Exam 2

Name: _____

- Explain your work (efficiently); partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement: "I will not give, receive, or use any unauthorized assistance."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Signature:

Exam 2

1 Prove there is no map $\mathbb{R}P^n \to \mathbb{R}P^m$ inducing a nontrivial map $H^1(\mathbb{R}P^m; \mathbb{Z}_2) \to H^1(\mathbb{R}P^n; \mathbb{Z}_2)$ if n > m. What is the corresponding result for maps $\mathbb{C}P^n \to \mathbb{C}P^m$? [Do not prove the $\mathbb{C}P^n$ version.]

Exam 2

2 For *M* a closed *n*-dimensional manifold, prove $H_n(M, M - \{x\}; R) \cong R$.

Exam 2

3 Let M_1 and M_2 be two closed connected *n*-manifolds, and let $M_1 \# M_2$ be their connected sum (obtained by deleting the interiors of *n*-balls from each and identifying the resulting boundary spheres). Show there are isomorphisms $H_i(M_1 \# M_2; \mathbb{Z}) \cong H_i(M_1; \mathbb{Z}) \oplus H_i(M_2; \mathbb{Z})$ for all 0 < i < n - 1.

[Note you are not asked to treat the exceptional case i = n - 1.]

Exam 2

4 Let X be a space and let R be a commutative ring. We defined a cap product $C_k(X; R) \times C^l(X; R) \xrightarrow{\cap} C_{k-l}(X; R)$, and showed that for $\sigma \in C_k(X; R)$ and $\varphi \in C^l(X; R)$, we have

$$\partial(\sigma \cap \varphi) = (-1)^l (\partial \sigma \cap \varphi - \sigma \cap \delta \varphi).$$

Use the above formula to prove that we get an induced map

$$H_k(X; R) \times H^l(X; R) \xrightarrow{\cap} H_{k-l}(X; R).$$

Exam 2

- 5 Just say "True" or "False". No justification is required; no partial credit is available.
 - (a) There exists a closed orientable 6-dimensional manifold M with $H^3(M; \mathbb{Z}) \cong \mathbb{Z}$.

(b) If $0 \to A \to B \to C \to 0$ is a short exact sequence of finitely generated abelian groups, then $\operatorname{rank}(B) = \operatorname{rank}(A) + \operatorname{rank}(C)$.

(c) Let N_g be the nonorientable surface of genus g, which has $H^1(N_g; \mathbb{Z}_2) \cong (\mathbb{Z}_2)^g$. Then there is a generating set $\varphi_1, \ldots, \varphi_g$ for $H^1(N_g; \mathbb{Z}_2) \cong (\mathbb{Z}_2)^g$ with $\varphi_i \cup \varphi_j = 0$ for all $i \neq j$.

(d) Let M be a closed *n*-dimensional manifold and let R be a commutative ring with identity. Then M is R-orientable if and only if a fundamental class $[M] \in H_n(M; R)$ exists.

(e) Let M_g be the orientable surface of genus g. The Euler characteristic of $M_g \times \mathbb{R}P^3$ is zero.

Exam 2

This page intentionally left blank.

Exam 2

This page intentionally left blank.