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Evasion problem

Coordinate-free Coverage in Sensor Networks with Controlled
Boundaries via Homology by V. de Silva and R. Ghrist

• Sensors move in a ball-shaped domain                   over time 
interval                    . Fixed sensors cover the boundary.

• Measure only the Čech complex.

• Is there an evasion path?
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Evasion problem

Coordinate-free Coverage in Sensor Networks with Controlled
Boundaries via Homology by V. de Silva and R. Ghrist

Čech complex

• One vertex for each ball

• Edges when 2 balls overlap

• Triangles when 3 balls overlap

• One vertex for each ball

• Edges when 2 balls overlap

• All possible triangles

Vietoris-Rips complex
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Homology
• i-dimensional homology “counts the number of i-dimensional holes”
• i-dimensional homology actually has the structure of a vector space!

0-dimensional homology: rank 1
1-dimensional homology: rank 0
2-dimensional homology: rank 1

0-dimensional homology: rank 1
1-dimensional homology: rank 2
2-dimensional homology: rank 1

Be careful!

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle
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• Theorem.

          If there is an evasion path then there is a full-length bar.

• Streaming computation.

Zigzag persistent homology
Form zigzag module for                  with               –dimensional homology.   (d� 1)X � I
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• The two covered regions are “topologically indistinguishable in 
a time-preserving way”, but the uncovered regions are not!



Zigzag persistence
• Caution 2.9 of Zigzag Persistence. Not every submodule 

isomorphic to an interval corresponds to a summand. 



X �⇥ B � IDependence on embedding

• The two covered regions are “topologically indistinguishable in 
a time-preserving way”, but the uncovered regions are not!



• A fat graph structure specifies a cyclic ordering of edges about 
each vertex (left).

• Equivalent to a set of boundary cycles (right).

Fat graphs

Cyclic orderings Boundary cycles



Planar sensors measuring cyclic orders

Cyclic orderings Boundary cycles

• Theorem. In a planar sensor network that remains connected, 
the time-varying alpha complex with rotation information 
determines if an evasion path exists.



Computational Topology (Jeff Erickson) Examples of Cell Complexes

A Delaunay triangulation, with four Delaunay balls emphasized.

intersection of the ⇥-ball centered at p and the Voronoi region of p. The regions B̌⇥(p) exactly cover
the union of ⇥-balls centered at points in P. The alpha complex �⇥(P) is the intersection complex of
the set {B̌⇥(p) | p ⇥ P}. The underlying space |�⇥(P)| is called an alpha shape of P.3 The Nerve Lemma
immediately implies that the alpha shape is homotopy equivalent to the union of the ⇥-balls; see also
Edelsbrunner [26] for a self-contained proof.

If the point set P is in general position, the alpha complex �⇥(P) can also be defined as the
intersection of the Delaunay triangulation of P and the Aleksandrov-Čech complex AČ⇥(P). Thus, k+ 1
points in P define a simplex in the alpha complex if and only if they lie in a closed ball B with diameter
at most ⇥ that contains no other point in P.

An alpha complex and a decomposed union of balls. The corresponding Aleksandrov-Čech complex.

Alpha shapes were introduced by Edelsbrunner, Kirkpatrick, and Seidel, but only for points in the
plane [27]; they were later generalized to points in �3 by Edelsbrunner and Mücke [28] and to weighted
points in any Euclidean space by Edelsbrunner [26]. Of course, the definition is sensible for points in
any metric space.

15.1.4 Witness Complexes

Witness complexes were introduced by Carlsson and de Silva [15, 19, 20] as ‘weak’ versions of the
Delaunay complex. ⇥⇥Maybe next time; sorry, Vin!⇤⇤��=�

15.2 Configuration/State Complexes

The following more abstract example was proposed by Abrams [3], modifying a similar construction by
Ghrist and Kodischek [32, 31, 34]; see also Abrams and Ghrist [1, 2]. Imagine a set of k distinguished
points, called agents, located on the vertices and edges of a graph G, subject to the following rules
designed to prevent collisions:

• If an agent is located at a vertex v, no other agent is located at v or inside any edge incident to v.

• If an agent is located inside an edge e, no other agent is located in e or at its endpoints.

3Originally, these were called the �-complex and �-shape, where � denoted the proximity radius. Unfortunately, this usage
leads to considerable confusion if � is set to any particular value—What’s a

⇤
2-complex?

4

Computational Topology (Jeff Erickson) Examples of Cell Complexes

Corollary 15.1. For any points set P and radius �, the Aleksandrov-Čech complex AČ�(P) is homotopy-
equivalent to the union of balls of radius � centered at points in P.

Aleksandrov-Čech complexes and unions of balls for two different radii. 2-simplices are yellow; 3-simplices are green.

15.1.2 Vietoris-Rips Complexes: Flags and Shadows

The proximity graph N�(P) is the geometric graph whose vertices are the points P and whose edges join
all pairs of points at distance at most 2�; in other words, N�(P) is the 1-skeleton of the Aleksandrov-Čech
complex. The Vietoris-Rips complex VR�(P) is the flag complex or clique complex of the proximity
graph N�(P). A set of k+ 1 points in P defines a k-simplex in VR�(P) if and only if every pair defines an
edge in N�(P), or equivalently, if the set has diameter at most 2�. Again, the Vietoris-Rips complex is an
abstract simplicial complex.

The Vietoris-Rips complex was used by Leopold Vietoris [57] in the early days of homology theory as
a means of creating finite simplicial models of metric spaces.2 The complex was rediscovered by Eliayu
Rips in the 1980s and popularized by Mikhail Gromov [35] as a means of building simplicial models for
group actions. ‘Rips complexes’ are now a standard tool in geometric and combinatorial group theory.

The triangle inequality immediately implies the nesting relationship AČ�(P) � VR�(P) � AČ2�(P)
for any �, where � indicates containment as abstract simplicial complexes. The upper radius 2� can be
reduced to

⇥
3�/2 if the underlying metric space is Euclidean [21], but for arbitrary metric spaces, these

bounds cannot be improved.
One big advantage of Vietoris-Rips complexes is that they determined entirely by their underlying

proximity graphs; thus, they can be applied in contexts like sensor-network modeling where the
underlying metric is unknown. In contrast, the Aleksandrov-Čech complex also depends on the metric of
the ambient space that contains P; even if we assume that the underlying space is Euclidean, we need
the lengths of the edges of the proximity complex to reconstruct the Aleksandrov-Čech complex.

On the other hand, there is no result like the Nerve Lemma for flag complexes. Indeed, it is easy to
construct Vietoris-Rips complexes for points in the Euclidean plane that contain topological features of
arbitrarily high dimension.

2Vietoris actually defined a slightly different complex. Let U = {U1, U2, . . .} be a set of open sets that cover some topological
space X . The Vietoris complex of U is the abstract simplicial complex whose vertices are points in X , and whose simplices
are finite subsets of X that lie in some common set Ui . Thus, the Vietoris complex of an open cover is the dual of its
Aleskandrov-Čech nerve. Dowker [25] proved that these two simplicial complexes have isomorphic homology groups.
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Voronoi regions

Čech

Alpha

• Theorem. In a planar sensor network that remains connected, 
the time-varying alpha complex with rotation information 
determines if an evasion path exists.
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• Theorem. In a planar sensor network that remains connected, 
the time-varying alpha complex with rotation information 
determines if an evasion path exists.



Planar sensors measuring cyclic orders
• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists.



Planar sensors measuring cyclic orders
• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists. May contain an intruder



Planar sensors measuring cyclic orders
• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists. May contain an intruder

No intruder



Planar sensors measuring cyclic orders
• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists. May contain an intruder

No intruder



Planar sensors measuring cyclic orders
• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists. May contain an intruder

No intruder



Planar sensors measuring cyclic orders
• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists. May contain an intruder

No intruder



Planar sensors measuring cyclic orders
• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists. May contain an intruder

No intruder



Planar sensors measuring cyclic orders
• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists. May contain an intruder

No intruder



Planar sensors measuring cyclic orders
• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists. May contain an intruder

No intruder



Mobile Sensors and Pursuit-Evasion: Can Directed Algebraic Topology Help?
Henry Adams, Stanford Mathematics

Geometric and Topological Methods in Computer Science, Aalborg University, January 2010

Introduction

This poster describes an interesting problem.

Applied Setting

This is roughly the set-up of Section 11 of
Coordinate-free Coverage in Sensor Networks
with Controlled Boundaries via Homology by Vin
de Silva and Robert Ghrist [1].

Sensors and evaders move continuously in a
bounded simply-connected domain D ⌅ R2 during
the time interval t  [0, 1]. Each sensor covers a unit
ball about its center. Let Ut ⌅ D be the covered re-
gion at time t. Except for a cycle of immobile sensors
which cover the boundary of the domain, �D, we do
not know the sensor locations. Instead, for all time
we know the abstract communication graph of the
sensors:
• The vertices are the sensors.
• An edge exists if its two sensors are within

distance
⌦

3.
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Sensors, their communication graph, and
their Rips complex.

Note: the constant
⌦

3 is chosen so that a triangle
in the communication graph corresponds to three
overlapping sensors with no gap in the middle.

We would like to use this coordinate-free in-
formation to determine: is there an evasion path
p : [0, 1] ⇧ D with p(t) / Ut?

Pure Setting

The space-cross-time region D� [0, 1] has a time-
induced partial order.

(x, t) ⇤ (x�, t�) ⌃⌥ t ⇥ t�

Let U ⌅ D � [0, 1] be the region covered by the
sensors. What information about U does one need in
order to determine if there is a directed evasion path
in its complement D � [0, 1] \ U? Are there ideas,
invariants, or tools from directed algebraic topology
which could be helpful?

Can the Criterion of [1] be
Sharpened?

The main idea of Theorem 7 of [1] is that if there
exists a relative 2-cycle in H2(U , �D� [0, 1]) whose
boundary wraps nontrivially around �D � [0, 1],
then no evasion path exists. The actual statement
uses Rips complexes instead of U , providing a com-
putable criterion.

A relative 2-cycle ⌥ no path.

Unfortunately, a physically impossible
undirected path in the complement of U

⌥ no relative 2-cycle.

Dependence on the Embedding

Below are two pairs of sensor networks, drawn as snapshots with time increasing from left to right. The
networks in each pair have the same communication graphs for all times. There is also a directed homeo-
morphism, which acts as the identity on the time coordinate, between the shadows of the Rips complexes in
D � [0, 1]. However, the first sensor network in each pair has an evasion path while the second does not.
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Pair A: Top row contains evasion path; bottom does not.
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Pair B: Top row contains evasion path; bottom does not.

What minimal sensor capabilites might one add to distinguish these examples? Each covered region Ut is
homotopic to a graph, and the embedding type of a possibly disconnected planar graph in R2 is determined
by the cyclic order of the edges around each vertex, the external boundary of each connected component,
and the void containing each component. In Pair A, one could identify evasion paths if each sensor knew the
cyclic order of its neighbors, a plausible assumption. In Pair B, one would like to track the void containing
each connected component. This may require significantly smarter sensors.

Thanks

I would like to thank Robert Ghrist for sharing this problem with me, and Martin Raussen, Lisbeth
Fajstrup, and Amra Ibrisevic for organizing the workshop.

References

[1] V. de Silva and R. Ghrist, Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology, Int.
J. Rob. Res. 25 (2006), no. 12, 1205-1222.

Planar sensors measuring cyclic orders
• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists. May contain an intruder

No intruder



Planar sensors measuring cyclic orders

Out[24]=

Cech simplicial complex

Appearance

draw one simplices

draw TWEAKED one simplices

draw Cech complex

Filtration parameter

t 0.249

4   FatGraphHard_edit.nb

Printed by Mathematica for Students

Out[24]=

Cech simplicial complex

Appearance

draw one simplices

draw TWEAKED one simplices

draw Cech complex

Filtration parameter

t 0.249

FatGraphHard_edit.nb  3

Printed by Mathematica for Students

Čech Alpha

• Theorem. In a planar sensor network that remains connected, 
the time-varying alpha complex with rotation information 
determines if an evasion path exists.

• Open question. Is the Čech complex with rotation information 
sufficient?
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• Theorem. In a planar sensor network that remains connected, 

the time-varying alpha complex with rotation information 
determines if an evasion path exists.

• Open question. Is the Čech complex with rotation information 
sufficient?

• Non-planar case?
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Planar sensors measuring cyclic orders
• Expected time until mobile coverage for Brownian, billiard, 

and collective motion models.

Efficient Evader Detection in Mobile Sensor Networks by H. Adams, D. Ghosh, 
C. Mask, W. Ott, and K. Williams. https://github.com/elykwilliams/EvasionPaths 



Planar sensors measuring cyclic orders
• Expected time until mobile coverage for Brownian, billiard, 

and collective motion models.
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Figure 7. Detection time statistics for Brownian mobile sensor networks. The
heatmaps illustrate (a) mean detection time E[Tmax], (b) detection time variance Var[Tmax],
and (c) the probability that the union of the sensing balls covers the entire domain D at
time t = 0. We vary the sensing radius r and the number N of mobile sensors. (d) Detection
time distributions for various (N, r) pairs.

the relative positions of nearby sensors. Can improved mobile sensor network performance emerge
when the mobile sensors use this local position data to locally coordinate?

We answer this question a�rmatively by allowing the mobile sensors to use attractive and re-
pulsive potentials for local coordination. In particular, we use the D’Orsogna model [10], a seminal
e�ort to explain the emergent phenomena that arise when agents move collectively. We compare
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the relative positions of nearby sensors. Can improved mobile sensor network performance emerge
when the mobile sensors use this local position data to locally coordinate?

We answer this question a�rmatively by allowing the mobile sensors to use attractive and re-
pulsive potentials for local coordination. In particular, we use the D’Orsogna model [10], a seminal
e�ort to explain the emergent phenomena that arise when agents move collectively. We compare

Efficient Evader Detection in Mobile Sensor Networks by H. Adams, D. Ghosh, 
C. Mask, W. Ott, and K. Williams. https://github.com/elykwilliams/EvasionPaths 



What’s the space of evasion paths?



Conclusions
• Streaming one-sided criterion using zigzag persistence.

• Cech complex insufficient.                                                   
Alpha complex with rotation information suffices.              
What about the Čech complex with rotation information?

Henry Adams and Gunnar Carlsson, Evasion paths in mobile sensor networks, 
International Journal of Robotics Research 34 (2015), 90-104.

Vin de Silva and Robert Ghrist, Coordinate-free coverage in sensor networks with 
controlled boundaries via homology, International Journal of Robotics Research 25 
(2006), 1205-1222.
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