Outline

- Persistent homology
 Equivalence with F[t]-modules
 Decomposition theorem
 Computation
 Experiments

Discrete Comput Geom 33:249–274 (2005) DOI: 10.1007/s00454-004-1146-y

Computing Persistent Homology*

Afra Zomorodian¹ and Gunnar Carlsson²

¹Department of Computer Science, Stanford University, Stanford, CA 94305, USA afra@cs.stanford.edu

²Department of Mathematics, Stanford University, Stanford, CA 94305, USA gunnar@math.stanford.edu

Abstract. We show that the persistent homology of a filtered *d*-dimensional simplicial complex is simply the standard homology of a particular graded module over a polynomial ring. Our analysis establishes the existence of a simple description of persistent homology groups over arbitrary fields. It also enables us to derive a natural algorithm for computing persistent homology of spaces in arbitrary dimension over any field. This result generalizes and extends the previously known algorithm that was restricted to subcomplexes of S³ and \mathbb{Z}_2 coefficients. Finally, our study implies the lack of a simple classification over non-fields. Instead, we give an algorithm for computing individual persistent homology groups over an arbitrary principal ideal domain in any dimension.

Apply i-dimensional homology with coefficients in a field F to get $Hi(K_0) \rightarrow Hi(K_1) \rightarrow Hi(K_2) \rightarrow Hi(K_3) \rightarrow Hi(K_4) \rightarrow Hi(K_5)$

	b a b d c d c			
$\begin{bmatrix} 0 & a, b \\ 1 & ab \\ ab \\ \end{bmatrix}$	$\begin{bmatrix} d \\ d \\ bc \end{bmatrix} = \begin{bmatrix} cd \\ ad \end{bmatrix}$	3 <i>ac</i>	4 <i>abc</i>	5 acd

A persistence module $\bigvee: V_0 \xrightarrow{f_0} V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3 \xrightarrow{f_3} V_4 \xrightarrow{f_4} V_5$ Can be thought of as a graded F[t]-module with elements (vo, vi, vz, vz, vy, vs) $\in Vo \oplus \dots \oplus V_5$ and F[t] action given by: $3 \cdot (v_0, ..., v_5) = (3v_0, ..., 3v_5)$ $t \cdot (v_0, ..., v_5) = (0, f_0(v_0), f_1(v_1), f_2(v_2), f_3(v_3), f_4(v_4))$ $+ \frac{2}{(v_0, \dots, v_5)} = (0, 0, f_1 f_0(v_0), f_2 f_1(v_1), f_3 f_2(v_2), f_4 f_3(v_3))$ $(3+t^2) \cdot (v_0, \dots, v_s) = (3v_0, 3v_1, 3v_2 + f_1 f_1(v_0), \dots$

$$M_{1} = \begin{bmatrix} ab & bc & cd & ad & ac \\ \hline d & 0 & 0 & t & t & 0 \\ c & 0 & 1 & t & 0 & t^{2} \\ b & t & t & 0 & 0 & 0 \\ a & t & 0 & 0 & t^{2} & t^{3} \end{bmatrix}$$

In our example, we have

$$\tilde{M}_{1} = \begin{bmatrix} \frac{cd & bc & ab & z_{1} & z_{2} \\ \hline d & \boxed{t} & 0 & 0 & 0 & 0 \\ c & t & \boxed{1} & 0 & 0 & 0 \\ b & 0 & t & \boxed{t} & 0 & 0 \\ a & 0 & 0 & t & 0 & 0 \end{bmatrix},$$
(8)

where $z_1 = ad - cd - t \cdot bc - t \cdot ab$ and $z_2 = ac - t^2 \cdot bc - t^2 \cdot ab$ form a homogeneous basis for Z_1 .

Experiments

		K	Length	Filtration (s)	Persistance (s)
Klein bottle	к	12,000	1,020	0.03	< 0.01
Electrostatic charge	Е	529,225	3,013	3.17	5.00
Jet engine	J 	3,029,383	256	24.13	50.23