Metric Thickenings, Orbitopes, and Borsuk–Ulam Theorems

GTDAML 2019

Johnathan Bush[†] Joint work with Henry Adams[†] and Florian Frick[‡] The Ohio State University, June 2nd, 2019

[†]Department of Mathematics, Colorado State University [‡]Department of Mathematical Sciences, Carnegie Mellon University

Metric Vietoris–Rips Thickenings

Definition (Adamaszek, Adams, Frick [1])

For a metric space X and $r \ge 0$, the Vietoris–Rips thickening $\operatorname{VR}^m(X; r)$ is the set

$$\operatorname{VR}^{m}(X;r) = \left\{ \sum_{i=0}^{k} \lambda_{i} x_{i} \mid k \in \mathbb{N}, \ x_{i} \in X, \text{ and } \operatorname{diam}(\{x_{0}, \dots, x_{k}\}) \leq r \right\}$$

equipped with the 1-Wasserstein metric.

Theorem (Adams, Mirth [2]) Let $X \subseteq \mathbb{R}^n$ with positive reach. Then,

 $\operatorname{VR}^m(X;r) \simeq X$

for r sufficiently small.

$VR^m(X;r)$ at large scale parameters

Conjecture

Let S^1 be the circle of unit circumference. Then, for $k \in \mathbb{N}$,

$\operatorname{VR}^m(X;r)$ at large scale parameters

Conjecture

Let S^1 be the circle of unit circumference. Then, for $k \in \mathbb{N}$,

$$\operatorname{VR}^{m}(S^{1}; r) \simeq S^{2k-1}$$
 if $\frac{k-1}{2k-1} \le r < \frac{k}{2k+1}.$

Conjecture

$$\operatorname{VR}^{m}(S^{1}; r) \simeq S^{2k-1}$$
 if $\frac{k-1}{2k-1} \le r < \frac{k}{2k+1}.$

Desired proof.

For $\frac{k-1}{2k-1} \leq r < \frac{k}{2k+1}$, there exist homotopy equivalences $p \circ SM_{2k}$ and ι in the following diagram:

$$\mathrm{VR}^{m}(S^{1};r) \xrightarrow{\mathrm{SM}_{2k}} \mathbb{R}^{2k} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{2k} \xrightarrow{\iota} \mathrm{VR}^{m}(S^{1};r),$$

where p denotes the radial projection, ι denotes the inclusion, and $\partial \mathcal{B}_{2k} \cong S^{2k-1}$.

Barvinok–Novik Orbitopes

Fix $k \geq 1$ and define the symmetric moment curve

 $\mathrm{SM}_{2k} \colon \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}^{2k}$

 $\theta \mapsto (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta)).$

Barvinok–Novik Orbitopes

Fix $k \ge 1$ and define the symmetric moment curve $\operatorname{SM}_{2k} \colon \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}^{2k}$ $\theta \mapsto (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta)).$

Define the k-th Barvinok–Novik orbitope by

 $\mathcal{B}_{2k} = \operatorname{conv}(\mathrm{SM}_{2k}(S^1)).$

Theorem (Barvinok, Novik [3])

The proper faces of \mathcal{B}_4 are

- the 0-dimensional faces, $SM_4(t)$ for $t \in S^1$,
- the 1-dimensional faces, $\operatorname{conv}(\operatorname{SM}_4(\{t_1, t_2\}))$ where $t_1 \neq t_2$ are the edges of an arc of S^1 of length $\leq \frac{1}{3}$,
- the 2-dimensional faces, $\operatorname{conv}(\operatorname{SM}_4(\{t, t+\frac{1}{3}, t+\frac{2}{3}\}))$ for $t \in S^1$.

Theorem (Barvinok, Novik [3])

The proper faces of \mathcal{B}_4 are

- the 0-dimensional faces, $SM_4(t)$ for $t \in S^1$,
- the 1-dimensional faces, $\operatorname{conv}(\operatorname{SM}_4(\{t_1, t_2\}))$ where $t_1 \neq t_2$ are the edges of an arc of S^1 of length $\leq \frac{1}{3}$,
- the 2-dimensional faces, $\operatorname{conv}(\operatorname{SM}_4(\{t, t+\frac{1}{3}, t+\frac{2}{3}\}))$ for $t \in S^1$.

The precise facial structure of \mathcal{B}_{2k} is unknown for k > 2. Known to be *simplicial* and *locally k*neighborly ([5], [3]).

Conjecture

$$\operatorname{VR}^{m}(S^{1}; r) \simeq S^{2k-1}$$
 if $\frac{k-1}{2k-1} \le r < \frac{k}{2k+1}.$

Desired proof.

For $\frac{k-1}{2k-1} \leq r < \frac{k}{2k+1}$, there exist homotopy equivalences $p \circ SM_{2k}$ and ι in the following diagram:

$$\mathrm{VR}^m(S^1; r) \xrightarrow{\mathrm{SM}_{2k}} \mathbb{R}^{2k} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{2k} \xrightarrow{\iota} \mathrm{VR}^m(S^1; r),$$

where p denotes the radial projection, ι denotes the inclusion, and $\partial \mathcal{B}_{2k} \cong S^{2k-1}$. So far:

Theorem (Adams, B., Frick)

 $\mathrm{VR}^m(S^1; 1/3) \simeq S^3.$

Proof.

There exist homotopy equivalences $p \circ SM_4$ and ι in the following diagram:

$$\operatorname{VR}^m(S^1; 1/3) \xrightarrow{\operatorname{SM}_4} \mathbb{R}^4 \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_4 \xrightarrow{\iota} \operatorname{VR}^m(S^1; 1/3)$$

where p denotes the radial projection, ι denotes the inclusion, and $\partial \mathcal{B}_4 \cong S^3$.

Theorem (Borsuk–Ulam)

Given a continuous function $f: S^n \to \mathbb{R}^n$, there exists $x \in S^n$ such that f(x) = f(-x).

Equivalently, given a continuous and odd function $f: S^n \to \mathbb{R}^n$, there exists $x \in S^n$ such that $f(x) = \vec{0}$.

Theorem (Gromov [4])

Given a continuous function $f: S^n \to \mathbb{R}^k$ with $k \leq n$, there exists $y \in \mathbb{R}^k$ such that the n-spherical volume of the ε -tubular neighborhood of $f^{-1}(y)$, denoted by $f^{-1}(y) + \varepsilon$, satisfies

$$Vol_n(f^{-1}(y) + \varepsilon) \ge Vol_n(f^{-1}(S^{n-k} + \varepsilon))$$

Theorem (Adams, B., Frick)

If $f: S^1 \to \mathbb{R}^{2k+1}$ is continuous, there exists a subset $\{x_1, \ldots, x_m\} \subseteq S^1$ of diameter at most $\frac{k}{2k+1}$ and with $m \leq 2k+1$ such that $\sum_{i=1}^m \lambda_i f(x_i) = \sum_{i=1}^m \lambda_i f(-x_i)$, for some choice of convex coefficients λ_i .

Equivalently, if $f: S^1 \to \mathbb{R}^{2k+1}$ is continuous and odd, then there exists a subset $X \subseteq S^1$ of diameter at most $\frac{k}{2k+1}$ and size $|X| \leq 2k+1$ such that $\vec{0} \in \operatorname{conv}(f(X))$.

This result is sharp: $f = \mathrm{SM}_{2k} \colon S^1 \to \mathbb{R}^{2k} \subset \mathbb{R}^{2k+1}$ is an odd map such that $\vec{0} \notin \mathrm{conv}(f(X))$ if $\mathrm{diam}(X) < \frac{k}{2k+1}$.

Theorem (Adams, B., Frick)

If $f: S^1 \to \mathbb{R}^{2k+1}$ is continuous, there exists a subset $\{x_1, \ldots, x_m\} \subseteq S^1$ of diameter at most $\frac{k}{2k+1}$ and with $m \leq 2k+1$ such that $\sum_{i=1}^m \lambda_i f(x_i) = \sum_{i=1}^m \lambda_i f(-x_i)$, for some choice of convex coefficients λ_i .

Equivalently, if $f: S^1 \to \mathbb{R}^{2k+1}$ is continuous and odd, there exists a subset $X \subseteq S^1$ of diameter at most $\frac{k}{2k+1}$ and size $|X| \leq 2k+1$ such that $\vec{0} \in \operatorname{conv}(f(X))$.

Proof.

The induced map $f: \operatorname{VR}^m(S^1; \frac{k}{2k+1}) \to \mathbb{R}^{2k+1}$ is odd with domain $\operatorname{VR}^m(S^1; \frac{k}{2k+1}) \simeq S^{2k+1}$. By Borsuk–Ulam, this map has a zero, giving a subset X of diameter at most $\frac{k}{2k+1}$ with $\operatorname{conv}(f(X))$ containing the origin. • Currently: partial results for spheres, maps $S^n \to \mathbb{R}^{n+2}$.

- Currently: partial results for spheres, maps $S^n \to \mathbb{R}^{n+2}$.
- Recent idea: full Borsuk–Ulam type results (i.e., tight bounds) for odd dimensional spheres by taking *n*-fold joins of S^1 .

- Currently: partial results for spheres, maps $S^n \to \mathbb{R}^{n+2}$.
- Recent idea: full Borsuk–Ulam type results (i.e., tight bounds) for odd dimensional spheres by taking *n*-fold joins of S^1 .
- A better understanding of metric thickenings of spheres at large scales. (Čech thickenings, different orbitopes, etc.)

- M. ADAMASZEK, H. ADAMS, AND F. FRICK, Metric reconstruction via optimal transport, To appear in the SIAM Journal on Applied Algebra and Geometry, (2018).
- H. ADAMS AND J. MIRTH, Metric thickenings of euclidean submanifolds, Topology and its Applications, 254 (2019), pp. 69–84.
- [3] A. BARVINOK AND I. NOVIK, A centrally symmetric version of the cyclic polytope, Discrete & Computational Geometry, 39 (2008), pp. 76–99.
- M. GROMOV, Isoperimetry of waists and concentration of maps, Geometric and functional analysis, 13 (2003), pp. 178-215.
- [5] R. SINN, Algebraic boundaries of SO(2)-orbitopes, Discrete & Computational Geometry, 50 (2013), pp. 219-235.

Thank you!