UF MTG 4302/5316 Introduction to Topology 1 Fall 2023

Homework 2

Due Monday, September 18, anytime, on Canvas

Reading. Munkres §10 – §15

Problems.

• §9 #5.

(a) Use the choice axiom to show that if $f: A \to B$ is surjective, then f has a right inverse $h: B \to A$.

(b) Show that if $f: A \to B$ is injective and A is not empty, then f has a left inverse. Is the axiom of choice needed?

If $f: A \to B$ is a function, then a right inverse is a function $h: B \to A$ satisfying f(h(b)) = b for all $b \in B$, and a left inverse is a function $g: B \to A$ satisfying g(f(a)) = a for all $a \in A$.

• §11 #8. A typical use of Zorn's lemma in algebra is the proof that every vector space has a basis. Recall that if A is a subset of the vector space V, we say a vector belongs to the *span* of A if it equals a finite linear combination of elements of A. The set A is *independent* if the only finite linear combination of elements of A that equals the zero vector is the trivial one having all coefficients zero. If A is independent and if every vector in V belongs to the span of A, then A is a *basis* for V.

(a) If A is independent and $v \in V$ does not belong to the span of A, show $A \cup \{v\}$ is independent.

- (b) Show the collection of all independent sets in V has a maximal element.
- (c) Show that V has a basis.
- §13 #4(a). If $\{\tau_{\alpha}\}$ is a family of topologies on X, show that $\cap \tau_{\alpha}$ is a topology on X. Is $\cup \tau_{\alpha}$ a topology on X?

Recommend Problems (not to turn in).

- §9 #6.
- \$11 #2; this question shows that partially ordered sets defined using the axioms for \prec are really the same mathematical object as partially ordered sets defined using the axioms for \preceq .
- §13 #1.