Exam 2

Name: _____

- Explain your work (efficiently); partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement: "I will not give, receive, or use any unauthorized assistance."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Signature:

Exam 2

1 Let X be the nonorientable surface of genus g, which has one 0-cell v, g different 1cells a_1, \ldots, a_g , and one 2-cell attached by the word $a_1^2 a_2^2 \ldots a_g^2$. Compute the cellular homology $H_i(X)$ for i = 0, 1, 2.

Exam 2

2 Use a long exact sequence of your choosing to prove that $\tilde{H}_n(X) \cong \tilde{H}_{n+1}(SX)$ for all n, where SX is the suspension of space X.

Exam 2

3 Let X be the Δ -complex drawn below, which has two 0-simplices v and w, four 1simplices a, b, c, d, and three 2-simplices S, T, U. Compute the simplicial homology $H_i(X)$ for i = 0, 1, 2.

Exam 2

- 4 (a) (7 points) Let $n \ge 1$, and let x be any point in \mathbb{R}^n . Use the long exact sequence of the pair of spaces $(\mathbb{R}^n, \mathbb{R}^n \setminus \{x\})$ to derive the homology groups of the pair $H_i(\mathbb{R}^n, \mathbb{R}^n \setminus \{x\})$ for all $i \ge 0$.
 - (b) (3 points) Let $n, m \ge 1$. Deduce that \mathbb{R}^n is not homeomorphic to \mathbb{R}^m for $n \ne m$.

Exam 2

- 5 Just say "True" or "False". No justification is required; no partial credit is available.
 - (a) Let X be a space with $A \subset X$. The map $H_0(A) \to H_0(X)$ is injective iff each path-component of X contains at most one path-component of A.

(b) Given a chain complex $\ldots \to C_{k+1} \xrightarrow{d_{k+1}} C_k \xrightarrow{d_k} C_{k-1} \to \ldots$, we have a short exact sequence $0 \to \ker d_n \to C_n \to \operatorname{im} d_n \to 0$ for all n.

(c) For $A, B \subset X$ with $X = \operatorname{int} A \cup \operatorname{int} B$, the inclusion $(B, A \cap B) \hookrightarrow (X, A)$ induces isomorphisms $H_i(B, A \cap B) \to H_i(X, A)$ for all *i*.

(d) If the spaces X and Y satisfy $H_i(X) \cong H_i(Y)$ for all $i \ge 0$, then X and Y are homotopy equivalent.

(e) If a map $f: S^n \to S^n$ is surjective, then $\deg(f) \neq 0$.

Exam 2

This page intentionally left blank.

Exam 2

This page intentionally left blank.