Homework 2

Due Monday, February 10, anytime, on Canvas

Reading. Hatcher pages 190–205.

Problems.

- 1. Prove the Splitting Lemma on Page 147 of Hatcher.
- 2. §3.1, Exercise 5. Regarding a cochain $\phi \in C^1(X; G)$ as a function from paths in X to G, show that if ϕ is a cocycle, then
 - (a) $\phi(f \cdot g) = \phi(f) + \phi(g)$,
 - (b) ϕ takes the value 0 on constant paths,
 - (c) $\phi(f) = \phi(g)$ if $f \simeq g$,
 - (d) ϕ is a coboundary iff $\phi(f)$ depends only on the endpoints of f, for all f.
- 3. §3.1, Exercise 6(b). Directly from the definitions, compute the simplicial cohomology groups of $\mathbb{R}P^2$ and the Klein bottle, each with \mathbb{Z} and \mathbb{Z}_2 coefficients, using the Δ -complex structure given in §2.1.
- 4. §3.1, Exercise 8(a). Many basic homology arguments work just as well for cohomology even though maps go in the opposite direction. Verify this in the following case.

(a) Compute $H^i(S^n; G)$ by induction on n in two ways: using the long exact sequence of a pair, and using the Mayer–Vietoris sequence.