Exam 1

Name: _____

- Explain your work (efficiently); partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement: "I will not give, receive, or use any unauthorized assistance."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Signature:

Exam 1

1 Directly from the definitions, compute the simplicial cohomology groups of $\mathbb{R}P^2$ with $\mathbb{Z}_2 \coloneqq \mathbb{Z}/2\mathbb{Z}$ coefficients, using the Δ -complex structure given below.

Exam 1

2 Compute the simplicial cohomology groups of the Δ -complex X below, with \mathbb{Z} coefficients. (Note the orientation of the three edges carefully.)

Exam 1

- 3 Let X be a space and let R be a ring.
 - (a) Define the cup product $\cup: C^k(X; R) \times C^l(X; R) \to C^{k+l}(X; R)$ at the level of singular cochains.
 - (b) Recall that for $\phi \in C^k(X; R)$ and $\psi \in C^l(X; R)$, we have

$$\delta(\phi \cup \psi) = (\delta \phi \cup \psi) + (-1)^k (\phi \cup \delta \psi).$$

Prove the cup product of a cocycle and a coboundary is a coboundary, and similarly prove the cup product of a coboundary and a cocycle is a coboundary.

Exam 1

- 4 Let $f: X \to Y$ be a continuous map between two topological spaces X and Y. Let $n \ge 0$.
 - (a) (3 points) Use f to define a map $f^{\#} \colon C^n(Y; \mathbb{Z}) \to C^n(X; \mathbb{Z})$ from the *n*-cochains on Y to the *n*-cochains on X (note this map is contravariant).
 - (b) (4 points) Verify the map in (a) satisfies $\delta f^{\#} = f^{\#}\delta$.
 - (c) (3 points) Deduce that $f^{\#}$ induces a map $f^* \colon H^n(Y; \mathbb{Z}) \to H^n(X; \mathbb{Z})$.

Exam 1

- 5 Just say "True" or "False". No justification is required; no partial credit is available.
 - (a) Let K and L be simplicial complexes. If $f, g: K \to L$ are two simplicial maps that agree on the vertices of K, then f = g.

(b) If the spaces X and Y have isomorphic cohomology rings, meaning there is a ring isomorphism $H^*(X;\mathbb{Z}) \cong H^*(Y;\mathbb{Z})$, then X and Y are homotopy equivalent.

(c) For *n* even, every map $f \colon \mathbb{R}P^n \to \mathbb{R}P^n$ has a fixed point.

(d) If M is an orientable surface, then $\alpha \cup \alpha = 0$ for any $\alpha \in H^1(M; \mathbb{Z})$.

(e) If G is an abelian group and A is a free abelian group, then Ext(A, G) = 0.

Exam 1

This page intentionally left blank.

Exam 1

This page intentionally left blank.