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The Vietoris—Rips Complex

Definition

Let X be a metric space and r > 0 a scale parameter. The
Vietoris—Rips complex of X, denoted VR(X;r), has vertex set
X and a simplex for every finite subset ¢ C X such that
diam(o) < r.
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The Vietoris—Rips Complex

In applications of persistent homology, we consider

Vietoris—Rips complexes at all scale parameters.




Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and r > 0 be
sufficiently small. Then, VR(M;r) ~ M. [4]
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Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and r > 0 be
sufficiently small. Then, VR(M;r) ~ M. [4]

e Downsides of the proof:
¢ Hausmann’s map VR(M;r) — M depends upon a
total order of all points in M.
o VR(M;r) does not inherit the metric of M. In
particular, the inclusion M — VR(M;r) is not

continuous. 4
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Latschev’s Theorem

Theorem

Let M be a closed Riemannian manifold and X a metric space
d—close to M in the Gromov-Hausdorff distance. Then,
VR(X;7) ~ M forr > 0 sufficiently small. [5]

e Generalization of Hausmann’s theorem. Applies, in

particular, to samplings X C M.

e Again, the value of “sufficiently small” r > 0 depends on

the curvature of M.
e The value of § depends on r.

e Same downsides as Hausmann’s proof.



VR(X;r) for large scale parameters

Theorem (Adamszek, Adams)

Let S* be the circle of unit circumference. Then,
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VR(X;r) for large scale parameters

Theorem (Adamszek, Adams)

Let S* be the circle of unit circumference. Then,
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VR(X;r) for large scale parameters

Theorem (Adamszek, Adams)

Let S* be the circle of unit circumference. Then,
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Metric Vietoris—Rips Thickenings

Definition (Adamaszek, Adams, Frick)

For a metric space X and r > 0, the Vietoris—Rips thickening
VR™(X;r) is the set

=0

k
VR™(X; ) {Z,\ x| k€N, x; € X, and diam({xo,...,75}) < r}

equipped with the 1-Wasserstein metric. [2]




Metric Vietoris—Rips Thickenings

e An analogue of Hausmann’s theorem holds for the
Vietoris—Rips metric thickening VR (M;r).
e Notably, this theorem admits a nicer proof:
o The homotopy equivalence VR™(M;r) — M is
canonically defined.
¢ The inclusion M — VR (M;r) is continuous.



Results



Main Theorem
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Let S be the circle of unit circumference, and let r = % Then,
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homotopy equivalent to S3.
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Theorem (Adams, B.)

Let S be the circle of unit circumference, and let r = % Then,
the Vietoris—Rips metric thickening thickening VR™(S;r) is
homotopy equivalent to S3.

e 1/3 is the side length of an inscribed equilateral triangle.
e Recall that VR(S; 1) ~ \/*° S?



Main Theorem (proof)
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VR™(S%:1/3) 24 4\ {01 2 9B, S VR™(SY;1/3)
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Main Theorem (proof)

We construct a homotopy equivalence via
VR™(S%:1/3) 24 4\ {01 2 9B, S VR™(SY;1/3)
where SMy: S — R* is defined by
SM4(0) = (cos(0),sin(f), cos(36),sin(30)) ,

p is radial projection, By = conv(SMy4(S')) C R* is the (second)

Barvinok—Novik orbitope, and ¢ is inclusion.

10



Barvinok—Novik Orbitopes

Fix k > 1 and define the symmetric moment curve

SMyy,: R/27Z — R?*
0 — (cos(0),sin(0), cos(30),sin(30), . .., cos((2k — 1)0),sin((2k — 1)0)).
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Barvinok—Novik Orbitopes

Fix k > 1 and define the symmetric moment curve
SMyy: R/27Z — R?*
0 — (cos(0),sin(0), cos(30),sin(30), . .., cos((2k — 1)0),sin((2k — 1)0)).

Define the k-th Barvinok—Novik orbitope by
Boi = conv(SMa(S1)).

The precise facial struc-
ture of By is unknown
for k > 2.

Our proof technique in-
volves the faces of By.
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Barvinok—Novik Orbitopes

Theorem (4.1 of [3])
The proper faces and subfaces of By are

e (-dimensional faces, SMy(t) for t € S1,

o I-dimensional faces, conv(SMu({t1,t2})) where t1 # ta are

the edges of an arc of S* of length less than or equal to %,

e 2-dimensional faces, conv(SMy({t,t + 3,t+ 2})) fort € S'.
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Barvinok—Novik Orbitopes

Theorem (4.1 of [3])
The proper faces and subfaces of By are

e (-dimensional faces, SMy(t) for t € S1,

o I-dimensional faces, conv(SMu({t1,t2})) where t1 # ta are
the edges of an arc of S* of length less than or equal to %,

e 2-dimensional faces, conv(SMy({t,t + 3,t+ 2})) fort € S'.

By contrast, the simplicies of VR™(S'; %) are
e Vertices, t € ST,
e All simplices of the form conv({t1,...,u}),

where t1,...,t, belong to an arc of St oof

length less than or equal to %,

e 2-simplices, conv({t,t+ 3,t+ 2}) for t € S*.

12



Main Theorem (proof)
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(1) Prove ¢ is well-defined and continuous.
(2) Extend SMy to VR™(S1;7r). > Aibi = > AiSMag(6;)
(3) Prove SMy (VR™(S;r)) misses the origin.
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(3) Prove SMy (VR™(S;r)) misses the origin.

(4) Prove poSM, and ¢ are homotopy inverses.
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Main Theorem (proof) — Prove poSM, and ¢ are h. inverses

e (poSMy) ot =idyg,.
e To show v o (poSMy) >~ idygm (g1, We use a linear
homotopy H.
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Main Theorem (proof) — Prove poSM, and ¢ are h. inverses

e (poSMy) ot =idyg,.
e To show v o (poSMy) >~ idygm (g1, We use a linear
homotopy H.

e H is well-defined only if ¢+ o (p o SMy) does not “increase

diameter” too much.
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Main Theorem (proof) — Prove poSM, and ¢ are h. inverses

e In general, this “non-diameter increasing” property of p

depends on the facial structure of Bayy.
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Main Theorem (proof) — Prove poSM, and ¢ are h. inverses

e In general, this “non-diameter increasing” property of p

depends on the facial structure of Bayy.
e We use Farkas’ Lemma to exclude certain cases.

e Continuity of H follows from the fact that VR™(S';r) is a
metric r-thickening.

19



Main Theorem (proof)

VR™(SY;1/3) 24 R4\ {0} 2 9B, % VR™(SY;1/3)

Thus, to (poSMy) =~ idygm (g1, and VR™(S%;1/3) ~ 0B, = S3.
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Main Theorem (proof)

VR™(S';1/3) 24 R4\ (G} £ 9B, & VR™(S1;1/3)
Thus, to (poSMy) =~ idygm (g1, and VR™(S%;1/3) ~ 0B, = S3.

e (Geometric proof of the homotopy type of a Vietoris—Rips

metric thickening.

e Conjecture: for £ m <r< 2k+1’
Dok © SMoy VRg(Sl; r) — OBay

is a homotopy equivalence.
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