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Abstract

An exploration in the first half of this dissertation of the relationships among spec-

tral sequences, persistent homology, and products of simplices, including the devel-

opment of a new concept in categorical product filtration, is followed in the second

half by new determinations of a) lower bounds for the Gromov-Hausdorff distance

between n-spheres and (n + 1)-hypercubes equipped with the geodesic metric and

of b) new lower bounds for the coindexes of the Vietoris-Rips complexes of hyper-

cubes equipped with the Hamming metric. In their paper,“Spectral Sequences, Exact

Couples, and Persistent Homology of Filtrations” [5], Basu and Parida worked on

building an n-derived exact couple from an increasing filtration X of simplicial com-

plexes, C(n)(X) = {D(n)(X), E(n)(X), i(n), j(n), ∂(n)}. The terms E
(n)
∗,∗ (X) are the bi-

graded vector spaces of a spectral sequence that has differentials d(r)(X), and the terms

D
(n)
∗,∗ (X) are the persistent homology groups H∗,∗∗ (X). They proved that there exists a

long exact sequence whose groups are H∗,∗∗ (X) and whose bigraded vector spaces are

(E∗∗,∗(X), d∗(X)). We establish in Section 3 of this dissertation a new, similar theorem
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in the case of the categorical product filtration X × Y that states that there exists a

long exact sequence consisting of
⊕
l+j=n

H∗,∗l (X)⊗H∗,∗j (Y ) and of the bigraded vector

spaces E∗∗,∗(X × Y ) of (E∗∗,∗(X × Y ), d∗(X × Y )), and prove it in part using Künneth

formulas on homology. The emphasis on product spaces continues in Section 5, where

we establish new lower bounds for the Gromov-Hausdorff distance between n-spheres

and (n + 1)-hypercubes, In+1, when both are equipped with the geodesic distance.

From these lower bounds, we conjecture new lower bounds for the coindices of the

Vietoris-Rips complexes of hypercubes when equipped with the Hamming metric. We

then determine new lower bounds for the coindices of the Vietoris-Rips complexes of

hypercubes, a) by producing a map between spheres and the geometric realizations

of Vietoris-Rips complexes of hypercubes using abstract convex combination and bal-

anced sets, and b) by decomposing hollow n-cubes (homotopically equivalent to the

above-mentioned spheres) into simplices of smaller dimension and smaller diameter.
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6.2 Künneth formulas for the persistent homology of hypercubes . . . . . . . . . 70

6.3 The Gromov-Hausdorff Distance–Future Investigation Topics . . . . . . . . . 72

7 Conclusion 73

8 Bibliography 75

4



1 Introduction

Homology can determine geometric features such as the number of non-connected com-

ponents, holes, and voids in a topological space. Furthermore, persistent homology describes

how long these topological features persist in a filtration of spaces. This dissertation project

aims to illuminate the links between persistent homology, spectral sequences arising from

exact couples, R+-filtered simplicial sets (X, l), metric spaces, product spaces, hypercubes

In, and Gromov-Hausdorff distances between spaces. My original dissertation work consists

of two parts: one, proving the existence of a long exact sequence linking spectral sequences

with the tensor products of persistent homologies of two different simplicial complexes, and

two, constructing theoretical lower bounds for the Gromov-Hausdorff distance between n-

dimensional spheres and (n + 1)-dimensional hypercubes, when the hypercube is endowed

with the geodesic metric.

A spectral sequence, denoted (E∗∗,∗d
∗), is a technical tool used by topologists and algebraic

geometers. We can describe a spectral sequence as a bookkeeping device that consists of an

infinite number of pages, starting in some cases with the 0-th page, with each page containing

an infinite number of chain or cochain complexes. Among others, spectral sequences can arise

from filtered differential graded modules, double complexes, or exact couples. In the case

of exact couples C = {D,E, i, j, ∂}, from the three maps i, j, and ∂, we can define the

differentials dr and we can obtain the Er-terms of the spectral sequence, as described in

section 2.1.2 “Exact Couples.”

In Section 2.1.3, we study the connection between an increasing filtration of simplicial

complexes with a spectral sequence arising from an exact couple when the ring is a field F ,

as described by Basu and Parida in their paper “Spectral Sequences, Exact Couples, and

Persistent Homology of Filtrations”[5]. The increasing filtration, namely X, leads to a long

exact sequence (LES) in homology. We use the maps of this LES to construct bigraded
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maps d1. Then, we take the direct sum of the homology and the relative homology over

n = p + q to build groups D1(X) and E1(X), and to form the exact couple from which

the spectral sequence (E(r)(X), d(r)) is derived. Moreover, we present the relation between

D(r)(X) and i
(r)
∗,∗ with the persistent homology corresponding to the filtration X. This is

what ultimately gives us the desired result, which is an exact sequence (2.8) that relates the

persistent homology H∗,∗∗ (X) with E∗∗,∗(X), via the maps i(r), j(r), and ∂(r).

The next important concept is the use of Künneth formulas with persistent homology.

Section 2.2 presents these Künneth formulas in which each group of the short exact sequence

is a module over the ring k[R+]. Theorem 2.20 deals with the persistent homology of an R+-

filtered simplicial set (X, l). A filtered simplicial set (X, l) is defined using a contravariant

functor X : 4 → R+-sSet and a map on n-simplices, l : Xn → R+. These R+-filtered

simplicial sets play an essential role because the groups F∗(X, l) depend on the n-simplices

of X and also on the simplices that are born at l(σ), where σ ∈ Xn. These groups F∗(X, l)

determine the chain groups that define the homology of (X, l) and therefore the persistent

homology of (X, l).

In Section 2.3 the map l is defined in terms of the maximum pairwise distance in a subset

of a metric space, and with this definition, we can define the persistent homology of a metric

space. Then, following the presentation in Carlsson and Fileppenko’s paper “Persistent

Homology of the Sum Metric” [6], we provide Künneth formulas describing the relationship

between two metric spaces, such as the one that appears in Theorem 2.23.

In Section 2.4 we study persistent homology of hypercubes Ik for k ≥ 1. In some sense,

hypercubes are the simplest of all product spaces. The concepts and theorems of three

subjects — persistent homology of (X, l), the modules F∗(X, l), and persistent homology of

metric spaces — were developed in order to study the persistent homology of hypercubes up

to dimension 2 [6]. The Künneth formulas of metric spaces and the definition of coordinate

inclusions φ : Ik → Ir, where k ≤ r, are needed to show the isomorphism types of the
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persistent homology of hypercubes. The i-dimensional persistent homology group PHi(I
k)

is identified as the direct sums of bars, which is another way to represent a persistent ho-

mology. We see that by equipping Ik with the Hamming metric, the persistent homology of

dimension 0 and of dimension 1 are non-trivial for k ≥ 1 while the 2-dimensional persistent

homology is zero [6]. Also, we provide another important statement from the same paper

that relates coordinate inclusions to PH1(Ik) for k > 0. This 1-dimensional persistent ho-

mology is generated by the union of φ∗(PH1(I2)) over the coordinate inclusions. This result

is needed in order to complete the proof that the 2-dimensional persistent homology of Ik is

zero when k > 0 [6].

The concept of the LES as defined by Basu and Parida in their paper “Spectral Sequences,

Exact Couples, and Persistent Homology of Filtrations” [5] inspired us in Section 3 to begin

our own individual work in establishing a relation between the persistent homology of two

increasing filtrations of simplicial complexes X and Y , and of the Er(X × Y ) terms of the

spectral sequence, where the increasing filtration X×Y is known as the categorical product.

We developed Theorem 3.2 in order to refine those results for the categorical product: the

theorem states that there exists an exact sequence whose groups are
⊕

l+j=nH
∗,∗
l (X) ⊗

H∗,∗j (Y ) and Er(X×Y ). At first, we were not sure if the sequence in Theorem 3.2 was exact,

but later we employed various maneuvers such as applying Künneth formulas on homology

and creating a functorial commutative diagram in order to be able to complete the proof of

this theorem.

In Section 4.1, we introduce the Hausdorff distance and use it to define the Gromov-

Hausdorff distance. We also provide a different expression for the Gromov-Hausdorff distance

in terms of the distortion of correspondences [7]. Furthermore, we discuss in this section the

definition of the Vietoris-Rips complex, which will be used later in the dissertation to produce

not only continuous maps from discontinuous functions, but also to discover topological

obstructions. In this same section, we apply the Vietoris-Rips complex to lower bound the
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Gromov-Hausdorff distance between specific metric spaces.

We turn our attention in Section 4.2 to the determination of bounds, particularly lower

bounds, for the Gromov-Hausdorff distance between spheres Sn using the geodesic metric.

We begin by studying the concepts in the paper “The Gromov–Hausdorff Distance Between

Spheres” [7], by Lim, Memoli, and Smith, in which they found lower bounds using different

tools such as distortion, the distortion-preserving lemma, Dubins-Schwarz’s Theorem, and

the Borsuk-Ulam Theorem. First, they applied the concepts of persistent homology and

bottleneck distance in order to provide weak lower bounds for dGH(Sm, Sn), where 0 ≤ m ≤

n ≤ ∞. Later, they were able to construct better lower bounds by applying the Dubins-

Schwarz Theorem 4.8 and the Distortion-Preserving Lemma 4.9, which is a generalization of

the Borsuk–Ulam theorem for possibly discontinuous functions. Furthermore, in the paper

“Gromov-Hausdorff Distances, Borsuk-Ulam Theorems, and Vietoris-Rips Complexes” by

Adams et. al.([11], p. 14), I collaborated with multiple other authors to develop a theorem,

presented herein in the same Section 4.2, in which we added the concepts of coindices and

Vietoris-Rips complexes of spaces to get much stronger lower bounds for dGH(Sm, Sn) when

0 ≤ m ≤ n.

We resume our original dissertation work in Section 5. Here, we develop new lower

bounds for the Gromov-Hausdorff distance between the n-sphere and the (n+ 1)-hypercube

when the latter is supplied with the geodesic metric. We begin by working with the Gromov-

Hausdorff distance between spheres when both are equipped with the geodesic metric, which

was the subject of the collaboration paper by Adams, Mémoli, and Frick, et.al., called

“Gromov-Hausdorff Distances, Borsuk-Ulam Theorems, and Vietoris-Rips Complexes” in

which I participated [11]. In Subsection 5.1, we independently develop a new tool, Theorem

5.1, to determine lower bounds for the Gromov-Hausdorff distance when hypercubes and

spheres are provided with the geodesic metric, using the Bursuk-Ulam Theorem and the

Vietoris-Rips complex at different scale parameters. Using this theorem, in Subsection 5.2
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we conjecture a lower bound for the coindex of the Vietoris-Rips complex of hypercubes

using the geodesic metric, and we restate the coindex using the Hamming metric. Next, in

order to verify the conjecture, we develop in Subsection 5.3 odd maps between spheres and

the Vietoris-Rips complexes of hypercubes, using balanced sets of vectors, abstract convex

combination, and triangulation of n-cubes into cubes of smaller dimensions. Towards the end

of Subsection 5.3, we develop our principal Theorem 5.14 establishing a better lower bound

for the coindex of the Vietoris-Rips complex of hypercubes using the Hamming metric, the

desired result.

Finally, in Section 6, we present several topics of interest for future research: hypercubes

form a common bridge between these possible topics. First, in Section 6.1 we propose the

future possibility of connecting persistent homology of hypercubes with spectral sequences

and investigating what Theorem 3.2 implies from the point of view of hypercubes. In Section

6.2, we indicate an interest not only in possibly applying Künneth formulas to hypercubes

Ik, but also in computing the persistent homology of the homotopy types of Vietoris–Rips

complexes of Ik at scale parameter 3. Finally, in Section 6.3 we discuss the possibility in the

future of determining lower bounds and upper bounds for the Gromov–Hausdorff distances

in other cases that also include hypercubes and spheres.
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2 Background Material

2.1 Initial Information

2.1.1 Persistent Homology

The precise definition of Persistent Homology is:

Definition 2.1. Suppose we have an increasing filtration of a simplicial complex

X : ∅ = X0 ⊆ X1 ⊆ · · · ⊆ XN−1 ⊆ XN .

Let is,t be the inclusion map

is,t : Xs ↪→ Xt

where s ≤ t. Then the image of the map induced by inclusion,

is,tn (X) : Hn(Xs)→ Hn(Xt),

is the n-dimensional persistent homology; in other words, Hs,t
n (X) = Im is,tn (X) is the

n-dimensional persistent homology, as s and t vary over 0 ≤ s ≤ t ≤ N .

Moreover, bs,tn (X) = rank(Hs,t
n (X)) is called the persistent Betti number.

From the previous definition we notice that when s = t, Hs,s
n (X) = Hn(Xs).

We also define the persistent multiplicities of a filtration X as follows:

Definition 2.2. Let X be a filtration. If i < j then the persistent multiplicities of X is given

by

µi,jn (X) = bi,j−1
n (X)− bi,jn (X)− bi−1,j−1

n (X) + bi−1,j
n (X).

In Definition 2.2, µi,jn determines the numbers of bars which are born at time i and die

at time j.
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2.1.2 Exact Couples

Definition 2.3. Let R be a commutative ring with unity. Suppose that D and E are R-

modules and that i : D → D, j : D → E, and ∂ : E → D are R-module homomorphisms.

We say that

D D

E

i

∂ j

is an exact couple if Im i = ker j, Im j = ker ∂, and Im ∂ = ker i. We denote this exact

couple as C = {D,E, i, j, ∂}.

From an exact couple we can define d : E → E, where d = j ◦ ∂. Since Im i = ker ∂, we

have

d ◦ d = j ◦ ∂ ◦ j ◦ ∂ = j ◦ (∂ ◦ j) ◦ ∂ = j ◦ 0 ◦ ∂ = 0.

So, it makes sense to talk about the homology group H(E, d).

Remark 2.4. Let C = {D,E, i, j, ∂} be an exact couple. Let us define D′ = Im i and

E ′ = H(E, d) = ker d/Im d = ker(j ◦∂)/Im (j ◦∂). The map i′ is defined as the restriction of

the map i, namely i′ = i|i(D) : D′ → D′. Now, we define j′ : D′ → E ′ by j′(i(x)) = j(x)+d(E)

and ∂′ : E ′ → D′ by ∂′(e+ dE) = ∂(e). It can be shown that these maps are well-defined and

that C ′ = {D′, E ′, i′, j′, ∂′} is an exact couple.

The exact couple C ′ = {D′, E ′, i′, j′, ∂′} is known as the first derived couple.

We can define the exact couple C ′′ = {D′′, E ′′, i′′, j′′, ∂′′} in the same way we defined the

exact couple C ′.

If we iterate this process n times, we get the n-th derived couple

C(n) = {D(n), E(n), i(n), j(n), ∂(n)}. The maps of the n-th derived couple are defined as follows:

i(n) is the inclusion i(n) = i(n−1)|i(n−1)(D) : D(n) → D(n), the map j(n) : D(n) → E(n) is defined
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by j(n)(i(n−1)(x)) = j(n−1)(x) + d(E), and ∂(n) : E(n) → D(n) is defined by

∂(n)(e+ dE) = ∂(n−1)(e).

An exact couple leads us to a homological spectral sequence. To see this, consider the

exact couple below

D D

E ,

i

∂
j

where the bidegrees of i, j, and ∂ are (1,−1), (0, 0), and (−1, 0); respectively. We define a

differential d1 : E → E, where E = E1 =
⊕

p,q E
1
p,q and d1 = j ◦ ∂. The sum of the bidegree

of j and ∂ is the bidegree of d1
p,q. So, d1

p,q has bidegree (0, 0) + (−1, 0) = (−1, 0).

Since d1 ◦ d1 = 0, we write E2
p,q = ker d1

p,q/Im d1
p+1,q. Now, we set E2 = E ′ and let

D′ = Im i. The map i′ is restricted to Im i, which is a subset of D, so that indicates the

bidegree of each i′ equals (1,−1).

The bidegree of j′ is (−1, 1) by the way we defined it in Remark 2.4 above. To see this

more clearly, let i(x) = y. Since y ∈ Im i, we have i−1(y) = x, which allows us to write the

map j′ as

j′(y) = j(i−1(y)) + d(E).

The map i−1 has bidegree (−1, 1), so when adding the bidegrees of j and i−1, we get the

bidegree of j′. The bidegree of j′ equals (−1, 1) + (0, 0) = (−1, 1).

The map ∂′ is defined in terms of ∂, according to Remark 2.4 above. Therefore, this

implies that the bidegree of ∂′ is (−1, 0).

Next, we define d2 : E2 → E2 by d2 = j′ ◦ ∂′, and thus its bidegree is (−1, 1) + (−1, 0) =

(−2, 1).

If we iterate this process, we obtain the r-th derived couple with maps i(r−1), j(r−1) and

∂(r−1) whose bidegrees are (1,−1), (1 − r, r − 1), and (−1, 0), respectively. Then we define
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dr : Er → Er by dr = j(r−1) ◦ ∂(r−1). The bidegree of dr is thus (1 − r, r − 1) + (−1, 0) =

(−r, r − 1).

It can be proven in a straightforward fashion that dr ◦dr = 0. Thence, we have a spectral

sequence, (Er, dr), associated with this exact couple.

In the upcoming Section 2.1.3, we will see how an exact couple, and a resulting spectral

sequence, arises from a filtration of simplicial complexes.

2.1.3 Spectral Sequences and Persistent Homology of a Filtration of Spaces

This section provides information and details of what Basu and Parida accomplished in

their paper “Spectral Sequences, Exact Couples, and Persistent Homology of Filtrations”[5],

which is the inspiration for a portion of our current work.

In their paper [5], Basu and Parida prove that from a filtration of simplicial sets one can

derive a spectral sequence of bigraded vector spaces. The dimension of these vector spaces,

the E-terms of the spectral sequence, can be expressed in terms of the ranks of persistent

homology in dimensions n and n− 1.

Theorem 2.5. Let

X : ∅ = X0 ⊆ X1 ⊆ · · · ⊆ XN−1 ⊆ XN

be an increasing filtration of simplicial sets, where Xi = ∅ if i < 0 and Xi = XN if i > N .

Then for every integer r, p, q with r ≥ 1,

rank(Er
p,q(X)) = bp,p+r−1

n (X)− bp−1,p+r−1
n (X) + bp−r,p−1

n−1 (X)− bp−r,pn−1 (X),

where p+ q = n, bs,tn = rank(Hs,t
n (X)), and each Hs,t

n (X) is a finitely generated vector space.

Basu and Parida begin building the proof by creating a homology of pairs of the form

(Xm, Xm−1). Starting with the filtration X, they build a short exact sequence of complexes
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for the pair (Xp, Xp−1):

0→ C∗(Xp−1)
s−→ C∗(Xp)

π−→ C∗(Xp−1, Xp)→ 0

where s and π represent the inclusion and the canonical map, respectively. We know that

from a short exact sequence of complexes, we obtain a long exact sequence in homology,

· · · → Hn(Xp−1)
i→ Hn(Xp)

j−→ Hn(Xp, Xp−1)
∂→ Hn−1(Xp−1) · · · ,

where i is induced by inclusion, j is induced by π, and ∂ is the connecting homomorphism.

Then, we proceed by writing the LES as a staircase:

−→ Hn+1(Xp) Hn+1(Xp, Xp−1) Hn(Xp−1)

Hn(Xp) Hn(Xp, Xp−1) Hn−1(Xp−1)

Hn−1(Xp) −→

j ∂

i
j ∂

i.

Similarly, for the pair (Xp+1, Xp) we write

−→ Hn+1(Xp+1) Hn+1(Xp+1, Xp) Hn(Xp)

Hn(Xp+1) Hn(Xp+1, Xp) Hn−1(Xp)

Hn−1(Xp+1) −→

j ∂

i
j ∂

i

We repeat the same process for pairs (Xp+2, Xp+1), (Xp+3, Xp+2), ..., and then we connect

all these long exact sequences into one diagram:
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−→ Hn+1(Xp) Hn+1(Xp, Xp−1) Hn(Xp−1)

−→ Hn+1(Xp+1) Hn+1(Xp+1, Xp) Hn(Xp) Hn(Xp, Xp−1) Hn−1(Xp−1) −→

−→ Hn+1(Xp+2) Hn+1(Xp+2, Xp+1) Hn(Xp+1) Hn(Xp+1, Xp) Hn−1(Xp) −→

... Hn(Xp+2) Hn(Xp+2, Xp+1) Hn−1(Xp+1) −→

...
...

i
j

i

∂

i
j

i

∂ j

i

∂

i
j

i

∂ j

i

∂

i
j

i

∂

i

(2.6)

We wish i, j, and ∂ to posses bidegree (1,−1), (0, 0), and (−1, 0), respectively. To fulfill

this goal, we first use n = p+ q and then write diagram 2.6 as follows:

−→ Hp,q+1(Xp) Hp,q+1(Xp, Xp−1) Hp−1,q+1(Xp−1)

−→ Hp+1,q(Xp+1) Hp+1,q(Xp+1, Xp) Hp,q(Xp) Hp,q(Xp, Xp−1) Hp−1,q(Xp−1) −→

−→ Hp+2,q−1(Xp+2) Hp+2,q−1(Xp+2, Xp+1) Hp+1,q−1(Xp+1) Hp+1,q−1(Xp+1, Xp) Hp,q−1(Xp) −→

... Hp+2,q−2(Xp+2) Hp+2,q−2(Xp+2, Xp+1) Hp+1,q−2(Xp+1) −→

...
...

i j

i

∂

ij

i

∂ j

i

∂

ij

i

∂ j

i

∂

i
j

i

∂

i

(2.7)

We set E1(X) =
⊕
n=p+q

Hp,q(Xp, Xp−1) and D1(X) =
⊕
n=p+q

Hp,q(Xp), where E1
p,q(X) =

Hp,q(Xp, Xp−1) and D1
p,q(X) = Hp,q(Xp).

Then, looking at the diagram in Equation (2.7), i : D1(X) → D1(X) has bidegree

(1,−1), j : D1(X) → E1(X) has bidegree (0, 0), and ∂ : E1(X) → D1(X) has bidegree

(−1, 0), achieving the exact couple C(X) = {D1(X), E1(X), i, j, ∂}.
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In Section 2.2 right after Remark 2.4, we stated that we can get the r-th derived couple

C(r)(X) = {D(r)(X), E(r)(X), i(r), j(r), ∂(r)},

and therefore a spectral sequence (E(r)(X), d(r)) arises, where each differential d(r) has bide-

gree equal to (−r, r − 1).

Once Basu and Parida construct the spectral sequence, they then prove by induction

that for an integer r > 0,

D
(r)
p−1,q+1(X) = Im (ip−r,p−1

p+q (X)) = Hp−r,p−1
n (X)

and

i
(r)
p−1,q+1 = ip−1,p

n (X) |
D

(r)
p−1,q+1(X)

,

where ip−1,p
n is found in [5, Definition 2.1].

They apply this last result and unravel the r-th derived couple C(r)(X) to show that

· · · → Hp,p+r−1
n (X)

j
(r)
p+r−1,q−r+1−→ E(r)

p,q (X)
∂
(r)
p,q→ Hp−r,p−1

n−1 (X)
i
(r)
p−1,q→ Hp−r+1,p

n−1 (X)→ · · · (2.8)

is an exact sequence in which Im (i
(r)
p+r−1,q−r+1) = Hp,p+r

n (X).

Basu and Parida determine the dimension of each E(r) term by applying the next theorem

to the exact sequence given in equation (2.8).

Theorem 2.9. Let the Vi’s be finite dimensional vector spaces. If

V4
f4→ V3

f3→ V2
f2→ V1

f1→ V0

is an exact sequence, then dim(V2) = dim(V3)− dim(Im (f4))− dim(V1)− dim(Im (f1)).
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Now, we can conclude that

dim(E(r)
p,q (X)) = bp,p+r−1

n (X)− bp−1,p+r−1
n (X) + bp−r,p−1

n−1 − bp−r,pn−1 (X),

the desired result.

Another important result is Corollary 2.10. This corollary states that the sum of the

dimension of the E∗∗,∗-terms can be represented in terms of the sum of the persistent multi-

plicities of the filtration X.

Corollary 2.10. For all n ≥ 0,

∑
p+q=n

dim(E(r)
p,q (X)) =

∑
j−i≥r

(
µi,jn (X) + µi,jn−1(X)

)
+ bn(X)

where bn(X) is a sum depending on persistent ranks.

2.2 Persistent Homology of (X, l)

In Section 3, we will encounter the Künneth formula that states: if k is a field and X

and Y are increasing filtration of simplicial complexes, then there exists an exact sequence

0→
⊕

l+j=n

Hp,p+r−1
l (X)⊗Hp,p+r−1

j (Y )→ Hp,p+r−1
n (X×Y )→

⊕
l+j=n−1

Torl(H
p,p+r−1
l (X), Hp,p+r−1

j (Y ))→ 0.

We consider versions of Künneth formula for filtrations built from metric spaces (X, dX), (Y, dY ),

and (X ×Y, dX + dY ). We first discuss various definitions such as k[R+]-modules (where k is

a field), R+-graded simplicial modules, the modules F∗(X, l), and the R+-filtered simplicial

set (X, l). Gunnar Carlsson and Benjamin Filippenko [6] developed this terminology to prove

theorems that involve persistent homology of metric spaces.
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2.2.1 R+-Filtered Simplicial Set (X, l)

Definition 2.11. Let k[R+] be the ring of polynomials with coefficients in k and with ex-

ponents in R+. Then k[R+]-sMod is the category that has R+-graded k[R+]-modules as its

objects and graded module homomorphisms as its morphisms.

Definition 2.12. Let 4 be the simplex category. An R+ simplicial module k[R+]-module M

is a contravariant functor M : 4→ k[R+]-sMod.

Remark 2.13. Explicitly, Definition 2.12 can be explained as follows. Let [m] and [n] be

objects in the simplex category 4. Here, [m] and [n] are an m-simplex and an n-simplex.

Then, for each arrow φ : [m] → [n], we get a morphism Mφ = M(φ) : Mn → Mm, where

Mn = M([n]) and Mm are objects of the category of R+-graded k[R+] − modules k[R+]-

sMod.

Definition 2.14. (R+-filtered simplicial set.) Let X be a simplicial set, where Xn is

the set of n-simplices in X. A R+-filtered simplicial set (X, l) is a simplicial set together

with maps l : Xn → R+, namely, the filtration function. These maps satisfy the property

l(Xφ(σ)) ≤ l(σ) for all n ≥ 0, σ ∈ Xn, and all arrows φ : [m]→ [n].

The set R+-sSet represents the category that has objects R+-filtered simplicial sets (X, lX)

and has arrows f : (X, lX)→ (Y, lY ) given by f : X → Y satisfying lY (f(σ)) ≤ lX(σ) for all

σ ∈ X ([6], p. 12). The contravariant functor X : 4→ R+-sSet can be described as follows.

Consider φ : [m] → [n], then Xφ : Xn → Xm. So, for each n-simplex σ in Xn we have that

Xφ(σ) ∈ Xm. Therefore, l(Xφ(σ)) ∈ R+, and the inequality l(Xφ(σ)) ≤ l(σ) makes sense.

2.2.2 Bars, and the Modules F∗(X, l).

We wish to define the persistent homology of a R+-filtered simplicial set (X, l), and the

module Fn(X, l) will allow us to do that. But first, we need to define what we call bars

because the module is expressed in terms of these bars.
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Definition 2.15. (Bars) Let T be a variable in k[R+]. By Gabriel’s Theorem, any finitely

presented persistent k[R+]-module can be read as a direct sum of bars of the following form:

• (a, b) = Γak[R+]/T b−a. This represents a topological feature that is born at a and dies

at b.

• (a,∞) = Γak[R+]/T∞−a := Γak[R+]. This is a topological feature that is born at a but

never dies.

The bars (a, b) are persistent modules of the form

0→ 0→ · · · → k → k → k → 0→ 0→ · · · .

The first k shows up at time a, and the last k shows up just before time b.

Remark 2.16. There exist the following isomorphisms:

a.

(a, b)⊗k[R+] (c, d) ∼= (a+ c,min{a+ d, b+ c})

b.

Tor1((a, b), (c, d)) ∼= (max{a+ d, b+ c}, b+ d)

Now, we are ready to talk about the module Fn(X, l), and we will define it using infinite

bars.

Definition 2.17. Given a R+-filtered simplicial set (X, l), F (X, l) is a simplicial object

whose set of n-simplices is the free module

Fn(X, l) :=
⊕
σ∈Xn

Γl(σ)k[R+]〈σ〉.
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The value of the filtration function l(σ) is a non-negative real number. So, Fn(X, l) is

written as a direct sum of infinite bars (l(σ),∞). The notation Γl(σ)k[R+]〈σ〉 implies that

the n-dimensional topological feature generated by the n-simplex σ is born at time l(σ) but

never dies.

According to Remark 2.13, the contravariant functor F : R+-sSet→ k[R+]-module could

be similarly described. Given φ : [m]→ [n], we have the map F (X, l)φ : Fn(X, l)→ Fm(X, l).

Thus, for each n-simplex σ in Fn(X, l), F (X, l)φ(σ) belongs to Fm(X, l).

If φ has domain [n−1] and codomain [n], then we write dn : [n−1]→ [n]. It follows that

F (X, l)dn : Fn(X, l) → Fn−1(X, l). We now write the map F (X, l)dn concretely: let σ be in

Fn(X, l) then dn(σ) ∈ Fn−1(X, l), so our map is

F (X, l)dn(σ) = T l(σ)−l(dn(σ))dn(σ).

If we denote F (X, l)dn as dn as well, then this map above turns into

dn(σ) = T l(σ)−l(dn(σ))dn(σ),

where we must remember that the dn on the right side is different from dn on the left side. We

take linear combinations of the n-simplices in Fn(X, l) with coefficients on k[R+], and these

will be the elements of the chain group Cn(F (X, l)). We build the map ∂∗ : C∗(F (X, l)) →

C∗−1(F (X, l)) by

∂∗

(∑
σ

sσσ

)
=
∑
σ

sσd∗(σ),

where sσ ∈ k[R+].

Note that we obtain the chain complex (C∗(F (X, l), ∂∗). Next, we define the chain

complex a little bit different and more formally.

Definition 2.18. Given (X, l), we call PC∗(X, l) the persistent chain complex of (X, l). We
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define it

PC∗(X, l) = C∗(F (X, l)).

Definition 2.19. The persistent homology of (X, l) is the homology of its persistence chain

complex, so we write

PH∗(X, l) = H∗(PC∗(X, l)).

An R+-filtered simplicial set (X, l) is essential because later we will see that filtration

maps will depend on a metric whose distances live in R+, and the persistent homology of

metric spaces is what we want to study.

We provide our first Künneth Theorem for persistent homology of R+-filtered simplicial

sets.

Theorem 2.20 ([6]). Consider the R+-filtered simplicial sets (X, lX) and (Y, lY ) with the

condition that the Xn and Yn are finite sets for all n ≥ 0, then there exists a short exact

sequence

0→
⊕

l+j=n

PHl(X, lX)⊗k[R+]PHj(Y, lY )→ PHn(X×Y, lX+lY )→
⊕

l+j=n−1

Tor1(PHl(X, lX), PHj(Y, lY ))→ 0.

From now on, we denote the nth persistent homology of (X × Y, lX + lY ) as follows:

PHn(X × Y, lX + lY ) = PH(X, Y ).

We can also construct the nth persistent homology of (X×Y, lX×Y ), and that is denoted

PHn(X × Y ) = PHn(X × Y, lX×Y ).

2.3 Persistent Homology of Metric Spaces.

Let us start this section by defining a filtration function, namely, the max-length map:

lX : Xn → R+,
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where

lX(x0, x1, ..., xn) = max{dX(xi, xj) | 0 ≤ i, j ≤ n}. (2.21)

Note that that lX relies on a metric, and this helps us understand why the persistent

homology is defined as follows.

Definition 2.22. Given a metric space (X, dX), its persistent chain complex is PC∗(X) =

PC∗(X, lX) and its persistent homology is PH∗(X) = PH∗(X, lX).

The filtration map satisfies the property lX×Y (σ, τ) ≤ lX(σ)+lY (τ) for all (σ, τ) ∈ Xn×Yn,

so the equality does not always hold. As a consequence, we cannot say the persistent

homology of the metric space (X × Y, dX + dY ) is PH∗(X, Y ). However, the next theorem

provides a relation between persistent homology of metric spaces (X, dX) and (Y, dY ) and

PH∗(X, Y ).

Theorem 2.23. ([6], p. 16). Given two finite metric spaces (X, dX) and (Y, dY ), for n ≥ 0

there is a short exact sequence

0→
⊕
l+j=n

PHl(X)⊗ PHj(Y )→ PHn(X, Y )→
⊕

l+j=n−1

Tor1(PHl(X), PHj(Y ))→ 0.

which is natural with respect to the maps (X, dX) → (X ′, dX′) and (Y, dY ) → (Y ′, dY ′).

Moreover, the sequence splits.

If we replace PHn(X, Y ) by PHn(X × Y ), Theorem (2.23) will hold for just n = 0, 1.

Without Theorem (2.23) we are not able to show that PH2(Ik) has zero bars when k > 0:

this is a claim that we prove in the next section, Section (2.4).

Next, we define the homology PH∗(X, Y ) which is also a necessary tool for proving

PH2(Ik) = 0 when k > 0.
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Let us define the the following persistent chain groups:

PCn(X, Y ) : =
⊕

(σ,τ)∈Xn×Yn

ΓlX(σ)+lY (τ)k[R+]〈σ, τ〉

and

PCn(X × Y ) : =
⊕

(σ,τ)∈Xn×Yn

ΓlX×Y (σ,τ)k[R+]〈σ, τ〉

It can be shown that

in : PCn(X, Y )→ PCn(X × Y )

given by

in(σ, τ) = T lX(σ)+lY (τ)−lX×Y (σ,τ)〈σ, τ〉

is an R+-graded k[R+]-linear embedding. Based on the inclusion in, we can define the relative

chain complex whose chain groups are

PCn(X, Y ) := PCn(X × Y )/in(PCn(X, Y )).

This relative chain complex has homology groups, namely, PH∗(X, Y ).

Since we have a map of chain complexes

(PC∗(X, Y ), ∂∗)
i→ (PC∗(X × Y, ∂∗)

π→ (PC∗(X, Y ), ∂∗),

then there is a long exact sequence

· · · δn+1−→ PHn(X, Y )
(in)∗−→ PHn(X × Y )

(πn)∗−→ PHn(X, Y )
δn−→ · · · . (2.24)

The exact sequence (2.24) is natural ([6], p. 17).
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The next theorem provides information about what happens with the map (in)∗ when

n = 0, 1, 2.

Theorem 2.25. ([6], p. 17) Consider metric spaces (X, dX) and (Y, dY ), and also the

product metric space (X × Y, dX + dY ). Then the map (in)∗ from (2.24) is:

i. an isomorphism when n = 0

ii. an isomorphism when n = 1

iii. a surjection when n = 2

2.4 Low-dimension Persistent Homology of the Hypercube Ik

In this section, we study the two main theorems of Carlsson and Fileppenko’s paper

“Persistent Homology of the Sum Metric” [6]. Both theorems provide information about

the low-dimensional persistent homology of hypercubes Ik. Here, we consider hypercubes

equipped with the Hamming metric.

Definition 2.26. The hypercube metric space In is the set of all binary strings of length n,

equipped with the Hamming metric.

The Hamming metric computes the number of positions in which two binary strings of

equal length differ.

Example 2.27. Consider the hypercube I6. The Hamming metric d(011010, 111000) = 2.

Note that we have two strings of length 6. The first and fifth positions of the strings are

different, meaning that the distance is equal to 2.

We stress that a hypercube Ik can be viewed as a product space, for example as a k-fold

product of the cube I1. The Hamming metric on Ik is then formed by taking the “`1 product”

of the metric on I1.
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Now, we introduce the concept of coordinate inclusions from Ir into Ik. This is a useful

terminology that helps us identify the 1-dimensional persistent homology of hypercubes.

Definition 2.28. ([6], p. 22) Given 0 ≤ r ≤ k, a point ξ ∈ Ik−r, and any choice of r

coordinates 1 ≤ i1 < i2 < . . . < ir ≤ k of Ik, there is an isometric embedding φ : Ir → Ik,

where for x ∈ Ir the r chosen coordinates of φ(x) are equal to x, in other words,

x = (x1, x2, . . . , xr) = (φ(x)i1 , φ(x)i2 , . . . , φ(x)ir),

and the other k − r coordinates of φ(x) are given by the point ξ. These maps φ are called

coordinate inclusion of Ir into Ik. The set of coordinate inclusions of Ir into Ik is denoted

C(r, k).

Theorem 2.29. ([6], p. 23) For k > 0, we have

i. PH0(Ik) ∼= (0, 1)2k−1 ⊕ (0,∞)

ii. PH1(Ik) ∼= (1, 2)k2k−1−(2k−1).

Furthermore, PH1(Ik) =

〈 ⋃
φ∈C(2,k)

φ∗(PH1(I2))

〉
, where each φ∗ is induced by coordinate

inclusions φ.

Proof. First, let us start saying that the Vietoris–Rips complex of Ik at scale 0, VR(Ik, 0),

is 2k disconnected points.

The proof of (i) proceeds by induction on k. Let k = 1, then for r = 0 we get

VR(I, 0) which only contains two different non-connected points. When r = 1, then we

have VR(I, 1) = [0, 1]. This means that one 0-dimensional persistent homology point is born

at time 0 and dies at time 1. The other point never dies. So, PH0(I) = (0, 1) ⊕ (0,∞).

Assume that PH0(Ik−1) ∼= (0, 1)2k−1−1 ⊕ (0,∞). If we apply Theorem (2.23) in the case of
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PH0(X × Y ), then we get

PH0(Ik) = PH0(I × Ik−1) ∼= PH0(I)⊗ PH0(Ik−1).

We apply Remark (2.16) to compute the tensor product of two bars. It is straightforward

to get to PH0(Ik) ∼= (0, 1)2k−1 ⊕ (0,∞).

We now proceed to prove (ii). If we now apply Theorem (2.23) in the case of PH1(X×Y ),

we obtain

PH1(Ik) = PH1(I×Ik−1) ∼=
⊕
l+j=1

[PHl(I)⊗PHj(I
k−1)]⊕ Tor1(PH0(I), PH0(Ik−1)). (2.30)

We proceed by induction. For k = 1, PH1(I) = 0, because we do not have any holes.

This simplifies the direct sum of (2.30) as
⊕
l+j=1

[PHl(I)⊗PHj(I
k−1)] = PH0(I)⊗PH1(Ik−1).

Then, we write

PH1(Ik) ∼= PH0(I)⊗ PH1(Ik−1)⊕ Tor1(PH0(I), PH0(Ik−1)).

Now, we assume by induction that PH1(Ik−1) = (1, 2)(k−1)2k−2−(2k−1−1).

To compute the Tor bars, we need to apply the property of direct sum of Tor and the

property b. of Remark (2.16). Finally, (2.30) gives us

PH1(Ik) ∼= (1, 2)k2k−1−(2k−1).

We do not provide any details of the proof of the last part of this Theorem (2.29).
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Theorem 2.31. ([6], p. 24) For k > 0, PH2(Ik) = 0.

This theorem says that at homological dimension n = 2 there are no bars.

Proof. Our first goal is to prove that the image of the map (i2)∗ : PH2(I, Ik−1)→ PH2(Ik)

is zero.

Let us prove this theorem by induction. For k = 1, 2, 3, we see by inspection that

PH2(Ik) = 0. Assume that PH2(Ik−1) = 0 for k > 3. When we apply Theorem (2.23) we

obtain

PH2(I, Ik−1) ∼=
⊕
l+j=2

PHl(I)⊗ PHj(I
k−1)⊕

⊕
l+j=1

Tor1(PHl(I), PHj(I
k−1)).

Since PH2(I) = 0 and PH2(Ik−1) = 0 for k > 3, PH2(I, Ik−1) ∼=
⊕
l+j=1

Tor1(PHl(I), PHj(I
k−1)).

If we use PH1(I) = 0, then PH2(I, Ik−1) ∼= Tor1(PH0(I), PH1(Ik−1)). We can verify in

a similar manner that PH2(I, I2) ∼= Tor1(PH0(I), PH1(I2)).

Now, consider any coordinate inclusion φ : I2 → Ik−1. This map induces the following

map in homology:

id∗ ⊗ φ∗ : Tor1(PH0(I), PH1(I2))→ Tor1(PH0(I), PH1(Ik−1)).

Since the SES in Theorem (2.23) and the LES in (2.24) are natural, each square of the

diagram

Tor1(PH0(I), PH1(I2))
∼=−−−→ PH2(I, I2)

(i2)∗−−−→ PH2(I3)yid∗⊗φ∗ y y
Tor1(PH0(I), PH1(Ik−1))

∼=−−−→ PH2(I, Ik−1)
(i2)∗−−−→ PH2(Ik)

commutes. Therefore the diagram commutes.
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By part b. of Remark 2.16 and by the property of the direct sums of Tor, we get

Tor1(PH0(I), PH1(Ik−1)) = Tor1((0, 1)⊕ (0,∞), PH1(Ik−1)) ∼= Tor1((0, 1), PH1(Ik−1)).

Now, let us form a projective resolution of the bar (0, 1):

0→ (1,∞)→ (0,∞)→ (0, 1)→ 0.

if we tensor this resolution with the bar (1, 2) and then use part a. of Remark 2.16 to obtain

the chain complex

0→ (2, 3)
m→ (1, 2)→ 0.

Using part a. of Remark 2.16, we have that (1,∞)⊗(1, 2) ∼= (2, 3). The map m has kernel

equal to (2, 3), so Tor1((0, 1), (1, 2)) ∼= (2, 3). Therefore, the Tor group and the tensor group

are isomorphic when we use this resolution, and when we tensor it with (1, 2). By Theorem

2.29, PH1(Ik−1) ∼= (1, 2)(k−1)2k−2−(2k−1−1). This implies that

Tor((0, 1), PH1(Ik−1)) = (1,∞)⊗ PH1(Ik−1).

Thus,

Tor(PH0(I), PH1(Ik−1)) = (1,∞)⊗ PH1(Ik−1).

We replace the Tor groups with this last tensor product of bars to get the commutative

diagram

(1,∞)⊗ PH1(I2)
∼=−−−→ PH2(I, I2)

(i2)∗−−−→ PH2(I3)yid(1,∞)⊗φ∗
y y

(1,∞)⊗ PH1(Ik−1)
∼=−−−→ PH2(I, Ik−1)

(i2)∗−−−→ PH2(Ik ).

Observe that by Theorem 2.29 the map id(1,∞) ⊗ φ∗ is a surjection.
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Each map in the commutative diagram is surjective. Also, the persistent homology

PH2(I3) is equal to zero. As a consequence, PH2(Ik) = 0, and this ends the proof.
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3 Analysis of Basu and Parida’s Argument for a Cat-

egorical Product X × Y .

In this section, our goal is to take Basu and Parida’s main result, Theorem 2.5, and refine

it for a filtration of a simplicial complex of the form (X × Y )∗. To achieve this, we must try

to prove Theorem 3.2. But first, let us begin by defining the categorical product filtration.

Definition 3.1. Categorical product filtration. Given two filtrations

X : ∅ = X0 ⊆ X1 ⊆ · · · ⊆ XN−1 ⊆ XN = XN+1 = XN+2 = · · ·

and

Y : ∅ = Y0 ⊆ Y1 ⊆ · · · ⊆ YN−1 ⊆ YN = YN+1 = YN+2 = · · · ,

we define the categorical product filtration X × Y :

(X×Y )0 ⊆ (X×Y )1 ⊆ · · · ⊆ (X×Y )N−1 ⊆ (X×Y )N = (X×Y )N+1 = (X×Y )N+2 = · · · ,

where (X × Y )p=̇Xp × Yp.

Theorem 3.2. For each r ≥ 1 and n = p + q, the groups E
(∗)
∗,∗(X × Y ) and the persistent

homology groups H
(∗)
∗,∗ (X) and H

(∗)
∗,∗ (Y ) are related by a long exact sequence of the following

form.

. . .→
⊕
l+j=n

Hp,p+r−1
l (X)⊗Hp,p+r−1

j (Y )→ E(r)
p,q (X × Y )→

⊕
l+j=n−1

Hp−r,p−1
l (X)⊗Hp−r,p−1

j (Y )

→
⊕

l+j=n−1

Hp−r+1,p
l (X)⊗Hp−r+1,p

j (Y )→ . . .
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How do we prove Theorem 3.2? Our first idea is to construct a commutative diagram

with two sequences in which one of them is exact. We write the diagram as follows:

· · · →
⊕

l+j=n

Hp,p+r−1
l (X)⊗Hp,p+r−1

j (Y ) E
(r)
p,q(X × Y )

⊕
l+j=n−1

Hp−r,p−1
l (X)⊗Hp−r,p−1

j (Y )→ · · ·

· · · → Hp,p+r−1
n (X × Y ) E

(r)
p,q(X × Y ) Hp−r,p−1

n−1 (X × Y ) · · ·

id

j
(r)
p+r−1,q−r+1 ∂(r)

p,q i
(r)
p−1,q

(3.3)

We wish to show that the leftmost and rightmost vertical arrows are isomorphisms.

We first prove that they are isomorphisms using a specific example.

Example 3.4. Let Sn denote the n-dimensional sphere. Consider X to be the filtration

S0 ⊂ S1 (so X0 = S0 and X1 = S1), and Y is the same filtration S0 ⊂ S1.

1.

f 0,0
0 (X) : H0(S0)→ H0(S0) ∼= F2

H0,0
0 (X) = Im f 0,0

0 (X) ∼= F2, H0,0
0 (X)⊗H0,0

0 (X) ∼= F2.

The Künneth Theorem tells us that H0(S0)⊗H0(S0) ∼= H0(S0 × S0). So,

H0(S0 × S0) = H0(S0)⊗H0(S0) ∼= F2 ⊗ F2 ∼= F4.

The map g0,0
0 (X × Y ) : H0(S0 × S0)→ H0(S0 × S0) has Im g0,0

0 (X × Y ) ∼= F4.

Note that Im f 0,0
0 (X)⊗ Im f 0,0

0 (Y ) ∼= F4, and therefore

Im g0,0
0 (X × Y ) ∼= Im f 0,0

0 (X)⊗ Im f 0,0
0 (Y ).

2. The map f 0,1
0 (X) : H0(S0)→ H0(S1) has Im f 0,1

0 (X) ∼= F.
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Consider g0,1
0 (X × Y ) : H0(S0 × S0)→ H0(S1 × S1). Using the Künneth Theorem, we

obtain

H0(S1 × S1) ∼= H0(S1)⊗H0(S1) ∼= F⊗ F ∼= F.

Then we say Im g0,1
0 (X × Y ) ∼= F. These previous computations indicate that

Im g0,1
0 (X × Y ) ∼= Im f 0,1

0 (X)⊗ Im f 0,1
0 (Y ).

3. The map f 1,1
0 (X) : H0(S1)→ H0(S1) gives us Im f 1,1

0 (X) ∼= F.

Now, we consider g1,1
0 (X × Y ) : H0(S1 × S1)→ H0(S1 × S1) and we note

Im g1,1
0 (X × Y ) ∼= Im f 1,1

0 (X)⊗ Im f 1,1
0 (Y ).

4. The map f 0,0
1 (X) : H1(S0)→ H1(S0) gives us Im f 0,0

1 (X) = 0.

For g0,0
1 (X × Y ) : H1(S0 × S0)→ H1(S0 × S0), if we again use the Künneth Theorem

we get

H1(S0 × S0) ∼= [H0(S0)⊗H1(S0)]⊕ [H1(S0)⊗H0(S0)] = 0.

Consider g0,0
1 (X × Y ) : H1(S0 × S0)→ H1(S0 × S0). Then

Im g0,0
1 (X × Y ) = 0 = [Im f 0,0

1 (X)⊗ Im f 0,0
0 (Y )]⊕ [Im f 0,0

0 (X)⊗ Im f 0,0
1 (Y )].

5. The map f 0,1
1 (X) : H1(S0)→ H1(S1) satisfies Im f 0,1

1 (X) = 0.

We have g0,1
1 (X × Y ) : H1(S0 × S0)→ H1(S1 × S1).
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Using the Künneth theorem

H1(S1 × S1) ∼= [H0(S1)⊗H1(S1)]⊕ [H1(S1)⊗H0(S1)] ∼= F2.

Now we can state that

Im g0,1
1 (X × Y ) = 0 = [Im f 0,1

1 (X)⊗ Im f 0,1
0 (Y )]⊕ [Im f 0,1

1 (X)⊗ Im f 0,1
0 (Y )].

6. Consider f 1,1
1 (X) : H1(S1)→ H1(S1). Note Im f 1,1

1 (X) ∼= F.

We have g1,1
1 (X × Y ) : H1(S1 × S1)→ H1(S1 × S1). Then, Im g1,1

1 (X × Y ) ∼= F2. We

can easily verify that

[Im f 1,1
1 (X)⊗ Im f 1,1

0 (Y )]⊕ [Im f 1,1
0 (X)⊗ Im f 1,1

1 (Y )] ∼= F2,

and so

Im g1,1
1 (X × Y ) ∼= [Im f 1,1

1 (X)⊗ Im f 1,1
0 (Y )]⊕ [Im f 1,1

0 (X)⊗ Im f 1,1
1 (Y )].

7. Consider f 0,0
2 (X) : H2(S0)→ H2(S0). Here we have Im f 0,0

2 (X) = 0. Note that H2(S0×

S0)=0 by using the Künneth Theorem.

The map g0,0
2 (X × Y ) : H2(S0×S0)→ H2(S0×S0) gives Im g0,1

2 (X × Y ) = 0. We can

verify that

Im g0,0
2 (X × Y ) ∼=

⊕
l+j=2

Im f 0,1
l (X)⊗ Im f 0,1

j (Y ).
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We can do the same with the rest of the g∗,∗∗ . So, it is true that for this filtration

Hs,t
n (X × Y ) ∼=

⊕
l+j=n

Hs,t
l (X)⊗Hs,t

j (Y ).

For the specific filtrations in Example 3.4, we have therefore verified that the leftmost

and rightmost vertical arrows of (3.3) are isomorphisms.

We now prove for any arbitrary filtrations X and Y :

Hs,t
n (X × Y ) ∼=

⊕
l+j=n

Hs,t
l (X)⊗Hs,t

j (Y )

We know that we have inclusion maps Xp ↪→ Xp+r−1 and Yp ↪→ Yp+r−1. Then, we

apply the fact that the Künneth formula is natural, in other words, the inclusion maps

Xp ↪→ Xp+r−1 and Yp ↪→ Yp+r−1 induce the following commutative diagram:

⊕
l+j=n

Hp
l (X)⊗Hp

j (Y )
⊕
l+j=n

Hp+r−1
l (X)⊗Hp+r−1

j (Y )

Hp
n(X × Y ) Hp+r−1

n (X × Y ) ,

(3.5)

in which the vertical arrows are isomorphisms.

Let us define the vertical maps of diagram (3.5) by

α :
⊕
l+j=n

Hp
l (X)⊗Hp

j (Y )→ Hp
n(X × Y ),

where

α

( ∑
l+j=n

[σl]⊗ [τj]

)
=
∑
l+j=n

[σl ⊗ τj]

is an isomorphism.

According to May, J.P. in the book A Concise Course in Algebraic Topology, ([9], p.130),
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there exists another version of Künneth formula with the same map α we defined above,

which we use in the theorem below.

Theorem 3.6. (Künneth Theorem) Suppose R is a PID and the chain R-modules Ci are

free. Then for each n there is a natural short exact sequence

0→
n⊕
i=0

(Hi(C)⊗R Hn−i(C
′))

α→ Hn(C ⊗R C ′)→
n−1⊕
i=0

TorR(Hi(C), Hn−i−1(C ′))→ 0

where α is defined as

α

( n∑
i=0

[bi]⊗ [cn−i]

)
=

n∑
i=0

[bi ⊗ cn−i].

The codomain of α in Theorem 3.6 is Hn(C ⊗ C ′), and our goal is to identify it with

Hn(X × Y ). Set C = C∗(X) and C ′ = C∗(Y ), the cellular chain complexes. Then C ⊗ C ′ =

C∗(X × Y ) by Proposition 3B.1 ([2] p. 269). Hence, Hn(C(X)⊗ C(Y )) = Hn(X × Y ).

This Proposition 3B.1 states the following: the boundary map in the cellular chain com-

plex C∗(X × Y ) is determined by the boundary maps in the cellular chain complexes C∗(X)

and C∗(Y ) via the formula

d(ei × ej) = d(ei)× ej + (−1)iei × d(ej).

Observe that the Tor terms are zero in our case, which means that the map α given in

Theorem 3.6 is an isomorphism.

We now restrict α to persistent homology,

α :
⊕
l+j=n

Hp,p+r−1
l (X)⊗Hp,p+r−1

j (Y )→ Hp,p+r−1
n (X × Y ).

It follows this last α will be defined in the following manner: if [zl] ∈ Hp,p+r−1
l (X) ⊆
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Hl(Xp+r−1) and [wj] ∈ Hp,p+r−1
j (Y ) ⊆ Hj(Yp+r−1), then

α

( ∑
l+j=n

([zl]⊗ [wj])

)
=
∑
l+j=n

[zl ⊗ wj].

This last α also becomes an isomorphism.

The horizontal rows of the bottom sequence in (3.3) are defined as

jr(ir−1([σ ⊗ τ ])) = jr−1([σ ⊗ τ ]) + dr−1(Er−1), ∂(r)(e+ dr−1(Er−1)) = ∂r−1(e),

i(r)([σ ⊗ τ ]) = i(r−1) |i(r−1)(Dr−1) ([σ ⊗ τ ]).

We return to the proof of Theorem 3.2. We want each square of the diagram in equation

(3.3) to commute, so the maps of the top arrows will be defined from left to right by jr(α),

(α−1 ◦ ∂(r)), and α−1 ◦ i(r) ◦ α. Note that the last map contains two α’s in the composition

but they are not the same because we call all the vertical arrows α; we must keep track of

to which α’s we are referring.

Next, we proceed by showing that the top row sequence of the commutative diagram

in (3.3) is exact. Note that the bottom row is exact, the diagram is commutative, and the

vertical arrows are isomorphisms. We conclude, by the nine lemma ([3] Exercise 1.3.2, p.11),

that the top sequence of (3.3) is exact as well. This completes the proof of Theorem 3.2.

Using Theorem 2.9, we obtain the corollary that

dim(E(r)
p,q (X × Y )) =

∑
l+j=n

bp,p+r−1
l (X)bp,p+r−1

j (Y )− dim(Im (α−1 ◦ i(r)p+r−2,q−r+2 ◦ α))+

∑
l+j=n−1

bp,p+r−1
l (X)bp,p+r−1

j (Y )− dim(Im (α−1 ◦ irp−1,q ◦ α)).

We now summarize the steps we followed to show that the sequence in Theorem 3.2 is

exact. Subsequently, we determined a formula to compute the rank of the groups E∗p,q(X×Y ).
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Basu and Parida’s paper [5] played an important role in demonstrating these two results.

Theorem 3.2 presents a long exact sequence whose groups are
⊕
l+j=n

H∗,∗l (X) ⊗ H∗,∗j (Y )

and E∗∗,∗(X × Y ). We proved this sequence is exact by first creating a diagram with two

sequences. The top sequence is the one written in Theorem 3.2, and the bottom sequence

is the long exact sequence given in the diagram in equation (2.8), but this time we replace

X by X × Y . Later, we used the naturality of the topological Künneth formula to create

an isomorphism α from
⊕
l+j=n

H∗l (X)⊗H∗j (Y ) to H∗n(X ×Y ). Resources such as a functorial

version of Künneth formula (Theorem 3.6) and the identification of Hn(C(X)⊗C(Y )) with

Hn(X × Y ) serve to pave the way to restrict this isomorphism α to a direct sum of the

tensor product of the persistent homology of X and Y and the persistent homology of the

categorical product. This map α leads us to discover the maps we place on the top horizontal

arrows to make a such diagram commute. These maps are formed by taking compositions

of different maps: α, α−1, and the bigraded maps i∗∗,∗, ∂
∗
∗,∗ and j∗∗,∗. We proceeded to apply

the nine lemma to conclude the top sequence is exact, and this completed the desired result.

The result helped us to straightforwardly express rank(E∗p,q(X × Y )) in terms of the sum of

the rank(Im (α−1 ◦ i∗∗,∗ ◦ α)) and the sum of product of ranks of persistent homology of X

and Y .
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4 The Gromov–Hausdorff Distance

In the next two sections, a map means a continuous function.

4.1 Basic Concepts

We first introduce the Hausdorff distance, both rigorously and graphically, and then

we use the Hausdorff distance to define the Gromov-Hausdorff distance [7]. After that, we

provide a different expression for the Gromov-Hausdorff distance in terms of the distortion, in

order to later demonstrate a sketch of the proof of Theorem 5.1, which is fundamental to the

analysis of Section 5. Furthermore, we discuss the definition of the Vietoris-Rips complex,

which will be used in Section 5 to produce not only maps from discontinuous functions but

also to discover topological obstructions. In that same section, we apply the Vietoris-Rips

complex to lower bound the Gromov-Hausdorff distance between specific metric spaces.

Definition 4.1. Consider a metric space Z. Let X and Y be metric spaces that are subsets

of Z. The Hausdorff distance between X and Y is

dH(X, Y ) = inf{r ≥ 0 | X ⊆ B(Y ; r) and Y ⊆ B(X; r)}

The Hausdorff distance measures the least radius r such that if we thicken Y by r it

contains X and if we also thicken X by r it contains Y. The distance is computed when both

metric subspaces are aligned in a common metric space. See Figure 1 below.
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Figure 1: Let X be the rectangle and Y the circle. We have balls of radii 0.15, 0.30, 0.42,
and 0.574 around X and Y . The radius are increased until the balls cover the space Y as
well as X. The smallest radius such that the balls cover the spaces X and Y is the value of
dH(X, Y ).

The Gromov-Hausdorff distance measures the distance between two metric spaces that

are not necessarily aligned in a larger metric space. Moreover, these two metric spaces may

not be subsets of the same space.

Definition 4.2. Suppose that X and Y are bounded metric spaces. The Gromov-Hausdorff

distance is

dGH(X, Y ) = inf
φ : X↪→Z
λ : Y ↪→Z

{dZH(φ(X), λ(Y ))},

where φ and λ are all possible isometric embeddings.

Definition (4.2) states that through the functions φ and λ, we get an alignment in the

space Z that would permit us to calculate the Hausdorff distance. Figure (2) below helps to

visualize the Gromov-Hausdorff distance.
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Figure 2: Graphical illustration of the Gromov-Hausdorff distance.

The Gromov-Hausdorff distance can also be expressed in terms of the distortion of cor-

respondences.

Definition 4.3. Correspondence.

Let (X, dX) and (Y, dY ) be two arbitrary metric spaces. A correspondence is a relation

R ⊆ X × Y such that πX(R) = X and πY (R) = Y . The maps πX and πY are known as the

canonical maps.

The set of all correspondences between X and Y is denoted R(X, Y ).

Definition 4.4. For any correspondence R in X × Y ([7], p. 1) the distortion is defined as

dis(R) = sup
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|.

Suppose that we have a surjective function g : X → Y , then Graph(g) is a correspondence.
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The distortion of Graph(g) is denoted

dis(g) = sup
x,x′∈R

|dX(x, x′)− dY (g(x), g(x′))|.

The next proposition provides some properties of distortion:

Proposition 4.5. Let (X, dX) and (Y, dY ) be bounded metric spaces. Let R be any corre-

spondence contained in X × Y .

1. Consider Y = ∗, i.e, Y is a singleton. If R = X × ∗, then dis(X × ∗) = diam(X)

2. If R = X × Y , then dis(X × Y ) ≤ max{diam(X), diam(Y )}

Proof. 1. By Definition 4.4

dis(X × ∗) = sup
x,x′∈X

|dX(x, x′)− dY (∗, ∗)| = sup
x,x′∈X

dX(x, x′) = diam(X).

2. By Definition 4.4

dis(X × Y ) = sup
(x,y)∈X×Y

(x′,y′)∈X×Y

|dX(x, x′)− dY (y, y′)|.

Since dX(x, x′) ≤ diam(X) and dY (y, y′) ≤ diam(Y ),

sup
(x,y)∈X×Y

(x′,y′)∈X×Y

|dX(x, x′)−dY (y, y′)| ≤ sup | diam(X)−diam(Y )| ≤ max{diam(X), diam(Y )}.

Hence, dis(X × Y ) ≤ max{diam(X), diam(Y )}.
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We can also approximate values of the Gromov-Hausdorff distance using the distortion:

dGH(X, Y ) =
1

2
inf
R

dis(R) (4.6)

over all correspondences R ([7], p.3).

The Gromov-Hausdorff distance is a not a metric because we could have dGH(X, Y ) =

0 when X 6= Y . For example, if X and Y are bounded isometric metric spaces, then

dGH(X, Y ) = 0. This can be proven in a very straightforward manner using the definition of

the distortion of a function and the equation 4.6.

Now, let us move on to the definition of the Vietoris-Rips complex.

Definition 4.7. Let (X, dX) be a metric space. Then, the Vietoris-Rips complex is

VR(X; r) = {(x0, x1, . . . , xn) | d(xi, xj) ≤ r, ∀ 0 ≤ i, j ≤ n},

where the vertices xi are in X.

The Vietoris-Rips complex contains all simplices whose distance between any two of their

vertices is ≤ r. Figure 3 illustrates VR(X; r) at scale r = 2.
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Figure 3: Each circle has a radius of 1. If two circles intersect, the distance between the
circles’ centers is ≤ 2, and we draw a segment between them, which is a 1-simplex. If any
three circles pairwise intersect, so that their 1-simplices form a triangle, the triangle together
with its interior form a 2-simplex (Above, filled in with lavender.) If any four circles pairwise
intersect, so that their 1-simplices form a tetrahedron, the tetrahedron together with its
interior form a 3-simplex. Similarly, if five circles pairwise intersect, a 4-simplex is created.
Generally, if any n-circles pairwise intersect, an (n− 1)-simplex is created.

4.2 The Gromov-Hausdorff Distance Between Spheres Using the

Geodesic Metric.

A current area of activity in geometry and topology is the determination of bounds,

particularly lower bounds, for the Gromov-Hausdorff distance between spheres using the

geodesic metric. In their paper “The Gromov–Hausdorff Distance Between Spheres” [7],

Lim, Memoli, and Smith demonstrate how they found lower bounds using different tools

such as distortion, the distortion-preserving lemma, Dubins-Schwarz’s Theorem, and the

Borsuk-Ulam Theorem. They first provide weak lower bounds for dGH(Sm, Sn), where 0 ≤

m ≤ n ≤ ∞, by applying the concepts of persistent homology and bottleneck distance. This

determines the following result:

dGH(Sm, Sn) ≥ 1

4
ξm,
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where ξm = cos−1

(
− 1

m+1

)
and 0 < m < n < ∞. This lower bound for these Gromov–

Hausdorff distances is found by computing the geodesic distance between any two vertices

of a regular (m + 1)-simplex inscribed in Sm. For example, if we want the value of ξ1, we

must calculate the geodesic distance between any two vertices of the equilateral triangle

inscribed in the circle S1. The distance in this case is 2π/3, which indicates that for n > 1,

dGH(S1, Sn) ≥ π
6
.

Lim, Memoli, and Smith [7] were later able to construct better lower bounds: they proved

that dGH(Sm, Sn) ≥ 1
2
ξm when 0 < m < n < ∞ by applying the Dubins-Schwarz Theorem

4.8 and the Distortion-Preserving Lemma 4.9, which is a generalization of the Borsuk–Ulam

theorem for possibly discontinuous functions:

Theorem 4.8 (Dubins-Schwarz Theorem). For each m > 0, if a function g : Sm+1 → Sm is

odd, then dis(g) ≥ ξm.

For Lim, Memoli, and Smith’s proof, see [7], p. 46, Appendix A.

We now prove the Distortion-Preserving Lemma according to these same authors:

Lemma 4.9 (Distortion-Preserving Lemma). ([7] p. 19) Let φ : C → Sm be any odd func-

tion. For any non-negative m,n, let C be a non-empty set contained in Sn that satisfies

C ∩ (−C) = ∅. Then the function φ∗ : C ∪ (−C) → Sm, where φ∗(x) = φ(x) when x ∈ C

and φ∗(−x) = −φ(x), is odd. Moreover, dis(φ) = dis(φ∗).

Proof. It is pretty straightforward to show that φ∗ is an odd function.

Now, we proceed to prove dis(φ) = dis(φ∗).

Let x, y ∈ C then

|dSn(x,−y)− dSm(φ∗(x), φ∗(−y))| = |π − dSn(x, y)− (π − dSm(φ(x), φ(y)))|

= | − dSn(x, y) + dSm(φ(x), φ(y)))|.
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Then, applying the definition of distortion, we get

|dSn(x,−y)− dSm(φ∗(x), φ∗(−y))| ≤ dis(φ).

Now,

|dSn(−x,−y)− dSm(φ∗(−x), φ∗(−y))| = |π − dSn(−x, y)− (π − dSm(φ(−x), φ(y)))|

= | − dSn(−x, y) + dSm(φ(−x), φ(y)))|

≤ dis(φ).

So, for x, y ∈ C, dis(φ∗) ≤ dis(φ). Also, by the way we defined φ∗, we have that dis(φ) ≤

dis(φ∗).

Hence, dis(φ) = dis(φ∗), and that completes the proof.

The above results permitted them to obtain the special case when n = 1 and m ≥ 2:

dGH(S1, Sm) ≥ π

3
.

Notice that now we have a better lower bound for the Gromov-Hausdorff distance between

the circle and the m-sphere, namely π/3.

There are cases in which the implementation of Lyusternik-Schnirelmann, a theorem

that is equivalent to Borsuk-Ulam’s theorem ([8], p.23), is required to get a fairly good lower

bound. For example, when n > 0 and m < ∞, we use this theorem to determine that

dGH(S0, Sn) and dGH(Sm, S∞) are both greater than or equal to π/2.

Additionally, in the same example, we can prove that the value of both dGH(S0, Sn) and

dGH(Sm, S∞) are exactly π/2. It can be proved that both distances are bounded above by
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π/2 if we apply both part 2 of Proposition 4.5 and also the fact that the Gromov-Hausdorff

distance between spheres is less than or equal to the distortion of any correspondence R.

There are other ways in which we could provide stronger lower bounds. We first discuss

other basic definitions: the Z2-map and the coindex of a space. The symbol Z2 means odd,

so a Z2-map refers to an odd map. The coindex is defined using the Z2-map:

Definition 4.10. Let X be a bounded metric space. The coindex of X is

coindZ2(X) = max{k ≥ 0 | Sk Z2−→ X},

where Z2 alludes to the existence of a Z2-map.

We added the concept of coindex to get much stronger lower bounds for dGH(Sm, Sn)

when 0 ≤ m ≤ n. The value cm,n : = inf{r ≥ 0 | coindZ2(VR(Sm; r)) ≥ n} is a much better

lower bound for 2 · dGH(Sm, Sn) since it relies on both m and n.

In the paper “Gromov-Hausdorff Distances, Borsuk-Ulam Theorems, and Vietoris-Rips

Complexes” by Adams et. al.([11], p. 14), I collaborated with multiple authors in the devel-

opment of the Main Theorem of that article, which I present here.

Theorem 4.11. The collaboration paper’s “Main Theorem”([11], p.14) is as follows.

For n ≥ m, dGH(Sm, Sn) ≥ 1

2
cm,n.

One of the tools used in our collaboration paper to prove Theorem (4.11) (the collabora-

tion paper’s “Main Theorem”) is the fact that any odd function (it could be discontinuous)

f : Sn → Sm has distortion dis(f) ≥ 1
2
cm,n. Another useful tool is the fact that for any func-

tion h : Sn → Sm we always obtain an odd function f : Sn → Sm such that dis(h) ≥ dis(f),

a statement that was determined in part using Lemma (4.9).

In Section (5), as part of our original dissertation work, we will extend Theorem (4.11)

46



to subsets of the m-sphere, in order to help us find better lower bounds for the Gromov–

Hausdorff distances between spheres and hypercubes.
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5 Gromov-Hausdorff Distances Between Hypercubes

and Spheres Using the Hamming Metric

In Section 4.2, we discussed the collaboration work done by the present author and other

researchers on finding good lower bounds for the Gromov-Hausdorff distance between spheres

of different dimensions using the geodesic metric.

In the present section, which is part of our independent, original work, we focus on finding

the best lower bounds that we can for the Gromov-Hausdorff distances between n-spheres and

(n+1)-dimensional hypercubes when the hypercubes are equipped with the geodesic metric.

Later, we also lower bound the coindex of the Vietoris-Rips complexes VR(Im; r) when the

cube Im is equipped with the Hamming metric, another main topic of this dissertation.

5.1 Principal Theorem and Definitions

To start the process of finding lower bounds on the Gromov-Hausdorff distance, we apply

Theorem 5.1.

Theorem 5.1. For m,n ≥ 0 and for Y ⊆ Sn with Y = −Y and Y equipped with the geodesic

distance, we have

dGH(Y, Sm) ≥ 1

2
inf{r ≥ 0 | coindZ2(VR(Y ; r)) ≥ m} =: cm(Y ).

We will give a sketch of the proof of Theorem (5.1), but we first present the definitions

of partition of unity, ε-covering, Z2-space, and Z2-invariant. We will use these four concepts

to guarantee the existence of an odd map between a sphere and a Vietoris-Rips complex.

From this result we can determine a relation between cm(Y ) and the distortion of a related

map. As we know, (4.6) connects dGH(Y, Sm) and the distortion; hence, it will establish

a connection between dGH(Y, Sm) and cm(Y ), which will help us state that the Gromov-
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Hausdorff distance is bounded below by this infimum. The following four definitions are of

importance when it comes to proving Theorem (5.1).

Definition 5.2 (Partition of Unity). Let X be a topological space and let {Ui}i∈Λ be an open

cover for X. A partition of unity subordinate to this cover is a collection of non-negative

maps {ρi}i∈Λ on X such that

i. supp(ρi) ⊆ Ui

ii. For all x ∈ X the sum of these maps is 1; that is,
∑
i∈Λ

ρi(x) = 1.

Definition 5.3 (ε-covering). Let M ⊆ X. We say that M is an ε-covering if for every

x ∈ X, there exists m ∈ M such that x ∈ B(m; ε), where B(m, ε) is the open ball centered

at m with radius ε.

Definition 5.4 (Z2-space). A Z2-space is a space X together with a homeomorphism ν : X →

X, where ν(x) = −x.

Definition 5.5 (Z2-invariant.). Let M be a subspace of the Z2-space X. We say that M is

Z2-invariant if M = −M.

Sketch of the proof of Theorem 5.1. Let m ≥ n and let f : Sm → Y be an odd map. We

must select a Z2-invariant (r/2)-covering X where X ⊆ Sm; that is, for every point s ∈ Sm,

there exists a point x ∈ X such that dX(x, s) < r/2 and X = −X. If we apply a Z2-invariant

partition of unity subordinate to these balls B(x; r/2) ⊆ Sm, then it follows that, by Lemma

4.1 in [11] p.13, there exists an odd map φ : Sm → VR(X; ε). The restriction odd map

f |X : X → Y induces, by Lemma 3.5 in ([11], p.12), the simplicial map f̄ |X : VR(X; ε) →

VR(Y ; ε+ dis(f |X)), for any positive ε.

By the same Lemma 3.5 in ([11], p.12), the map f̄ |X is odd because f |X is odd. So,

f̄ |X ◦ φ : Sm → VR(Y ; dis(f |X) + ε) is also an odd map. This indicates that dis(f |X) + ε ≥
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inf{r ≥ 0| coindZ2(VR(Y ; r)) ≥ m} for all positive ε. It follows that

dis(f |X) ≥ {r ≥ 0| coindZ2(VR(Y ; r)) ≥ m}.

By definition (2) in ([7], p.3), we have

2 · dGH(Y, Sm) ≥ inf
g : Y→Sm

h : Sm→Y

max{dis(g); dis(h)} ≥ inf{dis(h)|h : Sm → Y }.

Using Theorem 4.9, any map can be modified to get an odd map f such that dis(f) ≤

dis(h). This gives

dGH(Y, Sm) ≥ 1

2
inf{dis(f)|f : Sm → Y is odd} ≥ 1

2
inf{r ≥ 0| coindZ2(VR(Y ; r)) ≥ m}.

5.2 Lower Bounding the Gromov-Hausdorff Distance Between a

Sphere and a Hypercube Using the Geodesic Metric

From now on, we will write Ing and Inh when In is equipped with the geodesic metric and

the Hamming metric, respectively.

Using the geodesic metric for In, we want to lower bound the Gromov-Hausdorff distance

between a sphere and a hypercube as follows

2 · dGH(Ing , S
m) ≥ inf{r ≥ 0 | coindZ2(VR(Ing ; r)) ≥ m}.

We need to compute the smallest value for the scale r that allows the coindex of the

Vietoris-Rips complex of Ing to be greater than or equal to the dimension of the sphere Sm.

To be able to do this, we must determine the largest k (or the least r) so that there exists
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an odd map Sk → VR(Ing ; r).

Our goal is to first concentrate on building the best lower bounds for

dGH(In+1
g , Sn)

when In+1
g exists inside Sn; we endow In+1

g with the spherical geodesic metric. This tells us

that the vertices of In+1
g are of the form (± 1√

n+1
,± 1√

n+1
, . . . ,± 1√

n+1
).

To come up with general lower bounds, we first lower bound the above distance for

particular values of n. We will use the homotopy types of VR(Ing ; r) to determine the

coindex. In cases where the homotopy type is known, the Vietoris-Rips complexes are

homotopy equivalent to spheres and wedges of spheres, so we write them as such. Then, we

apply the Borsuk-Ulam Theorem which states that there are no odd maps from Sn to Sn−1.

We will compute lower bounds for dGH(In+1
g , Sn) when n = 1, 2, · · · , 6 based on the

homotopy types of VR(Ing ; r) appearing below in Table 1, which is taken from the work of

Adamaszek and Adams [1].

Homotopy types of VR(Inh ; r) [1]
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

r = 0 S0
∨3 S0

∨7 S0
∨15 S0

∨31 S0
∨63 S0

∨127 S0
∨255 S0

∨511 S0

r = 1 • S1
∨5 S1

∨17 S1
∨49 S1

∨129 S1
∨321 S1

∨769 S1
∨1793 S1

r = 2 • • S3
∨9 S3

∨49 S3
∨209 S3

∨769 S3
∨2561 S3

∨7937 S3

r = 3 • • • S7

r = 4 • • • • S15

r = 5 • • • • • S31

r = 6 • • • • • • S63

r = 7 • • • • • • • S127

r = 8 • • • • • • • • S255

Table 1: The black dots indicate that VR(Inh ; r) is homotopy equivalent to a point.

Because the hypercubes are discrete spaces, the Vietoris-Rips complex only changes at

certain values of r, so we will evaluate the coindices only at those values.
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Case n = 0 :

2 · dGH(Ig, S
0) ≥ inf{r ≥ 0 | coindZ2(VR(Ig; r)) ≥ 0}

For n = 0, the values of r where the Vietoris-Rips complex VR(In+1
g ; r) changes are 0

and π. We only evaluate r = 0 since it is the smallest r for which the coindex is ≥ 0.

coindZ2(VR(Ig; 0)) = max{k ≥ 0 | Sk → VR(Ig; 0)} = max{k ≥ 0 | Sk Z2→ S0} = 0,

So, 2 · dGH(Ig, S
0) ≥ 0.

Case n = 1 :

2 · dGH(I2
g , S

1) ≥ inf{r ≥ 0 | coindZ2(VR(I2
g ; r)) ≥ 1}

For n = 1, the values of r where the Vietoris-Rips complex VR(In+1
g ; r) changes are 0,

π/2, and π. We only present the computations when r = 0, π/2 since the smallest r that

makes the coindex ≥ 1 is π/2.

coindZ2(VR(I2
g ; 0)) = max{k ≥ 0 | Sk → VR(I2

g ; 0)} = max{k ≥ 0 | Sk Z2→
∨3 S0} = 0

coindZ2(VR(I2
g ; π/2)) = max{k ≥ 0 | Sk → VR(I2

g ; π/2)} = max{k ≥ 0 | Sk Z2→ S1} = 1

So, 2 · dGH(I2
g , S

1) ≥ π/2.

Case n = 2 :

2 · dGH(I3
g , S

2) ≥ inf{r ≥ 0 | coindZ2(VR(I3
g , r)) ≥ 2}

For n = 2, the values of r where the Vietoris-Rips complex VR(In+1
g ; r) changes are 0,

cos−1(1/3), cos−1(−1/3), and π. However, we just go all the way until r = cos−1(−1/3).

This latter r value is the smallest one that provides us with a coindex ≥ 2.

coindZ2(VR(I3
g ; 0)) = max{k ≥ 0 | Sk Z2→

∨7 S0} = 0

coindZ2(VR(I3
g ; cos−1(1/3))) = max{k ≥ 0 | Sk Z2→

∨5 S1} = 1

coindZ2(VR(I3
g ; cos−1(−1/3))) = max{k ≥ 0 | Sk Z2→ S3} = 3

So, 2 · dGH(I3
g , S

2) ≥ cos−1(−1/3).
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Case n = 3 :

2 · dGH(I4
g , S

3) ≥ inf{r ≥ 0 | coindZ2(VR(I4
g ; r)) ≥ 3}

For n = 3, the values of r where the Vietoris-Rips complex VR(In+1
g ; r) changes are

r = 0, cos−1(1/2), π/2, cos−1(−1/2), and π. We only calculate the coindex when r =

0, cos−1(1/2), π/2 since the smallest value of r that gives coindex ≥ 3 is π/2.

coindZ2(VR(I4
g ; 0)) = max{k ≥ 0 | Sk Z2→

∨15 S0} = 0

coindZ2(VR(I4
g ; cos−1(1/2))) = max{k ≥ 0 | Sk Z2→

∨17 S1} = 1

coindZ2(VR(I4
g ; π/2)) = max{k ≥ 0 | Sk Z2→

∨9 S3} = 3

So, 2 · dGH(I4
g , S

3) ≥ π/2.

Case n = 4 :

2 · dGH(I5
g , S

4) ≥ inf{r ≥ 0 | coindZ2(VR(I5
g ; r) ≥ 4}

For n = 4, the values of r where the Vietoris-Rips complex VR(In+1
g ; r) changes are 0,

cos−1(3/5), cos−1(1/5), cos−1(−1/5), cos−1(−3/5), and π. We evaluate just the r values from

0 through cos−1(−1/5) to get the smallest r that makes the coindex ≥ 4.

coindZ2(VR(I5
g ; 0)) = 0

coindZ2(VR(I5
g ; cos−1(3/5))) = max{k ≥ 0 | Sk Z2→

∨49 S1} = 1

coindZ2(VR(I5
g ; cos−1(1/5))) = max{k ≥ 0 | Sk Z2→

∨49 S3} = 3

Isomorphism types of Hi(VR(Inh ; 3),M) with M = Z,Z2

Hi(VR(Inh ; 3);M) i = 4 i = 7 1 ≤ i ≤ 7, i 6= 4, 7
Hi(VR(I5

h; 3);Z) Z Z10 0
Hi(VR(I6

h; 3);Z) Z11 Z60 0
Hi(VR(I7

h; 3);Z) Z71 Z280 0
Hi(VR(I8

h; 3);Z2) Z351
2 Z1120

2 0
Hi(VR(I9

h; 3);Z2) Z1471
2 Z4032

2 0

Table 2: From Adamaszek and Adams [1]
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The computational evidence in Table (2), from Adamaszek and Adams [1], demon-

strates that H4(VR(I5
g ; 3), Z) ∼= Z, and H7(VR(I5

g ; 3),Z) ∼= Z10; hence, we conjecture that,

VR(I5
h; 3) is

∨10 S7∨S4 up to homotopy. The Vietoris-Rips complex VR(I5
h; 3) is equivalent

to VR(I5
g ; cos−1(−1/5)), implying that the latter is also conjecturally homotopy equivalent

to
∨10 S7 ∨ S4. Consequently, we conjecture that coindZ2(VR(I5

g ; cos−1(−1/5))) = 7.

So, we conjecture that 2 · dGH(I5
g , S

4) ≥ cos−1(−1/5).

Case n = 5 :

2 · dGH(I6
g , S

5) ≥ inf{r ≥ 0| coindZ2(VR(I6
g ; r)) ≥ 5}

For n = 5, the values of r where the Vietoris-Rips complex VR(In+1
g ; r) changes are 0,

cos−1(2/3), cos−1(1/3), π/2, cos−1(−1/3), cos−1(−2/3), and π. Here, we present the values

of the coindices at r = 0, cos−1(2/3), cos−1(1/3), π/2. The coindex starts to be ≥ 5 once

r = π/2 is reached.

coindZ2(VR(I6
g ; 0)) = 0

coindZ2(VR(I6
g ; cos−1(2/3))) = 1

coindZ2(VR(I6
g ; cos−1(1/3))) = 3

coindZ2(VR(I6
g ; π/2))) = 7

Again, using Table (2), VR(I6
h; 3) is conjectured to be homotopy to a wedge sum of multi-

ple copies of S4 and S7. Therefore, as before, the equivalent simplicial complex, VR(I6
g ; π/2),

is also conjecturally homotopy equivalent to a wedge sum of 4-spheres and 7-spheres.

So, we conjecture 2 · dGH(I6
g , S

5) ≥ π/2.
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Case n = 6 :

2 · dGH(I7
g , S

6) ≥ inf{r ≥ 0 | coindZ2(VR(I7
g ; r) ≥ 6}

For n = 6, the values of r when the Vietoris-Rips complex VR(In+1
g ; r) changes are

0, cos−1(5/7), cos−1(3/7), cos−1(1/7), cos−1(−1/7), cos−1(−3/7), cos−1(−5/7), and π. We

evaluate from r = 0 through r = cos−1(1/7) since the smallest r that gives the coindex ≥ 6

is in this list.

coindZ2(VR(I7
g ; 0)) = 0

coindZ2(VR(I7
g ; cos−1(5/7))) = 1

coindZ2(VR(I7
g ; cos−1(3/7))) = 3

Using the same logic, we conjecture that coindZ2(VR(I7
g ; cos−1(1/7))) = 7 because the

simplicial complex VR(I7
g ; 3), which is equivalent to VR(I7

g ; cos−1(1/7)), is conjectured to be

wedge sums of S4 and S7 up to homotopy.

Here, we conjecture 2 · dGH(I7
g , S

6) ≥ cos−1(1/7).

This list leads us to conjecture that

coindZ2(I
n+1
g ; cos−1(n+1−2i

n+1
)) = 2i − 1, (5.6)

where i is a non-negative integer.
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It follows that 2 · dGH(In+1
g , Sn) has the following sub-optimal lower bound:

2 · dGH(In+1
g , Sn) ≥ inf{r ≥ 0 | coindZ2(VR(In+1

g ; r)) ≥ n}

≥ sup{r ≥ 0 | coindZ2(VR(In+1
g ; r)) < n}

≥ sup{cos−1(n+1−2i
n+1

) | 2i − 1 < n}

≥ sup{cos−1(n+1−2i
n+1

) | 2i < n+ 1}

≥ sup{cos−1(n+1−2i
n+1

) | i < log2(n+ 1)}

= cos−1(n+1−2·log2(n+1)
n+1

).

Now, we rephrase Equation 5.6 using the more standard Hamming metric on In, denoted

Inh , in which case the equation becomes

coindZ2(VR(Inh ; r)) = 2r − 1, (5.7)

where r is a non-negative integer.

5.3 The Smallest r That Guarantees coindZ2
(VR(In

h ; r)) ≥ n − 1

If we move far enough to the right (with n increasing) in Table 1, we realize that the

conjectured lower bound in 5.7 is not as good as the value n − 1. However, if we move far

enough down in the aforementioned table (with r increasing), 2r− 1 is a better lower bound

for coindZ2(VR(Inh ; r)).

We now move on to find the smallest value of r which guarantees that

coindZ2(VR(Inh ; r)) ≥ n − 1. We first try to do it by considering specific values such as

n = 1, 2 and r = 1, 2. Later, by means of Theorem (5.14), we are going to determine a more

general r satisfying coindZ2(VR(Inh ; r)) ≥ n− 1 using balanced sets and triangulations. We

wish to understand which values of r make this coindex exceed n− 1.
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To verify that coindZ2(VR(Inh ; r)) ≥ n− 1, we will first try to build odd maps

Sn−1 7→ VR(Inh ; r)

for the smallest possible value of r that we can find. We will learn later in this section that

it suffices to take r ≥ t(n− 1), where t is a function that will also be defined later.

It is not trivial to come up with maps for the general case, so let us first find maps for

two specific cases. Let us study the cases when coindZ2(VR(Inh ; r)) ≥ n− 1 and see if we can

find some patterns that allow us to construct the maps we desire. To construct the maps

S1 7→ VR(I2
h; 1) (5.8)

and

S2 7→ VR(I3
h; 2), (5.9)

we first define odd maps f and φ from the circle to a hollow square and from the sphere to

a hollow cube.

The square is defined {(x, y) | max{|x|, |y|} = 1}.

Then, we define f : S1 → {(x, y) | max{|x|, |y|} = 1} via

f(x, y) =
(x, y)

max{|x|, |y|}
,

which is odd and continuous.

Similarly, the cube is defined {(x, y, z) | max{|x|, |y|, |z|} = 1}.

Then, the second odd map

φ : S2 → {(x, y, z)|max{|x|, |y|, |z|} = 1}
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is defined as

φ(x, y, z) =
(x, y, z)

max{|x|, |y|, |z|}
.

The next step is to construct maps from a square to VR(I2
h; 1), and from a cube to

VR(I3
h; 2); however, we will skip the case of the square because the case of the cube is more

interesting. We construct a map from the cube to the VR(I3
h; 2), by constructing a map from

each face of the cube to each tetrahedra in VR(I3
h; 2).

Let us map the face {(x, y, z) | x = −1, |y| ≤ 1, |z| ≤ 1} to a tetrahedron of VR(I3
h; 2) in

the following way:

(y, z) 7→ (z+1)(1+y)
4

(−1,−1,−1)+ (1−z)(1+y)
4

(−1, 1,−1)+ (z+1)(1−y)
4

(−1,−1, 1)+ (1−z)(1−y)
4

(−1, 1, 1).

Let us map the face {(x, y, z) | x = 1, |y| ≤ 1, |z| ≤ 1} to a tetrahedron in the following

way:

(y, z) 7→ (z+1)(1+y)
4

(1,−1,−1) + (1−z)(1+y)
4

(1, 1,−1) + (z+1)(1−y)
4

(1,−1, 1) + (1−z)(1−y)
4

(1, 1, 1).

Let us map the face {(x, y, z) | y = −1, |x| ≤ 1, |z| ≤ 1} to a tetrahedron in the following

way:

(x, z) 7→ (z+1)(1+x)
4

(−1,−1,−1)+ (1−z)(1+x)
4

(1,−1,−1)+ (z+1)(1−x)
4

(−1,−1, 1)+ (1−z)(1−x)
4

(1,−1, 1).

Finally, let us map the face {(x, y, z) | y = 1, |y| ≤ 1, |z| ≤ 1} to a tetrahedron in the

following way:

(x, z) 7→ (z+1)(1+x)
4

(−1, 1,−1) + (1−z)(1+x)
4

(1, 1,−1) + (z+1)(1−x)
4

(−1, 1, 1) + (1−z)(1−x)
4

(1, 1, 1).

We do the same thing for the cases z = 1 and z = −1. It is pretty straightforward to show
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that the six functions pasted together form an odd map. It follows that the composition

of φ and the piecewise function above is the odd map S2 → VR(I3
h; 2) as we described in

Equation 5.9.

More generaally, using the same idea we describe an odd map

Sn−1 7→ VR(Inh ;n− 1) (5.10)

as follows:

A map from an (n−1)-sphere to the hollow n-cube {(x1, x2, · · · , xn) | max{|x1|, |x2|, · · · , |xn|} =

1} is given by

φn(x1, · · · , xn) =
(x1, x2, · · · , xn)

max{|x1|, |x2|, · · · , |xn|}
.

Now let us build a map Γ from the n-cube to VR(Inh ;n− 1) by sending each face of the

n-cube to an (n− 1)-simplex:

(−1, x2, · · · , xn)
Γ7−→

∑
(y2,··· ,yn)∈{−1,1}n−1

(1− y2x2)(1− y3x3) · · · (1− ynxn)

2n−1
(−1, y2, · · · , yn).

(1, x2, · · · , xn)
Γ7−→

∑
(y2,··· ,yn)∈{−1,1}n−1

(1− y2x2)(1− y3x3) · · · (1− ynxn)

2n−1
(1, y2, · · · , yn).

Note that we mapped just two faces of the n-cube, that is when x1 = 1,−1. Similarly, we

map the other faces by fixing the other coordinates xi to be either −1 or 1. Finally, the

composition Γ ◦ φn is the desired odd map from Sn−1 to VR(Inh ;n− 1).

We had already built a map for 5.10; however, n − 1 is not necessarily the value of

the infimum for some n greater than 3. There exist values of n that satisfy inf{r ≥ 0 |

coindZ2(VR(Inh ; r)) ≥ n− 1} < n− 1. The least n for which this holds is n = 4.
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We ask ourselves which properties r should satisfy in order to obtain the largest lower

bound for dGH(In+1, Sn). To answer this, we must try to create an odd map

Sn−1 7→ VR(Inh ; r),

where r is “as small as possible.”

Let us first consider working on determining a map S3 → VR(I4
h; 2), since this is the first

candidate for which we may have inf{r ≥ 0 | coindZ2(VR(I4; r)) ≥ 3} = 2 < 3. We will

analyze the case when n = 4 to see if this permits us to build a similar map for any n > 4.

To build this map, we will apply three concepts: balanced sets of vectors, abstract convex

combination, and decomposition of n-cubes into cubes of smaller dimensions.

Now, let us first define a balanced set of vectors.

Definition 5.11 (Balanced sets). Let B be a subset of the hypercube Inh . We say that B is

a balanced set if the average of all the vectors in B equals (1/2, 1/2, · · · , 1/2).

Let us now define an odd map from S3 to |VR(I4
h; 2)|. The idea consists of mapping

each face of ∂[0, 1]4 into each side of VR(I4
h; 2). Each side of ∂[0, 1]4 is a copy of [0, 1]3,

and each side of VR(I4
h; 2) is a copy of VR(I3

h; 2). This tells us that we need to build a

map h : [0, 1]3 → |VR(I3
h; 2)|. To do this, the first step is to triangulate of [0, 1]3 into five

tetrahedra, each of diameter at most 2:

τ1 = {(0, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 0)}

τ2 = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1)}

τ3 = {(0, 1, 1), (1, 1, 0), (0, 0, 0), (0, 1, 0)}

τ4 = {(1, 1, 1), (0, 1, 1), (1, 1, 0), (1, 0, 1)}
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τ5 = {(0, 0, 0), (0, 1, 1), (0, 0, 1), (1, 0, 1)}.

Note that, by Definition 5.11, τ1 is a balanced tetrahedron. There are various way of

triangulating the 3D cube into tetrahedra, but we are selecting a triangulation containing

a balanced tetrahedron. In Figure 4, we can clearly see how [0, 1]3 is decomposed into five

tetrahedra.

Figure 4: Triangulation of the cube into five tetrahedra. Here, we have the tetrahedra
τ1, τ2, τ3, τ4, and τ5, respectively. The lavender tetrahedron, τ1, is the balanced tetrahedron.

Theorem 5.12. Let τi, for i = 1, · · · , 5, be the five tetrahedra described above. Then, there

exists a map h : [0, 1]3 → |VR(I3
h; 2)| defined by

h(x) =
∑
v∈τi

λvv,

where τi is the tetrahedron whose geometric realization contains x, and the right side of h is

an abstract convex combination.

Proof. The solid cube can be written
5⋃
i=1

‖τi‖ = [0, 1]3, where τ1 is the balanced tetrahedron.

Each x ∈ [0, 1]3 can be written as a convex combination of vertices of some tetrahedron τi;

that is, x =
∑
v∈τi

λvv with λv ≥ 0 and
∑
v∈τi

λv = 1. For example, (1
2
, 1

2
, 1

2
) =

∑
v∈τ1

1

4
v.

The map h can be defined in the following manner:

h : [0, 1]3 → |VR(I3
h; 2)|,
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where

h(x) =
∑
v∈τi

λvv.

The right side of h now refers to an abstract convex combination.

It remains to be verified that h is a well-defined map. Assume, without loss of generality,

that x ∈ [0, 1]3 with x ∈ ‖τ1‖ and x ∈ ‖τ2‖. For example, consider

τ1 = {(0, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 0)} and τ2 = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1)}; the

other cases will end up being analogous. It follows that x =
∑
v∈τ1

λvv and x =
∑
v∈τ2

λvv. Since x

is in the geometric realization of both, τ1 and τ2, x ∈ ‖τ1∩τ2‖ = ‖{(0, 0, 0), (1, 0, 1), (1, 1, 0)}‖.

Since x belongs to a geometric realization of three vertices, x is in the triangle that is the

intersection of τ1 and τ2. This means λ(0,1,1) = λ(1,0,0) = 0. Since τ1 and τ2 have the other

vertices in common,
∑
v∈τ1

λvv =
∑
v∈τ2

λvv. Therefore, we have proven that h is well-defined.

We completed the case I3 at scale 2 with balanced set τ1. If we move to hypercubes of

higher dimensions, we can obtain a scale r less than n − 1 when we decompose the n-cube

into cubes of smaller dimensions. We will use the fact that any n-cube can be decomposed

into n-simplices.

Indeed, [0, 1]4 = [0, 1]3 × [0, 1] = (
5⋃
i=1

‖τi‖)× (‖τ‖) =
⋃
‖τi × τ‖, where τ = {0, 1} is an

edge triangulating [0, 1]. The simplices τi triangulated [0, 1]3 possess a diameter of at most 2

and τ is of diameter 1. This indicates [0, 1]4 can be decomposed into 4-dimensional simplices

with diameter at most 3. The 4-cube can be also broken up into [0, 1]2 × [0, 1]2. In this

case, however, we get simplices with diameter at most 4 which is not as small. Diameter 3

is better than 4 because we mentioned above that we desire a scale r smaller than n− 1.

Hypercubes of higher dimension can be decomposed in various manners, but only a subset

of decompositions provides the best diameter.

If we write [0, 1]5 = [0, 1]4× [0, 1], then we get that [0, 1]5 is the union of 5-simplices with
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diameter at most 4.

If we decompose [0, 1]6 as [0, 1]6 = [0, 1]3 × [0, 1]3 we get that this 6-cube is the union of

6-simplices with diameter at most 4.

We can decompose [0, 1]7, [0, 1]8, [0, 1]9, [0, 1]10, and [0, 1]11 as follows:

1. [0, 1]7 = [0, 1]6 × [0, 1] which gives the union of 7-simplices with diameter at most

4 + 1 = 5.

2. [0, 1]8 = [0, 1]6 × [0, 1]2 which gives the union of 8-simplices with diameter at most

4 + 2 = 6.

3. [0, 1]9 = [0, 1]6 × [0, 1]3, and this gives the union of 9-simplices with diameter at most

4 + 2 = 6.

4. [0, 1]10 = [0, 1]× [0, 1]9 provides the union of 10-simplices with diameter at most 1+6 =

7.

5. [0, 1]11 = [0, 1]2 × [0, 1]9 provides the union of 11-simplices with diameter at most

2 + 6 = 8.

These examples provided above will be useful when establishing a proof for Theorem

(5.14), which is the general case.

Definition 5.13. Let t(n) be the smallest scale parameter such that we can divide Inh into

n-dimensional simplices of diameter at most t(n).

Table 3 shows a list of known values of t(n) for different values of n:

Property 1. If [0, 1]n can be divided into n-simplices of diameter at most r and [0, 1]m can

be divided into m-simplices of diameter at most r′, then [0, 1]n+m can be divided into

(n+m)-simplices of diameter at most r + r′.

63



n 1 2 3 4 5 6 7 8 9
t(n) 1 2 2 ≤ 3 ≤ 4 ≤ 4 ≤ 5 ≤ 6 ≤ 6

Table 3

Proof. Let {σi} be n-simplices of diameter at most r subdividing [0, 1]n, and let {τj} be

m-simplices of diameter at most r′ subdividing [0, 1]m. Note that each (n + m)-cell σi × τj

has diameter at most r+ r′. So, after dividing each such cell σi× τj arbitrarily into (n+m)-

simplices, we get a subdivision of [0, 1]n+m into simplices of diameter at most r + r′.

This property allows us to establish that t(n+m) ≤ t(n) + t(m).

In Theorem 5.14 we will show that the coindex coindZ2(VR(Inh ; r)) is at least n − 1 for

r ≥ t(n− 1). This theorem will later be shown for the general case, but first let us see how

it works for the special case n = 4.

In Theorem 5.12, we carefully defined a map h from the 3-cube to the |VR(I3
h; 2)| using

a triangulation and an abstract convex combination. Now, let us produce an odd function

φ : S3 = ∂([0, 1]4) → |VR(I4
h; 2)|. The 4-cube has eight sides that are 3-cubes, and we can

decompose each side as we did in Figure 4. As a result, we can build eight functions in which

one of them is the h from Theorem 5.12. Let us name h as h1. The other seven functions

can be denoted h2, h2 · · · , h8.

To determine each h∗, we need to first express the other 3-cubes [0, 1]3j as
5⋃
i=1

||σi,j||, where

σ1,j is in this case the balanced tetrahedron. Then,

h∗(x) =
∑
v∈σi,j

λvv.

So, φ is the function

φ = h1, h2 · · · , h8.
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Using the Pasting Lemma, we know that φ is a piecewise map in which each h∗ maps

one of the eight faces of the 4-cube.

The function φ can be made to be odd if we first send v to −v, and then, through h∗, we

map each face of VR(I4
h; 2) to its opposite face in an odd way. In other words, we mandate

that h∗(−v) = −h∗(v).

It follows we have produced an odd map φ from S3 to |VR(I4
h; 2)|, indicating that

coindZ2(VR(I4
h; 2)) ≥ 3. Also, we used five 3-simplices of diameter 2 to decompose each

3-cube, realizing the value of t(3) = 2. Therefore, we have completed this particular case.

Theorem 5.14. Consider the space In equipped with the Hamming metric, then

coindZ2(VR(Inh ; r)) ≥ n− 1 for r ≥ t(n− 1).

Proof. Our goal is to produce an odd map φ : ∂([0, 1]n)→ |VR(Inh ; r)|.

Suppose that we have a triangulation of one of the faces of the n-cube into simplices of

dimension n− 1 and of diameter at most t(n− 1).

The map φ will be produced by piecing together 2n maps (namely h1, h2, · · · , h2n) from

each of the 2n faces of [0, 1]n, to |VR(Inh ; r)|.

By Definition (5.13), let τi,j be (n− 1)-simplices of diameter at most t(n− 1) ≤ r in the

Vietoris-Rips complex VR(Inh ; r) with [0, 1]n−1
j =

m⋃
i=1

‖τi,j‖. Here, the (n − 1)-dimensional

cubes [0, 1]n−1
j , where j = 1, 2, · · · , 2n, refers to each of the faces of [0, 1]n.

Now, let us define the function h∗ in the following manner:

h∗ : [0, 1]n−1 → |VR(Inh ; r)|,

where

h∗(
∑
v∈τi

λvv) =
∑
v∈τi

λvv.
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Next, we define the function

φ : ∂([0, 1]n)→ |VR(Inh ; r)|

by

φ = h1, h2, · · · , h2n

The function φ could be odd if we first send v to its antipode, i.e, v → −v. Then, the

antipode will be mapped to the opposite face of |VR(Inh ; r)| through the map h∗, meaning

that h∗(−v) = −h∗(v). Finally, by the Pasting Lemma, φ becomes an odd map.

Corollary 5.15. For n ≥ 3 and k ≥ 3 we have the following:

i. t(n) ≥ n− 1

ii. t(3k) ≤ 2k

iii. t(3k + 1) ≤ 2k + 1

iv. t(3k + 2) ≤ 2k + 2

Proof. The proof of each case is by induction. For n = 3, we can see below that t(3) ≤ 2 =

3−1. For the inductive step, assume t(n) ≤ n−1. Then t(n+1) ≤ t(n)+t(1) ≤ (n−1)+1 = n.

Let us prove ii. When k = 3, we have t(9) ≤ 6 = 2(3). For the inductive step, assume

that t(3k) ≤ 2k. It follows t(3(k + 1)) = t(3k + 3) ≤ t(3k) + t(3) ≤ 2k + 2 = 2(k + 1), and

we are done.

Now, let us prove iii. When k = 3, we get t(9) ≤ 6 < 2(3)+1. For the inductive step, let

us assume that t(3k+ 1) ≤ 2k+ 1. Then, t(3(k+ 1) + 1) = t(3k+ 1 + 3) ≤ t(3k+ 1) + t(3) ≤

2k + 1 + 2 = 2(k + 1) + 1.
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Finally, we prove iv. Let k = 3, then t(3(3) + 1) = t(9) + t(1) ≤ 7 ≤ 2(3) + 2. By the

inductive step, we assume that t(3k + 2) ≤ 2k + 2. Therefore,

t(3(k + 1) + 2) = t(3k + 2 + 3) ≤ t(3k + 2) + t(3) ≤ 2k + 2 + 2 = 2(k + 1) + 2,

and this completes the proof.

Thus, we have established a better lower bound for the coindex of the Vietoris-Rips

complex of hypercubes using the Hamming metric (5.14), the desired result.
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6 Possibilities for Future Investigation

The work of this dissertation has given us some new ideas for possible future investiga-

tions.

6.1 Relationships Between Spectral Sequences and Groups

PHl(I
k) ⊗ PHj(I

k) in an Exact Sequence.

One possible area of future investigation would be to apply Theorem 3.2 to a filtration

arising from the hypercube metric space Ik, where k ≥ 1. In this case, the theorem would

state the following:

Suppose that M and N are the same filtrations of hypercubes; i.e,

M = N : VR(I; r) ⊆ VR(I2; r) ⊆ · · · ⊆ VR(Is−1; r) ⊆ VR(Is; r) ⊆ · · · ,

where Mp = Np = Ip for any p > 0, then

. . .→
⊕
l+j=n

PHl(Mp)⊗ PHj(Np)→ E(r)
p,q (Mp ×Np)→

⊕
l+j=n−1

PHl(Mp)⊗ PHj(Np)→ . . .

is a long exact sequence.

Here, PH∗(M∗) is the persistent homology of the metric space (Ikh , dHM) associated to

Ikh . We let “HM” stand for the Hamming Metric.

In the present dissertation paper, we structured the proof of Theorem 3.2 for the cate-

gorical product, but it is important to note that the persistent homology of hypercubes with

the Hamming metric is not precisely a categorical product. Another issue to keep in mind

is that the ring we are considering is k[R+]. This ring is not a field, and that implies that

68



the tor terms in the exact sequence

0→
⊕
l+j=n

PHl(Mp)⊗k[R+]PHj(Np)→ PHn(Mp, Np)→
⊕

l+j=n−1

Tor1(PHl(Mp), PHj(Np))→ 0

do not always become 0. Non-zero tor terms will not allow us to construct an isomorphic

map from
⊕
l+j=n

PHl(M∗)⊗k[R+] PHj(N∗) to PHn(M∗, N∗). Nevertheless, one idea for future

development consists of verifying for which values of n do we have PHn(M∗) = 0.

Carlsson and Filippenko ([6], p. 5) displayed a Table 1, reproduced herein as Table 4,

with different rows in which they computed PHn(Ik) for values of n ranging between 1 and

7 and for k ≥ 1.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
PH0(Ik) 2 4 8 16 32 64 128
PH1(Ik) 0 1 5 17 49 129 321
PH2(Ik) 0 0 0 0 0 0 0
PH3(Ik) 0 0 1 9 49 209 769
PH4(Ik) 0 0 0 0 1 11 71
PH5(Ik) 0 0 0 0 0 Unkn. Unkn.
PH6(Ik) 0 0 0 0 0 Unkn. Unkn.
PH7(Ik) 0 0 0 1 10 Unkn. Unkn.

Table 4: Number of bars in PHn(Ik) ([6], p. 5)

Five rows on that table exhibit numbers different from zero; for example, we get 0 bars

when computing PHn(Ik) for n = 0, 1, 3, 4, 7 with certain values of k. On the other hand, for

n = 5 and 6, PHn(Ik) = 0 when 1 ≤ k ≤ 5. For k ≥ 5, the number of bars in PH5(Ik) and

PH6(Ik) are unknown. We could study the persistent homology of PHn(Ik) for n = 5 and

6 with k > 5 and see if they exhibit no bars in these cases. Furthermore, we could study if

we get zero bars for the persistent homologies of much larger dimension. Perhaps computing

some of these persistent homologies by hand, for instance for n = 5, 6 and for various values
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of k, will give us an idea of when PHn(Ik) = 0.

Another alternative to finding an isomorphism would be to use a different metric in place

of the Hamming metric. Creating a metric space (Ik, d) with a new metric d will perhaps solve

the problem regarding deviating from a categorical product filtration, and make the tor terms

equal to zero for any PHn(Ik). The sup metric, that is, l∞((x1, x2, ..., xk), (y1, y2, ..., yk)) =

max{di(xi, yi) : i = 1, 2, . . . , k} can be deemed as a possible metric on Ik, if we write the

hypercube as products of smaller hypercubes.

6.2 Künneth formulas for the persistent homology of hypercubes

Another possibility for future research would be to study Vietoris–Rips complexes of

hypercubes from the perspective of Künneth formulas.

We could consider studying the short exact sequence

0→
⊕
l+j=n

PHl(I
k−1)⊗k[R+]PHj(I)→ PHn(Ik−1, I)→

⊕
l+j=n−1

Tor1(PHj(I
k−1), PHl(I))→ 0

and identify each of its persistent homology groups. These groups could be identified by

looking for patterns, and that also could be done by hand.

An additional option would be to examine the persistent homology of the homotopy

types of the Vietoris–Rips complex of hypercubes VR(In; 3) when n > 4. Table 1 of these

homotopy types which is repeated from earlier and is found in [1], is displayed below for

values of n = 1, 2, . . . , 9 at different scales r.

At scale r = 0, the hypercube In includes just non-connected vertices denoted by strings

of zeroes and ones; therefore, VR(In, 0) is homotopy equivalent to a wedge-sum of 0-spheres.

At scale parameter r = 1, VR(In, 1) represents the hypercube graphs for n > 1, which

are homotopy equivalent to wedges of circles. In the case of n = 2, we get one circle since
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Homotopy types of VR(In; r)
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

r = 0 S0
∨3 S0

∨7 S0
∨15 S0

∨31 S0
∨63 S0

∨127 S0
∨255 S0

∨511 S0

r = 1 • S1
∨5 S1

∨17 S1
∨49 S1

∨129 S1
∨321 S1

∨769 S1
∨1793 S1

r = 2 • • S3
∨9 S3

∨49 S3
∨209 S3

∨769 S3
∨2561 S3

∨7937 S3

r = 3 • • • S7

r = 4 • • • • S15

r = 5 • • • • • S31

r = 6 • • • • • • S63

r = 7 • • • • • • • S127

r = 8 • • • • • • • • S255

Table 1, repeated from earlier. [1]
The black dots indicate homotopy equivalent to a point.

VR(I2, 1) is homotopy equivalent to a hollow square. When n = 3, the Vietoris–Rips complex

VR(I3, 1) is homotopy equivalent to a wedge of five circles because it has six squares and

one of them is a linear combination of the other five.

When the parameter r is 2, the complexes VR(In, 2) are all determined up to homotopy.

But as soon as we reach the scale parameter 3, the homotopy types of VR(In; 3) are not

determined for large values of n. We could conjecture that VR(In; 3) are up to homotopy

equal to wedges of two different dimensions of spheres. Identifying the homology type of

VR(In; 3) could give us an idea what kind of spheres and how many spheres would form part

of these wedge sums. Table 2 below, repeated from earlier and found in ([1] p. 3), exhibits

a list of isomorphism types of homology groups of Vietoris–Rips complex at scale 3, up to

the value of n = 9.

Isomorphism types of Hi(VR(In; 3),M) with M = Z,Z2

Hi(VR(In; 3);M) i = 4 i = 7 1 ≤ i ≤ 7, i 6= 4, 7
Hi(VR(I5; 3);Z) Z Z10 0
Hi(VR(I6; 3);Z) Z11 Z60 0
Hi(VR(I7; 3);Z) Z71 Z280 0
Hi(VR(I8; 3);Z2) Z351

2 Z1120
2 0

Hi(VR(I9; 3);Z2) Z1471
2 Z4032

2 0

Table 2 - Repeated from earlier ([1] p. 3)
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Observe that for n = 5 the fourth and seventh dimensional homology of VR(I5; 3) are

isomorphic to Z and Z10. This could lead us to conjecture that VR(I5; 3) is homotopy to

a wedge sum of one copy of S4 and ten copies of S7. Similarly, for n = 6 the homology of

dimension four and of dimension seven are the groups Z11 and Z60, respectively, implying

that VR(I6; 3) may consist of a wedge sum of eleven copies of S4 and sixty copies of S7 up

to homotopy.

In my research I used the conjecture that the number of copies of Z in the homology of

VR(In; 3) reveals the number of copies of S4 and S7; in the future, it would be a worthwhile

project to prove this conjecture.

It is also would be worth exploring the unknown persistent homology barcodes of Ik using

the metric l∞.

6.3 The Gromov-Hausdorff Distance–Future Investigation Topics

In Section 5, we were able to find strong lower bounds for dGH(In+1, Sn), and proved it by

finding the best possible lower bounds for coindZ2(VR(Inh ; r)). In the future, we could look

for the best possible lower bounds for dGH(In, In+1) when both hypercubes are equipped

with the Hamming metric. We would like to see if the same concepts employed in Section

5 can be applied to find tight lower bounds for dGH(In, In+1). In addition, we could try to

prove Theorem 5.1 in the case of two hypercubes using the geodesic metric; however, it is

uncertain if all the steps used to prove Theorem 5.1 will work. We are not sure if we would be

able to obtain an odd map β : In → Im for any map α : In → Im such that dis(α) ≥ dis(β).

Another topic for future research could consist of upper bounding dGH(In+1, Sn).

Additionally, we could consider doing research on computing effective lower bounds for the

Gromov-Hausdorff distance in a more general case; that is, dGH(In, Sm) when In is endowed

with either the geodesic or the Hamming metric.
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7 Conclusion

In this dissertation, we first provided background in two different areas. Through Carls-

son and Filippenko’s paper [6], we learned the fundamental properties of modules F∗(X, l),

persistent chain complexes of F∗(X, l), persistent homologies of R+-filtered simplicial sets

and metric spaces (and the relation between them,) and Künneth formulas for metric spaces:

they focused on investigating the isomorphism types of the persistent homology of hyper-

cubes up to dimension 2. Basu-Parida’s paper [5] concentrated on proving the existence of

an exact sequence whose terms are H∗,∗∗ (X) and E∗∗,∗(X), where X is an increasing filtration

of simplicial complexes. This paper was the inspiration for our original work refining this

exact sequence from the perspective of the categorical product X × Y—we demonstrated

this result in part by applying two versions of Künneth formulas.

We also presented how researchers have recently applied different technical theorems

involving persistent homology, the bottleneck distance, and distortion of correspondences

to find new lower bounds for the Gromov-Hausdorff distance between m-spheres and n-

spheres when both are equipped with the geodesic metric. In our collaboration paper (with

multiple authors) [11] it was shown that for n ≥ m, dGH(Sm, Sn) is bounded below by

inf{r ≥ 0| coindZ2(VR(Sm; r)) ≥ n}. In our own original dissertation work, we refined this

result for dGH(Y, Sn) when Y is deemed as living inside the m-sphere. We then determined

new lower bounds for dGH(In+1, Sn), conjectured a new lower bound for coindZ2(VR(In; r)),

and later created maps between Sn 7→ |VR(Inh ; r)| to verify if the coindex was indeed lower

bounded by the conjectured values. Finally, we determined much stronger lower bounds by

defining a map from the faces of the n-cube to |VR(Inh ; r)|, by triangulating the sides of

the n-cubes into m number of tetrahedra and by decomposing each face, (n− 1)-cubes, into

smaller diameter simplices.

In Section 6, we suggested many possible topics for future investigation. In Section
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6.1, “Relation Between Spectral Sequences and Groups PHl(I
k)⊗ PHj(I

k) in an Exact Se-

quence”, we proposed possibly applying Theorem 3.2 to a filtration arising from the hyper-

cube metric space Ik (where k ≥ 1,) perhaps verifying for which values of n is PHn(M∗) = 0,

maybe studying the persistent homology of PHn(Ik) for n = 5 and 6 and other cases, and

perchance finding an isomorphism using a different metric in place of the Hamming met-

ric. In Section 6.2, “Künneth Formulas for the Persistent Homology of Hypercubes,” we

proposed the possibility of studying Vietoris–Rips complexes of hypercubes from the per-

spective of Künneth formulas, perhaps examining the persistent homology of the homotopy

types of the Vietoris–Rips complex of hypercubes VR(In; 3) when n > 4, maybe proving the

conjecture that the number of copies of Z in the homology of VR(In; 3) reveals the number

of copies of S4 and S7, or perchance exploring the unknown persistent homology barcodes

of Ik using the metric l∞. Finally, in Section 6.3, “Future Investigation Topics Regarding

the Gromov-Hausdorff Distance,”, we proposed the possibility in the future of looking for

the best possible lower bounds for dGH(In, In+1) when both hypercubes are equipped with

the Hamming metric, maybe considering if the same concepts employed in Sections (5.2)

and (5.3) can be applied to find tight lower bounds for dGH(In, In+1), or perchance trying

to prove Theorem (5.1) in the case of two hypercubes using the geodesic metric. Two final

topics that were mentioned in that same section for future research were maybe trying to

upper bound dGH(In+1, Sn), or possibly computing effective lower bounds for the Gromov-

Hausdorff distance in a more general case; that is, dGH(In, Sm) when In is endowed with the

Hamming metric.

Thus, as you can see, the preparation of this dissertation has been an interesting and

satisfying journey through various topics involving persistent homology, spectral sequences,

Künneth formulas, Gromov-Hausdorff distances, spheres and hypercubes, and geodesic and

Hamming metrics. I hope in the future to be able to be able to continue advancing the

development of many of these and other topics.
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