Homework 2

Due Friday, September 20, anytime, on Canvas

Reading. Hatcher §1.1–1.2, pages 21–55.

Problems.

- 1. §1.1, Exercise 3. For a path-connected space X, show that $\pi_1(X)$ is abelian iff all basepoint-change homomorphisms β_h depend only on the endpoints of the path h.
- 2. §1.1, Exercise 16(a,b,c,f). Show that there are no retractions $r: X \to A$ in the following cases:
 - (a) $X = \mathbb{R}^3$ with A any subspace homeomorphic to S^1 .
 - (b) $X = S^1 \times D^2$ with A its boundary torus $S^1 \times S^1$.
 - (c) $X = S^1 \times D^2$ with A the circle shown in the figure.

- (f) X the Möbius band and A its boundary circle.
- 3. §1.2, Exercise 8.
 - (a) "Compute the fundamental group of the space obtained from two tori $S^1 \times S^1$ by identifying a circle $S^1 \times \{x_0\}$ in one torus with the corresponding circle $S^1 \times \{x_0\}$ in the other torus." Let's call this identification space X. Compute $\pi_1(X)$ by using van Kampen's theorem on the natural union of two tori along a circle.
 - (b) Write this identification space X as a product $X = Y \times Z$ (where neither Y nor Z are just a single point), and use this to give an alternate computation of $\pi_1(X)$.
- 4. §1.2, Exercise 10. Consider two arcs α and β embedded in $D^2 \times I$ as shown in the figure. The loop γ is obviously nullhomotopic in $D^2 \times I$, but show that there is no nullhomotopy of γ in the complement of $\alpha \cup \beta$.

[*Hint:* What is the fundamental group of $(D^2 \times I) \setminus (\alpha \cup \beta)$?]

Recommend Problems (not to turn in).

- §1.1, Exercise 5.
- §1.1, Exercise 6.
- §1.1, Exercise 9.
- §1.2, Exercise 6.
- §1.2, Exercise 9.