UF MTG 4303/5317
Introduction to Topology 2
Spring 2024

Homework 5

Due Friday, April 5, anytime, on Canvas

Reading. Munkres §69-72.

Problems.

1. $\S 68 \# 2$. Let $G=G_{1} * G_{2}$, where G_{1} and G_{2} are nontrivial groups.
(a) Show G is not abelian.
(b) If $x \in G$, define the length of x to be the length of the unique reduced word in the elements of G_{1} and G_{2} that represents x. Show that if x has even length (at least 2), then x does not have finite order. Show that if x has odd length (at least 3), then x is conjugate to an element of shorter length.
(c) Show that the only elements of G that have finite order are the elements of G_{1} and G_{2} that have finite order, and their conjugates.
2. Let $\left(Y, y_{0}\right)$ and $\left(Z, z_{0}\right)$ be path-connected pointed spaces such that Y has a contractible neighborhood $N_{Y} \ni y_{0}$ and Z has a contractible neighborhood $N_{Z} \ni z_{0}$. Prove that $\pi_{1}(Y \vee Z)$ is isomorphic to $\pi_{1}(Y) * \pi_{1}(Z)$.
[Recall that the wedge sum of two pointed spaces $\left(Y, y_{0}\right)$ and $\left(Z, z_{0}\right)$ is the quotient space $(Y \amalg Z) /\left(y_{0} \sim z_{0}\right)$.]
3. The connected sum of two surfaces S and S^{\prime} is obtained by cutting out a disk from each surface and gluing the resulting surfaces along their circle boundaries: $S \# S^{\prime}=$ $\left(S \backslash D^{2}\right) \cup_{S^{1}}\left(S^{\prime} \backslash D^{2}\right)$. Let T be the torus. Using the Seifert-van Kampen theorem on the natural decomposition into two pieces given by the connected sum, calculate $\pi_{1}(T \# T)$.

Recommend Problems (not to turn in).

- $\S 59 \# 2$
- $\S 60$ \#2
- $\S 68$ \#3
- $\S 70$ \#3

