Exam 1

Name: _____

- Explain your work (efficiently); partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement: "I will not give, receive, or use any unauthorized assistance."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Signature:

Exam 1

1 Let X and Y be topological spaces with basepoints x_0 and y_0 . Suppose $\varphi : (X, x_0) \rightarrow (Y, y_0)$ is continuous. How is the induced map $\varphi_* : \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$ on fundamental groups defined? Why is this well-defined? Verify that φ_* is a group homomorphism.

Exam 1

2 Let a and b be the generators of $\pi_1(S^1 \vee S^1)$ corresponding to the two S^1 summands. Draw a picture of the covering space of $S^1 \vee S^1$ corresponding to the normal subgroup generated by a^2 , b^2 , and $(ab)^4$, and prove that this covering space is indeed the correct one.

Exam 1

- 3 Let (X, x_0) , $(\tilde{X}_1, \tilde{x}_1)$, and $(\tilde{X}_2, \tilde{x}_2)$ be path-connected and locally path-connected spaces with distinguished basepoints. Let $p_1: (\tilde{X}_1, \tilde{x}_1) \to (X, x_0)$ and $p_2: (\tilde{X}_2, \tilde{x}_2) \to (X, x_0)$ be basepoint-preserving covering space maps.
 - (3 points) Define what it means for $f: (\tilde{X}_1, \tilde{x}_1) \to (\tilde{X}_2, \tilde{x}_2)$ to be an *isomorphism* of covering spaces.
 - (7 points) Prove that the covering spaces p_1 and p_2 are isomorphic if and only if $p_{1*}(\pi_1(\tilde{X}_1, \tilde{x}_1)) = p_{2*}(\pi_1(\tilde{X}_2, \tilde{x}_2)).$

Exam 1

4 Recall the wedge sum $\vee_{\alpha} X_{\alpha}$ of a collection of spaces X_{α} with basepoints $x_{\alpha} \in X_{\alpha}$ is the quotient space of the disjoint union $\coprod_{\alpha} X_{\alpha}$ in which all the basepoints $x_{\alpha} \in X_{\alpha}$ are identified to a single point. Suppose each X_{α} is path-connected, and suppose each x_{α} is a deformation retract of an open neighborhood U_{α} in X_{α} . Use van Kampen's Theorem to prove that $\pi_1(\vee_{\alpha} X_{\alpha}) \cong *_{\alpha} \pi_1(X_{\alpha})$.

Exam 1

- 5 Just say "True" or "False". No justification is required; no partial credit is available.
 - (a) There is a retract from the torus $S^1 \times S^1$ to the circle $S^1 \times \{y_0\}$, where $y_0 \in S^1$.

(b) For all $n \ge 0$, the fundamental group $\pi_1(\mathbb{C}P^n)$ of complex projective space $\mathbb{C}P^n$ is trivial.

(c) Let S^2 be the 2-sphere and let $\mathbb{R}P^2$ be the projective plane. There exists a covering space map $p: S^2 \to \mathbb{R}P^2$ which furthermore is the universal cover of $\mathbb{R}P^2$.

(d) If $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ is a normal covering space, then $G(\tilde{X}) \cong p_*(\pi_1(\tilde{X}, \tilde{x}_0))$.

(e) If X is a CW complex and Y is a 0-dimensional CW complex, then their join X * Y is contractible.

Exam 1

This page intentionally left blank.

Exam 1

This page intentionally left blank.