Evasion Paths in Mobile Sensor Networks

Henry Adams, University of Florida
Joint with Gunnar Carlsson
Joint with Deepjyoti Ghosh, Clark Mask, William Ott, Kyle Williams

AATRN
 Applied Algebraic Topology Research Network

- www.aatrn.net
- 1-2 live talks per week
- 5,500 YouTube subscribers
- 22 hours watched per day

Evasion Paths in Mobile Sensor Networks

Henry Adams, University of Florida
Joint with Gunnar Carlsson
Joint with Deepjyoti Ghosh, Clark Mask, William Ott, Kyle Williams

Evasion problem

- Sensors move in a ball-shaped domain $B \subset \mathbb{R}^{d}$ over time interval $I=[0,1]$. Fixed sensors cover the boundary.
- Measure only the Čech complex.
- Is there an evasion path?

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Sensors move in a ball-shaped domain $B \subset \mathbb{R}^{d}$ over time interval $I=[0,1]$. Fixed sensors cover the boundary.
- Measure only the Čech complex.
- Is there an evasion path?

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Sensors move in a ball-shaped domain $B \subset \mathbb{R}^{d}$ over time interval $I=[0,1]$. Fixed sensors cover the boundary.
- Measure only the Čech complex.
- Is there an evasion path?

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Sensors move in a ball-shaped domain $B \subset \mathbb{R}^{d}$ over time interval $I=[0,1]$. Fixed sensors cover the boundary.
- Measure only the Čech complex.
- Is there an evasion path?

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Sensors move in a ball-shaped domain $B \subset \mathbb{R}^{d}$ over time interval $I=[0,1]$. Fixed sensors cover the boundary.
- Measure only the Čech complex.
- Is there an evasion path?

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

Čech complex

- One vertex for each ball
- Edges when 2 balls overlap
- Triangles when 3 balls overlap

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

Čech complex

- One vertex for each ball
- Edges when 2 balls overlap
- Triangles when 3 balls overlap

Vietoris-Rips complex

- One vertex for each ball
- Edges when 2 balls overlap
- All possible triangles

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Let $X \subset B \times I$ be the covered region.
- An evasion path is a time-preserving map from I to the uncovered region.

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Let $X \subset B \times I$ be the covered region.
- An evasion path is a time-preserving map from I to the uncovered region.
- Evasion Problem. Using the time-varying Čech complex, can we determine if an evasion path exists?

Coordinate-free Coverage in Sensor Networks with Controlled
Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Let $X \subset B \times I$ be the covered region.
- An evasion path is a time-preserving map from I to the uncovered region.
- Evasion Problem. Using the time-varying Čech complex, can we determine if an evasion path exists?

Coordinate-free Coverage in Sensor Networks with Controlled
Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Let $X \subset B \times I$ be the covered region.
- An evasion path is a time-preserving map from I to the uncovered region.
- Evasion Problem. Using the time-varying Čech complex, can we determine if an evasion path exists?

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- The stacked complex $S C \simeq X$ encodes all Čech complexes.

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- The stacked complex $S C \simeq X$ encodes all Čech complexes.

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- The stacked complex $S C \simeq X$ encodes all Čech complexes.

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Theorem (de Silva, Ghrist).

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Theorem (de Silva, Ghrist).

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Theorem (de Silva, Ghrist).

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Theorem (de Silva, Ghrist). If there is an $\alpha \in H_{d}(S C, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Theorem (de Silva, Ghrist). If there is an $\alpha \in H_{d}(S C, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Theorem (de Silva, Ghrist). If there is an $\alpha \in H_{d}(S C, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Theorem (de Silva, Ghrist). If there is an $\alpha \in H_{d}(S C, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.
- Coordinate-free.

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Theorem (de Silva, Ghrist). If there is an $\alpha \in H_{d}(S C, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.
- Coordinate-free.
- Not sharp. Can it be sharpened?

Coordinate-free Coverage in Sensor Networks with Controlled
Boundaries via Homology by V. de Silva and R. Ghrist

Evasion problem

- Theorem (de Silva, Ghrist). If there is an $\alpha \in H_{d}(S C, \partial B \times I)$ with $0 \neq \partial \alpha \in H_{d-1}(\partial B \times I)$, then no evasion path exists.
- Coordinate-free.
- Not sharp. Can it be sharpened?

Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology by V. de Silva and R. Ghrist

Homology

- i-dimensional homology "counts the number of i-dimensional holes"
- i-dimensional homology actually has the structure of a vector space!

0-dimensional homology: rank 6
1-dimensional homology: rank 0

0-dimensional homology: rank 1 1-dimensional homology: rank 3

0-dimensional homology: rank 1 1-dimensional homology: rank 6

Homology

- i-dimensional homology "counts the number of i-dimensional holes"
- i-dimensional homology actually has the structure of a vector space!

> 0-dimensional homology: rank 1
> 1-dimensional homology: rank 0
> 2-dimensional homology: rank 1

0-dimensional homology: rank 1 1-dimensional homology: rank 2 2-dimensional homology: rank 1

Be careful!

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

Zigzag Persistence by G. Carlsson and V. de Silva

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

- Theorem.

If there is an evasion path then there is a full-length bar.

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

- Theorem. If there is an evasion path then there is a full-length bar.

Zigzag persistent homology

Form zigzag module for $X \rightarrow I$ with $(d-1)$-dimensional homology.

- Theorem.

If there is an evasion path then there is a full-length bar.

- Streaming computation.

Dependence on embedding $X \hookrightarrow B \times I$

- The time-varying Čech complex of X does not determine if an evasion path exists!

Dependence on embedding $X \hookrightarrow B \times I$

- The time-varying Čech complex of X does not determine if an evasion path exists!

Dependence on embedding $X \hookrightarrow B \times I$

- The time-varying Čech complex of X does not determine if an evasion path exists!

Dependence on embedding $X \hookrightarrow B \times I$

- The time-varying Čech complex of X does not determine if an evasion path exists!

Dependence on embedding $X \hookrightarrow B \times I$

- The time-varying Čech complex of X does not determine if an evasion path exists!

Dependence on embedding $X \hookrightarrow B \times I$

Dependence on embedding $X \hookrightarrow B \times I$

- The two covered regions are "topologically indistinguishable in a time-preserving way", but the uncovered regions are not!

Zigzag persistence

- Caution 2.9 of Zigzag Persistence. Not every submodule isomorphic to an interval corresponds to a summand.

Dependence on embedding $X \hookrightarrow B \times I$

- The two covered regions are "topologically indistinguishable in a time-preserving way", but the uncovered regions are not!

Fat graphs

- A fat graph structure specifies a cyclic ordering of edges about each vertex (left).
- Equivalent to a set of boundary cycles (right).

Cyclic orderings

Boundary cycles

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Cyclic orderings

Boundary cycles

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Voronoi regions

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Čech

Alpha

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.
- Open question. Is the Čech complex with rotation information sufficient?

Čech

Alpha

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.
- Open question. Is the Čech complex with rotation information sufficient?

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.
- Open question. Is the Čech complex with rotation information sufficient?

Planar sensors measuring cyclic orders

- Theorem. In a planar sensor network that remains connected, the time-varying alpha complex with rotation information determines if an evasion path exists.
- Open question. Is the Čech complex with rotation information sufficient?
- Non-planar case?

Planar sensors measuring cyclic orders

- Expected time until mobile coverage for Brownian, billiard, and collective motion models.

Efficient Evader Detection in Mobile Sensor Networks by H. Adams, D. Ghosh, C. Mask, W. Ott, and K. Williams. https://github.com/elykwilliams/EvasionPaths

Planar sensors measuring cyclic orders

- Expected time until mobile coverage for Brownian, billiard, and collective motion models.

$T_{\text {max }}$ distributions

Efficient Evader Detection in Mobile Sensor Networks by H. Adams, D. Ghosh, C. Mask, W. Ott, and K. Williams. https://github.com/elykwilliams/EvasionPaths

Planar sensors measuring cyclic orders

- Expected time until mobile coverage for Brownian, billiard, and collective motion models.

Probability of static coverage

$T_{\text {max }}$ distributions

Efficient Evader Detection in Mobile Sensor Networks by H. Adams, D. Ghosh, C. Mask, W. Ott, and K. Williams. https://github.com/elykwilliams/EvasionPaths

What's the space of evasion paths?

Conclusions

- Streaming one-sided criterion using zigzag persistence.
- Cech complex insufficient.

Alpha complex with rotation information suffices. What about the Čech complex with rotation information?

Vin de Silva and Robert Ghrist, Coordinate-free coverage in sensor networks with controlled boundaries via homology, International Journal of Robotics Research 25 (2006), 1205-1222.

Henry Adams and Gunnar Carlsson, Evasion paths in mobile sensor networks, International Journal of Robotics Research 34 (2015), 90-104.

