UF MTG 4302/5316 Introduction to Topology 1 Fall 2023

Homework 4

Due Friday, October 20, anytime, on Canvas

Reading. Munkres $\S{21} - \S{25}$

Problems.

• §18 #9(a,b). Let $\{A_{\alpha}\}$ be a collection of subsets of X; let $X = \bigcup_{\alpha} A_{\alpha}$. Let $f: X \to Y$; suppose that $f|A_{\alpha}$ is continuous for each α .

(a) Show that if the collection $\{A_{\alpha}\}$ is finite and each set A_{α} is closed, then f is continuous.

(b) Find an example where the collection $\{A_{\alpha}\}$ is countable and each A_{α} is closed, but f is not continuous.

- §19 #6. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots$ be a sequence of points of the product space $\prod X_{\alpha}$. Show that this sequence converges to the point \mathbf{x} if and only if the sequence $\pi_{\alpha}(\mathbf{x}_1), \pi_{\alpha}(\mathbf{x}_2), \ldots$ converges to $\pi_{\alpha}(\mathbf{x})$ for each α . Is this fact true if one uses the box topology instead of the product topology?
- §21 #3. Let X_n be a metric space with metric d_n , for $n \in \mathbb{Z}_+$.

(a) Show that $\rho(x, y) = \max\{d_1(x_1, y_1), \ldots, d_n(x_n, y_n)\}$ is a metric for the product space $X_1 \times \ldots \times X_n$.

(b) Let $\overline{d_i} = \min\{d_i, 1\}$. Show that $D(x, y) = \sup\left\{\frac{\overline{d_i}(x_i, y_i)}{i}\right\}$ is a metric for the product space $\prod X_i$.

Remark: For (b), compare the proof of Theorem 20.5, which is the specific case when $X_n = \mathbb{R}$ and d_n is the standard metric on \mathbb{R} , for all n.

• §22 #2(a). Let $p: X \to Y$ be a continuous map. Show that if there is a continuous map $f: Y \to X$ such that $p \circ f$ equals the identity map of Y, then p is a quotient map.

Recommend Problems (not to turn in).

- §17 #13.
- §19 #1.
- §20 #4.