Exam 1

Name: _____

- Explain your work (efficiently); partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement: "I will not give, receive, or use any unauthorized assistance."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Signature:

Exam 1

1 Let A, X, and Y be topological spaces, and let $X \times Y$ have the product topology. Define $f: A \to X \times Y$ by $f(a) = (f_1(a), f_2(a))$, where $f_1: A \to X$ and $f_2: A \to Y$. Prove that if f_1 and f_2 are continuous, then f is continuous.

UF MTG 4302/5316 Exam 1

2 Let X be set. Prove that if \mathcal{S} is a collection of subsets of X whose union equals X, then

 $\mathcal{B} = \{S_1 \cap \ldots \cap S_n \mid n \in \mathbb{Z}_+ \text{ and } S_i \in \mathcal{S} \text{ for all } i = 1, \ldots, n\}$

satisfies the axioms so that \mathcal{B} is a basis for a topology on X.

UF MTG 4302/5316 Exam 1

3 Let X be a topological space, and let $\{A_{\alpha}\}_{\alpha\in J}$ be a collection of subsets of X. Prove that $\bigcup_{\alpha\in J}\overline{A_{\alpha}}\subset \overline{\bigcup_{\alpha\in J}A_{\alpha}}$. Give an example where the two sets are not equal, i.e. where we have strict containment.

Recall that \overline{A} denotes the closure of a set A in X.

Exam 1

4 Let A be a partially ordered set. The maximum principal states that there is a maximal totally ordered subset B of A. Zorn's lemma states that if every totally ordered subset of A has an upper bound in A, then A has a maximal element. Prove that the maximum principal implies Zorn's lemma.

Exam 1

5 (a) Prove that a countable union of countable sets is countable.

Exam 1

(b) Prove that a countable product of finite sets (for example $\{0,1\}^\omega)$ need not be countable.

Exam 1

This page intentionally left blank.

Exam 1

This page intentionally left blank.

Exam 1

This page intentionally left blank.