UF MTG 4302/5316
Introduction to Topology 1
Fall 2023

Homework 1

Due Wednesday, September 6, in class

Reading. Munkres $\S 1$ - §7, §9

Problems.

- $\S 5 \# 3$. Let $A=A_{1} \times A_{2} \times \ldots$ and $B=B_{1} \times B_{2} \times \ldots$.
(a) Show that if $B_{i} \subset A_{i}$ for all i, then $B \subset A$.
(b) Show the converse of (a) holds if B is nonempty.
(c) Show that if A is nonempty, each A_{i} is nonempty. Does the converse hold? Comment: No need to answer this question about the converse.
(d) What is the relation between the set $A \cup B$ and the cartesian product of the sets $A_{i} \cup B_{i}$? What is the relation between the set $A \cap B$ and the cartesian product of the sets $A_{i} \cap B_{i}$? Comment: No need to prove your answer.
- $\S 6 \# 3$. Let X be the two-element set $\{0,1\}$. Find a bijective correspondence between X^{ω} and a proper subset of itself.
- $\S 6 \# 4$ a. Let A be a nonempty finite simply ordered set.
(a) Show that A has a largest element. [Hint: Proceed by induction on the cardinality of A.]
- $\S 7 \# 3$. Let X be the two-element set $\{0,1\}$. Show there is a bijective correspondence between the set $\mathcal{P}\left(\mathbb{Z}_{+}\right)$and the cartesian product X^{ω}.

Recommend Problems (not to turn in).

- §6 \#2.
- $\S 7 \# 4$.
- $\S 7 \# 5 \mathrm{ef}$.

