Evasion Paths in Mobile Sensor Networks

Henry Adams, University of Florida

Joint with Gunnar Carlsson Joint with Deepjyoti Ghosh, Clark Mask, William Ott, Kyle Williams

AATRN

Applied Algebraic Topology Research Network

- www.aatrn.net
- 1-2 live talks per week
- 5,500 YouTube subscribers
- 22 hours watched per day

Evasion Paths in Mobile Sensor Networks

Henry Adams, University of Florida

Joint with Gunnar Carlsson Joint with Deepjyoti Ghosh, Clark Mask, William Ott, Kyle Williams

- Sensors move in a ball-shaped domain $B \subset \mathbb{R}^d$ over time interval I = [0, 1]. Fixed sensors cover the boundary.
- Measure only the Čech complex.
- Is there an evasion path?

- Sensors move in a ball-shaped domain $B \subset \mathbb{R}^d$ over time interval I = [0, 1]. Fixed sensors cover the boundary.
- Measure only the Čech complex.
- Is there an evasion path?

- Sensors move in a ball-shaped domain $B \subset \mathbb{R}^d$ over time interval I = [0, 1]. Fixed sensors cover the boundary.
- Measure only the Čech complex.
- Is there an evasion path?

- Sensors move in a ball-shaped domain $B \subset \mathbb{R}^d$ over time interval I = [0, 1]. Fixed sensors cover the boundary.
- Measure only the Čech complex.
- Is there an evasion path?

- Sensors move in a ball-shaped domain $B \subset \mathbb{R}^d$ over time interval I = [0, 1]. Fixed sensors cover the boundary.
- Measure only the Čech complex.
- Is there an evasion path?

Evasion problem Čech complex

- One vertex for each ball
- Edges when 2 balls overlap
- Triangles when 3 balls overlap

Evasion problem Čech complex Vietoris-Rips complex

- One vertex for each ball
- Edges when 2 balls overlap
- Triangles when 3 balls overlap

- One vertex for each ball
- Edges when 2 balls overlap
- All possible triangles

- Let $X \subset B \times I$ be the covered region.
- An *evasion path* is a time-preserving map from I to the uncovered region.

- Let $X \subset B \times I$ be the covered region.
- An *evasion path* is a time-preserving map from I to the uncovered region.
- <u>Evasion Problem.</u> Using the time-varying Čech complex, can we determine if an evasion path exists?

- Let $X \subset B \times I$ be the covered region.
- An *evasion path* is a time-preserving map from I to the uncovered region.
- <u>Evasion Problem.</u> Using the time-varying Čech complex, can we determine if an evasion path exists?

- Let $X \subset B \times I$ be the covered region.
- An *evasion path* is a time-preserving map from I to the uncovered region.
- <u>Evasion Problem.</u> Using the time-varying Čech complex, can we determine if an evasion path exists?

• The stacked complex $SC \simeq X$ encodes all Čech complexes.

• The stacked complex $SC \simeq X$ encodes all Čech complexes.

• The stacked complex $SC \simeq X$ encodes all Čech complexes.

• Theorem (de Silva, Ghrist).

• Theorem (de Silva, Ghrist).

• Theorem (de Silva, Ghrist).

• <u>Theorem (de Silva, Ghrist).</u> If there is an $\alpha \in H_d(SC, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.

• <u>Theorem (de Silva, Ghrist).</u> If there is an $\alpha \in H_d(SC, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.

• <u>Theorem (de Silva, Ghrist).</u> If there is an $\alpha \in H_d(SC, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.

- <u>Theorem (de Silva, Ghrist).</u> If there is an $\alpha \in H_d(SC, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.
- Coordinate-free.

- <u>Theorem (de Silva, Ghrist).</u> If there is an $\alpha \in H_d(SC, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.
- Coordinate-free.
- Not sharp. Can it be sharpened?

Boundaries via Homology by V. de Silva and R. Ghrist

- <u>Theorem (de Silva, Ghrist).</u> If there is an $\alpha \in H_d(SC, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.
- Coordinate-free.
- Not sharp. Can it be sharpened?

Homology

- *i*-dimensional homology "counts the number of *i*-dimensional holes"
- *i*-dimensional homology actually has the structure of a vector space!

0-dimensional homology: rank 6 1-dimensional homology: rank 0

0-dimensional homology: rank 1 1-dimensional homology: rank 3

0-dimensional homology: rank 1 1-dimensional homology: rank 6

Homology

- *i*-dimensional homology "counts the number of *i*-dimensional holes"
- *i*-dimensional homology actually has the structure of a vector space!

0-dimensional homology: rank 11-dimensional homology: rank 02-dimensional homology: rank 1

0-dimensional homology: rank 11-dimensional homology: rank 22-dimensional homology: rank 1

Be careful!

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle

Zigzag Persistence by G. Carlsson and V. de Silva

Form zigzag module for $X \to I$ with (d-1)-dimensional homology.

Form zigzag module for $X \to I$ with (d-1)-dimensional homology.

• <u>Theorem</u>.

If there is an evasion path then there is a full-length bar.

Form zigzag module for $X \to I$ with (d-1)-dimensional homology.

• <u>Theorem</u>.

If there is an evasion path then there is a full-length bar.

Form zigzag module for $X \to I$ with (d-1)-dimensional homology.

• <u>Theorem</u>.

If there is an evasion path then there is a full-length bar.

• Streaming computation.

Dependence on embedding $X \hookrightarrow B \times I$

Dependence on embedding $X \hookrightarrow B \times I$

• The two covered regions are "topologically indistinguishable in a time-preserving way", but the uncovered regions are not!

Zigzag persistence

• <u>Caution 2.9 of *Zigzag Persistence*</u>. Not every submodule isomorphic to an interval corresponds to a summand.

Dependence on embedding $X \hookrightarrow B \times I$

• The two covered regions are "topologically indistinguishable in a time-preserving way", but the uncovered regions are not!

Fat graphs

- A fat graph structure specifies a cyclic ordering of edges about each vertex (left).
- Equivalent to a set of boundary cycles (right).

Voronoi regions

- <u>Theorem.</u> In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.
- <u>Open question</u>. Is the Čech complex with rotation information sufficient?

- <u>Theorem.</u> In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.
- <u>Open question</u>. Is the Čech complex with rotation information sufficient?

- <u>Theorem.</u> In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.
- <u>Open question.</u> Is the Čech complex with rotation information sufficient?

- <u>Theorem.</u> In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.
- <u>Open question</u>. Is the Čech complex with rotation information sufficient?

• Expected time until mobile coverage for Brownian, billiard, and collective motion models.

Efficient Evader Detection in Mobile Sensor Networks by H. Adams, D. Ghosh, C. Mask, W. Ott, and K. Williams. https://github.com/elykwilliams/EvasionPaths

• Expected time until mobile coverage for Brownian, billiard, and collective motion models.

Efficient Evader Detection in Mobile Sensor Networks by H. Adams, D. Ghosh, C. Mask, W. Ott, and K. Williams. https://github.com/elykwilliams/EvasionPaths

• Expected time until mobile coverage for Brownian, billiard, and collective motion models.

Efficient Evader Detection in Mobile Sensor Networks by H. Adams, D. Ghosh, C. Mask, W. Ott, and K. Williams. https://github.com/elykwilliams/EvasionPaths

What's the space of evasion paths?

Conclusions

- Streaming one-sided criterion using zigzag persistence.
- Cech complex insufficient.
 Alpha complex with rotation information suffices.
 What about the Čech complex with rotation information?

Vin de Silva and Robert Ghrist, *Coordinate-free coverage in sensor networks with controlled boundaries via homology*, International Journal of Robotics Research 25 (2006), 1205-1222.

Henry Adams and Gunnar Carlsson, *Evasion paths in mobile sensor networks*, International Journal of Robotics Research 34 (2015), 90-104.