UF MTG 6346 Topology 1 Fall 2024

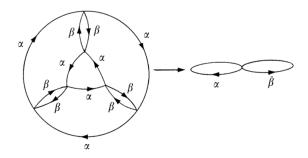
Homework 3

Due Monday, October 7, anytime, on Canvas

Reading. Hatcher pages 56–87.

Problems.

- 1. Let M be an *n*-dimensional manifold, with $n \geq 3$. Let $p \in M$ be any point in the manifold M. There is a nice relationship between the fundamental groups $\pi_1(M)$ and $\pi_1(M \setminus \{p\})$ how are they related? Prove your answer is correct.
- 2. §1.3, Exercise 9. Show that if a path-connected, locally path-connected space X has $\pi_1(X)$ finite, then every map $X \to S^1$ is nullhomotopic. [Use the covering space $\mathbb{R} \to S^1$.]
- 3. §1.3, Exercise 12. Let a and b be the generators of $\pi_1(S^1 \vee S^1)$ corresponding to the two S^1 summands. Draw a picture of the covering space of $S^1 \vee S^1$ corresponding to the normal subgroup generated by a^2 , b^2 , and $(ab)^4$, and prove that this covering space is indeed the correct one.
- 4. Let \tilde{X} be the 6-fold cover of $S^1 \vee S^1$ drawn below.



- (a) Use Proposition 1.32 and Proposition 1.39 to deduce the size of the group $G(\tilde{X})$ of deck transformations. Use the symmetries of \tilde{X} to identify the group $G(\tilde{X})$.
- (b) Alter \hat{X} by reversing the direction of the three α arrows on the inner circle only. What is the size of the group $G(\tilde{X})$ of deck transformations? What is the group $G(\tilde{X})$?

Recommend Problems (not to turn in).

- §1.3, Exercise 10.
- §1.3, Exercise 17.