UF MTG 4303/5317 Introduction to Topology 2 Spring 2024

Homework 3

Due Wednesday, February 28, anytime, on Canvas

Reading. Munkres §37, 56–59.

Problems.

- 1. §52 #3. Let x_0 and x_1 be points of the path-connected space X. Show that $\pi_1(X, x_0)$ is abelian if and only if for every pair α and β of paths from x_0 to x_1 , we have $\hat{\alpha} = \hat{\beta}$.
- 2. §55 #4(d,e). Suppose that you are given the fact that for each n, there is no retraction $r: B^{n+1} \to S^n$. (This result can be proved using more advanced techniques of algebraic topology.) Prove the following:
 - (d) Every continuous map $f: B^{n+1} \to B^{n+1}$ has a fixed point.
 - (e) Every n + 1 by n + 1 matrix with positive real entries has a positive eigenvalue.
- 3. §57 #4(a,b,c). Suppose you are given the fact that for each n, no continuous antipodepreserving map $h: S^n \to S^n$ is nullhomotopic. (This result can be proved using more advanced techniques of algebraic topology.) Prove the following:
 - (a) There is no retraction $r: B^{n+1} \to S^n$.
 - (b) There is no continuous antipode-preserving map $g: S^{n+1} \to S^n$.
 - (c) (Borsuk–Ulam theorem) Given a continuous map $f: S^{n+1} \to \mathbb{R}^{n+1}$, there is a point x of S^{n+1} such that f(x) = f(-x).

Recommend Problems (not to turn in).

- \$55 #4(a)
- §57 #1
- §57 #2