Connectivity of Vietoris-Rips complexes of spheres Henry Adams Joint with Johnathan Bush and Ziga Virk

The k-th covering radius of X is

$$cov_X(k) = inf\{\delta>0: \exists k \ closed \ \delta-balls \ covering \ X\}.$$

For $\delta>0$, the covering number of X is
 $num(ov_X(\delta) = min\{k \ge 1: \exists k \ closed \ \delta-balls \ covering \ X\}.$
 RP^n

أكمأ

The homotopy connectivity
$$conn(Y)$$
 of a space Y is the largest k such that $\pi_i(Y) = 0$ $\forall i \leq k$.

• all simplices [xo,..., xk] of diameter < r.

1 hm For S>0, if $\text{conn}(VR(S^n; \pi - S)) = k - 1$, then $COV_{cn}(2k+2) \leq \delta \leq Z \cdot COV_{RD^n}(k).$

I.e., $\frac{1}{2}$ num $(ov_{sn}(\delta) - 2 \leq conn(VR(s^{n}; \pi - \delta)) < num<math>(ov_{RP^{n}}(\frac{\delta}{2}))$.

Conjecture Only countably many times. Conjecture For all n, conn(VR(s";r)) is nondecreasing in r. Remark Čech case

Meshulam 2001: If a finite graph G satisfies $\bigcap_{j=1}^{\ell} N_{G}(v_{j}) \neq \emptyset$ for any l vertices $v_{1,...,v_{\ell}}$, then $\widetilde{H}_{i}(cl(G)) = 0$ for $0 \le i \le \lfloor \frac{\vartheta}{2} \rfloor - 1$.

Here $N_6(v_5) = \{v : v \sim v_5\}$ is the open neighborhood. The clique complex cl(G) is the maximal simplicial complex with G as its 1-skeleton. The proof uses a fancy nerve lemma.

Pretending is not necessary: Prove $\widetilde{H}_i(VR(X;\pi-\delta))=0$ for finite subsets $X \subseteq S^n$ dense enough s.t. any Σ -ball in S^n contains $\ge 2k+3$ points in X, where $\Sigma > 0$ satisfies $\delta + \varepsilon < \operatorname{cov}_{S^n}(2k+2)$. Deduce $\widetilde{H}_i(VR(S^n;\pi-\delta)) = 0$. Point in intersection of open $(T-S-\Sigma)$ -balls

<u>Proof sketch</u> that $\delta > 2 \cdot COV_{RP^n}(k) \Rightarrow CON(VR(S^n; \pi - \delta)) \le k - 2$.

If the free $\mathbb{Z}/2$ space $VR(S^n; \pi - \delta)$ were (k-1) connected, we'd have $S^k \xrightarrow{\mathbb{Z}/2} VR(S^n; \pi - \delta)$.

By Borsuk-Ulam this contradicts ABF, which says if $\exists k$ open balls $\{B([x_i]; \delta/z)\}_{i=1}^k$ covering \mathbb{RP}^n , then $\exists VR(S^n; \pi \cdot \sigma) \xrightarrow{\mathbb{Z}/2} S^{k-1}$.

Indeed, no $\Sigma_{j}\lambda_{j}y_{j} \in |VR(S^{n}; \pi-\delta)|$ has vertex set intersecting both $B(x_{i}; \delta/x)$ and $B(-x_{i}; \delta/x)$. Define $S_{i} \colon VR(S^{n}; \pi-\delta) \longrightarrow |R|$ by $S_{i}(\Sigma_{j}\lambda_{j}y_{j}) = \begin{cases} \Sigma_{j}\lambda_{j}d(y_{j}, S^{n}\setminus B(x_{i};\delta x)) & \text{if no } y_{j} \text{ in } B(-x_{i}; \delta/x) \\ -\Sigma_{j}\lambda_{j}d(y_{j}, S^{n}\setminus B(-x_{i};\delta h)) & \dots & B(x_{i}; \delta/x) \end{cases}$

Hence $(f_1, ..., f_n): VR(S^*; \pi - \delta) \xrightarrow{\mathbb{Z}/2} \mathbb{R}^k \setminus \{\delta^{\circ}\}.$ Radially project.