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Metric Vietoris–Rips Thickenings

Definition (Adamaszek, Adams, Frick [1])

For a metric space X and r ≥ 0, the Vietoris–Rips thickening
VRm(X; r) is the set

VRm(X; r) =

{
k∑

i=0

λixi

∣∣∣∣ k ∈ N, xi ∈ X, and diam({x0, . . . , xk}) ≤ r

}

equipped with the 1-Wasserstein metric.
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VRm(X; r) at small scale parameters

Theorem (Adams, Mirth [2])

Let X ⊆ Rn with positive reach. Then,

VRm(X; r) ' X

for r sufficiently small.
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VRm(X; r) at large scale parameters

Conjecture

Let S1 be the circle of unit circumference. Then, for k ∈ N,

VRm(S1; r) ' S2k−1 if
k − 1

2k − 1
≤ r < k

2k + 1
.
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VRm(X; r) at large scale parameters

Conjecture

VRm(S1; r) ' S2k−1 if
k − 1

2k − 1
≤ r < k

2k + 1
.

Desired proof.

For k−1
2k−1 ≤ r <

k
2k+1 , there exist homotopy equivalences

p ◦ SM2k and ι in the following diagram:

VRm(S1; r)
SM2k−−−→ R2k \ {~0} p−→ ∂B2k

ι−→ VRm(S1; r),

where p denotes the radial projection, ι denotes the inclusion,

and ∂B2k ∼= S2k−1.
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Barvinok–Novik Orbitopes

Fix k ≥ 1 and define the symmetric moment curve

SM2k : R/2πZ→ R2k

θ 7→ (cos(θ), sin(θ), cos(3θ), sin(3θ), . . . , cos((2k − 1)θ), sin((2k − 1)θ)).

Define the k-th Barvinok–Novik orbitope by

B2k = conv(SM2k(S
1)).
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Barvinok–Novik Orbitopes

Theorem (Barvinok, Novik [3])

The proper faces of B4 are

• the 0-dimensional faces, SM4(t) for t ∈ S1,

• the 1-dimensional faces, conv(SM4({t1, t2})) where t1 6= t2

are the edges of an arc of S1 of length ≤ 1
3 ,

• the 2-dimensional faces, conv(SM4({t, t+ 1
3 , t+ 2

3})) for

t ∈ S1.

The precise facial structure of B2k is

unknown for k > 2.

Known to be simplicial and locally k-

neighborly ([5], [3]).
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VRm(X; r) at large scale parameters

So far:

Theorem (Adams, B., Frick)

VRm(S1; 1/3) ' S3.

Proof.

There exist homotopy equivalences p ◦ SM4 and ι in the

following diagram:

VRm(S1; 1/3)
SM4−−−→ R4 \ {~0} p−→ ∂B4

ι−→ VRm(S1; 1/3)

where p denotes the radial projection, ι denotes the inclusion,

and ∂B4 ∼= S3.
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Borsuk–Ulam Theorems

Theorem (Borsuk–Ulam)

Given a continuous function f : Sn → Rn, there exists x ∈ Sn

such that f(x) = f(−x).

Equivalently, given a continuous and odd function f : Sn → Rn,

there exists x ∈ Sn such that f(x) = ~0.
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Borsuk–Ulam Theorems

Theorem (Gromov [4])

Given a continuous function f : Sn → Rk with k ≤ n, there

exists y ∈ Rk such that the n-spherical volume of the ε-tubular

neighborhood of f−1(y), denoted by f−1(y) + ε, satisfies

Voln(f−1(y) + ε) ≥ Voln(f−1(Sn−k + ε))

for every ε > 0.
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Borsuk–Ulam Theorems

Theorem (Adams, B., Frick)

If f : S1 → R2k+1 is continuous, there exists a subset

{x1, . . . , xm} ⊆ S1 of diameter at most k
2k+1 and with

m ≤ 2k + 1 such that
∑m

i=1 λif(xi) =
∑m

i=1 λif(−xi), for some

choice of convex coefficients λi.

Equivalently, if f : S1 → R2k+1 is continuous and odd, then

there exists a subset X ⊆ S1 of diameter at most k
2k+1 and size

|X| ≤ 2k + 1 such that ~0 ∈ conv(f(X)).

This result is sharp: f = SM2k : S1 →
R2k ⊂ R2k+1 is an odd map such that
~0 /∈ conv(f(X)) if diam(X) < k

2k+1 .
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Borsuk–Ulam Theorems

Theorem (Adams, B., Frick)

If f : S1 → R2k+1 is continuous, there exists a subset

{x1, . . . , xm} ⊆ S1 of diameter at most k
2k+1 and with

m ≤ 2k + 1 such that
∑m

i=1 λif(xi) =
∑m

i=1 λif(−xi), for some

choice of convex coefficients λi.

Equivalently, if f : S1 → R2k+1 is continuous and odd, there

exists a subset X ⊆ S1 of diameter at most k
2k+1 and size

|X| ≤ 2k + 1 such that ~0 ∈ conv(f(X)).

Proof.

The induced map f : VRm(S1; k
2k+1)→ R2k+1 is odd with

domain VRm(S1; k
2k+1) ' S2k+1. By Borsuk–Ulam, this map

has a zero, giving a subset X of diameter at most k
2k+1 with

conv(f(X)) containing the origin.
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Future Work

• Currently: partial results for spheres, maps Sn → Rn+2.

• Recent idea: full Borsuk–Ulam type results (i.e., tight

bounds) for odd dimensional spheres by taking n-fold joins

of S1.

• A better understanding of metric thickenings of spheres at

large scales. (Čech thickenings, different orbitopes, etc.)
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