and Sadhu
- · Change generalization of 1-x-y-1 to w-x-y-z
- · Look at other inputs: bond length, type of bond, etc.
- · Other structures: alkenes, alkynes, cyclo-alkanes, etc.
- · Non-organic compounds

ACKNOWLEDGEMENTS - FUNDING

A huge thank you to Colorado State University, DELTA, and NASA for supporting this project.

REFERENCES I

Augustin Banyaga and David Hurtubise, *Basic morse theory*, pp. 45–91, Springer Netherlands, Dordrecht. 2004.

Herbert Edelsbrunner and John L Harer, *Computational topology: An introduction*, American Mathematical Society. Providence. 2010.

Hitesh Gakhar and Jose A Perea, Künneth formulae in persistent homology, arXiv preprint arXiv:1910.05656 (2019).

Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec, *The Gudhi library: Simplicial complexes and persistent homology*, International Congress on Mathematical Software, Springer, 2014, pp. 167–174.

Joshua Mirth, Yanqin Zhai, Johnathan Bush, Enrique G Alvarado, Howie Jordan, Mark Heim, Bala Krishnamoorthy, Markus Pflaum, Aurora Clark, Y Z, and Henry Adams, Representations of energy landscapes by sublevelset persistent homology: An example with n-alkanes, 2020.

QUESTIONS?