UF MTG 6346 Topology 1 Fall 2024

Homework 4

Due Wednesday, October 30, anytime, on Canvas

Reading. Hatcher pages 97–133.

Problems.

- 1. §2.1, Exercise 4. Compute the simplicial homology groups of the triangular parachute obtained from Δ^2 by identifying its three vertices to a single point.
- 2. §2.1, Exercise 5. Compute the simplicial homology groups of the Klein bottle using the Δ -complex structure described at the beginning of this section.

3. §2.1, Exercise 8. Construct a 3-dimensional Δ -complex X from n tetrahedra T_1, \ldots, T_n by the following steps. First arrange the tetrahedra in a cyclic pattern as in the figure, so that each T_i shares a common vertical face with its two neighbors T_{i-1} and T_{i+1} , subscripts being taken mod n. Then identify the bottom face of T_i with the top face of T_{i+1} for each i. Show the simplicial homology groups of X in dimensions 0, 1, 2, 3 are $\mathbb{Z}, \mathbb{Z}_n, 0, \mathbb{Z}$, respectively. [The space X is an example of a *lens space*; see Example 2.43 for the general case.]

4. §2.1, Exercise 11. Show that if A is a retract of X then the map $H_n(A) \to H_n(X)$ induced by the inclusion $A \subset X$ is injective.

Recommend Problems (not to turn in).

- Compute the simplicial homology of the Klein bottle with Z/2Z coefficients (defined on pages 153–154 of Hatcher).
- §2.1, Exercise 3.