Connectivity of Vietoris-Rips complexes of spheres

Henry Adams
Joint with Johnathan Bush and ŻZ ga Kirk

Let S^{n} be the n-sphere, geodesic metric, diameter π.

For X a metric space and $r>0$,
the Vietoris-Rips complex $\operatorname{VR}(X ; r)$ has

- vertex set X
- all simplices $\left[x_{0}, \ldots, x_{k}\right]$ of diameter $<r$.

The k-th covering radius of X is $\operatorname{cov}_{x}(k)=\inf \{\delta>0: \exists k$ closed δ-balls covering $X\}$.

For $\delta>0$, the covering number of X is mum $\operatorname{Cov}_{x}(\delta)=\min \{k \geq 1: \exists k$ closed δ-balls covering $X\}$.

The homotopy connectivity conn (y) of a space Y is the largest k such that $\pi_{i}(y)=0 \quad \forall i \leq k$.

The For $\delta>0$, if $\operatorname{conn}\left(V R\left(s^{n} ; \pi-\delta\right)\right)=k-1$, then

$$
\operatorname{cov}_{S^{n}}(2 k+2) \leq \delta \leq 2 \cdot \operatorname{cov}_{\mathbb{R}^{n}}(k)
$$

I.e, $\frac{1}{2} \operatorname{num} \operatorname{Cov}_{S^{n}}(\delta)-2 \leq \operatorname{conn}\left(V R\left(S^{n} ; \pi-\delta\right)\right)<\operatorname{num}^{\operatorname{Cov}} \operatorname{Ro}^{P^{n}}\left(\frac{\delta}{2}\right)$.

Corollary The homotopy type of $\operatorname{VR}\left(S^{n} ; r\right)$ changes infinitely many times as r increases.

Conjecture Only countably many times.
Conjecture For all n, conn $\left(\operatorname{VR}\left(s^{n} ; r\right)\right.$) is nondecreasing in r.
Remark Zech case

Meshulam 2001: If a finite graph G satisfies $\cap_{j=1}^{l} N_{G}\left(v_{j}\right) \neq \varnothing$ for any ℓ vertices v_{1}, \ldots, v_{l}, then $\tilde{H}_{i}(c l(G))=0$ for $0 \leq i \leq\left\lfloor\frac{\ell}{2}\right\rfloor-1$.

Here $N_{G}\left(v_{j}\right)=\left\{v: v \sim v_{j}\right\}$ is the open neighborhood.
The clique complex $C l(G)$ is the maximal simplicial complex with G as its 1 -skeleton.
The proof uses a fancy nerve lemma.
Proof sketch that $\delta<\operatorname{cov}_{s^{n}}(2 k+2) \Rightarrow \operatorname{conn}\left(V R\left(s^{n} ; \pi-\delta\right)\right) \geq k$.
Note $\delta<\operatorname{Cov}_{s n}(2 k+2)$
$\Rightarrow N_{0} 2 k+2$ closed δ-balls cover S^{n}
\Rightarrow Any $2 k+2$ open $(\pi-\delta)$-balls intersect.
Pretending that Meshulam's result held for $G=V R\left(s^{n} ; \pi-\delta\right)^{(1)}$ infinite and closed neighborhoods $N_{G}[v]=N_{G}(v) \cup\{v\}=B(v ; \pi-\delta)$, wed get $\widetilde{H}_{i}(c l(G))=\widetilde{H}_{i}\left(\operatorname{VR}\left(s^{n} ; \pi-\delta\right)\right)=0$ for $0 \leq i \leq\left\lfloor\frac{2 k+2}{2}\right\rfloor-1=k$.
For $n \geq 2$, use simple-connectedness of $\operatorname{VR}\left(5^{n} ; \pi-\delta\right)$ and Hurewicz to get $\pi_{i}\left(\operatorname{VR}\left(s^{n} ; \pi-\delta\right)=0\right.$ for $0 \leq i \leq k$.

Pretending is not necessary: Prove $\tilde{H}_{i}(V R(X ; \pi-\delta))=0$ for finite subsets $X \subseteq S^{n}$ dense enough sit. any ε-ball in S^{n} contains $\geqslant 2 k+3$ points in X, where $\varepsilon>0$ satisfies $\delta+\varepsilon<\operatorname{cov}_{S^{n}}(2 k+2)$.
Deduce $\tilde{H}_{i}\left(\operatorname{VR}\left(5^{n} ; \pi-\delta\right)\right)=0$.

Point in intersection of open $(\pi-\delta-\varepsilon)$-balls

Proof sketch that $\delta>2 \cdot \operatorname{cov}_{\mathbb{R}} \operatorname{Pr}^{n}(k) \Rightarrow \operatorname{conn}\left(V R\left(s^{n} ; \pi-\delta\right)\right) \leq k-2$.
If the free $\mathbb{Z} / 2$ space $\operatorname{VR}\left(S^{n} ; \pi-\delta\right)$ were $(k-1)$ connected, wed have $S^{k} \xrightarrow{\mathbb{2} / 2} V R\left(S^{n} ; \pi-\delta\right)$.

By Borsuk-Ulam this contradicts ABF, which says if $\exists k$ open balls $\left\{B\left(\left[x_{i}\right] ; \delta / 2\right)\right\}_{i=1}^{k}$ covering $\mathbb{R} P^{n}$, then $\exists \operatorname{VR}\left(S^{n} ; \pi-\delta\right) \xrightarrow{\mathbb{Z} / 2} S^{k-1}$.

Indeed, no $\sum_{j} \lambda_{j} y_{j} \in\left|V R\left(S^{n} ; \pi-\delta\right)\right|$ has vertex set intersecting both $B\left(x_{i} ; \delta / 2\right)$ and $B\left(-x_{i} ; \delta / 2\right)$.
Define $f_{i}: V R\left(s^{n} ; \pi-\delta\right) \rightarrow \mathbb{R}$ by

$$
f_{i}\left(\Sigma_{j} \lambda_{i} y_{j}\right)=\left\{\begin{array}{lcl}
\sum_{j} \lambda_{j} d\left(y_{j}, S^{n} \backslash B\left(x_{i} ; \delta_{2}\right)\right) & \text { if } & \text { no } \\
y_{j} \text { in } & B\left(-x_{i} ; \delta / 2\right) \\
-\Sigma_{j} \lambda_{j} d\left(y_{j}, S^{n} \backslash B\left(-x_{i} ; \delta /\right)\right) & \ldots & B\left(x_{i} ; \delta / 2\right) .
\end{array}\right.
$$

Hence $\left(f_{1}, \ldots, f_{k}\right): \operatorname{VR}\left(S^{n} ; \pi-\delta\right) \xrightarrow{\mathbb{Z} / 2} \mathbb{R}^{k} \backslash\{\overrightarrow{0}\}$.

Radially project.

