Vietoris–Rips Thickenings of the Circle and Centrally–Symmetric Orbitopes

Advisor: Dr. Henry Adams Committee: Dr. Amit Patel, Dr. Gloria Luong

Johnathan Bush Master's thesis defense – October 19th, 2018

Background

Definition

Definition

Definition

Definition

Definition

Definition

In applications of persistent homology, we consider Vietoris–Rips complexes at *all* scale parameters.

Let M be a compact Riemannian manifold and r > 0 be sufficiently small. Then, $VR(M; r) \simeq M$. [4]

Let M be a compact Riemannian manifold and r > 0 be sufficiently small. Then, $VR(M; r) \simeq M$. [4]

• Downsides of the proof:

Let M be a compact Riemannian manifold and r > 0 be sufficiently small. Then, $VR(M; r) \simeq M$. [4]

- Downsides of the proof:
 - ♦ Hausmann's map $VR(M; r) \rightarrow M$ depends upon a total order of all points in M.
 - ♦ VR(M;r) does not inherit the metric of M. In particular, the inclusion $M \hookrightarrow VR(M;r)$ is not continuous.

Let M be a closed Riemannian manifold and X a metric space δ -close to M in the Gromov-Hausdorff distance. Then, $VR(X;r) \simeq M$ for r > 0 sufficiently small. [5]

Let M be a closed Riemannian manifold and X a metric space δ -close to M in the Gromov-Hausdorff distance. Then, $\operatorname{VR}(X;r) \simeq M$ for r > 0 sufficiently small. [5]

• Generalization of Hausmann's theorem. Applies, in particular, to samplings $X \subseteq M$.

Let M be a closed Riemannian manifold and X a metric space δ -close to M in the Gromov-Hausdorff distance. Then, $\operatorname{VR}(X;r) \simeq M$ for r > 0 sufficiently small. [5]

- Generalization of Hausmann's theorem. Applies, in particular, to samplings $X \subseteq M$.
- Again, the value of "sufficiently small" r > 0 depends on the curvature of M.
- The value of δ depends on r.

Let M be a closed Riemannian manifold and X a metric space δ -close to M in the Gromov-Hausdorff distance. Then, $\operatorname{VR}(X;r) \simeq M$ for r > 0 sufficiently small. [5]

- Generalization of Hausmann's theorem. Applies, in particular, to samplings $X \subseteq M$.
- Again, the value of "sufficiently small" r > 0 depends on the curvature of M.
- The value of δ depends on r.
- Same downsides as Hausmann's proof.

VR(X;r) for large scale parameters

Theorem (Adamszek, Adams)

Let S^1 be the circle of unit circumference. Then,

VR(X;r) for large scale parameters

Theorem (Adamszek, Adams)

Let S^1 be the circle of unit circumference. Then,

VR(X;r) for large scale parameters

Theorem (Adamszek, Adams)

Let S^1 be the circle of unit circumference. Then,

$$\operatorname{VR}(S^1; r) \simeq \begin{cases} S^{2\ell+1} & \text{if } \frac{\ell}{2\ell+1} < r < \frac{\ell+1}{2\ell+3} \\ \bigvee^{\infty} S^{2\ell} & \text{if } r = \frac{\ell}{2\ell+1} \end{cases} \quad \text{for } \ell \in \mathbb{N}.$$
 [1]

$$r = \frac{1}{3} \tag{} r = \frac{2}{5} \tag{} r = \frac{3}{7} \tag{}$$

Metric Vietoris–Rips Thickenings

Definition (Adamaszek, Adams, Frick)

For a metric space X and $r \ge 0$, the Vietoris–Rips thickening $\operatorname{VR}^m(X; r)$ is the set

$$\operatorname{VR}^{m}(X;r) = \left\{ \sum_{i=0}^{k} \lambda_{i} x_{i} \mid k \in \mathbb{N}, \ x_{i} \in X, \text{ and } \operatorname{diam}(\{x_{0}, \dots, x_{k}\}) \leq r \right\}$$

equipped with the 1-Wasserstein metric. [2]

- An analogue of Hausmann's theorem holds for the Vietoris–Rips metric thickening $VR^m(M; r)$.
- Notably, this theorem admits a nicer proof:
 - ♦ The homotopy equivalence $VR^m(M; r) \to M$ is canonically defined.
 - ♦ The inclusion $M \hookrightarrow VR^m(M; r)$ is continuous.

Results

Theorem (Adams, B.)

Let S^1 be the circle of unit circumference, and let $r = \frac{1}{3}$. Then, the Vietoris-Rips metric thickening thickening $VR^m(S^1; r)$ is homotopy equivalent to S^3 .

Theorem (Adams, B.)

Let S^1 be the circle of unit circumference, and let $r = \frac{1}{3}$. Then, the Vietoris-Rips metric thickening thickening $VR^m(S^1; r)$ is homotopy equivalent to S^3 .

- 1/3 is the side length of an inscribed equilateral triangle.
- Recall that $\mathrm{VR}(S^1; \frac{1}{3}) \simeq \bigvee^\infty S^2$

$$\operatorname{VR}^m(S^1; 1/3) \xrightarrow{\operatorname{SM}_4} \mathbb{R}^4 \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_4 \xrightarrow{\iota} \operatorname{VR}^m(S^1; 1/3)$$

$$\operatorname{VR}^m(S^1; 1/3) \xrightarrow{\operatorname{SM}_4} \mathbb{R}^4 \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_4 \xrightarrow{\iota} \operatorname{VR}^m(S^1; 1/3)$$

where $SM_4: S^1 \to \mathbb{R}^4$ is defined by

 $SM_4(\theta) = (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta)),$

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

where $SM_4: S^1 \to \mathbb{R}^4$ is defined by

$$SM_4(\theta) = (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta)),$$

p is radial projection,

$$\operatorname{VR}^m(S^1; 1/3) \xrightarrow{\operatorname{SM}_4} \mathbb{R}^4 \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_4 \xrightarrow{\iota} \operatorname{VR}^m(S^1; 1/3)$$

where $SM_4: S^1 \to \mathbb{R}^4$ is defined by

$$SM_4(\theta) = (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta)),$$

p is radial projection, $\mathcal{B}_4 = \operatorname{conv}(\operatorname{SM}_4(S^1)) \subseteq \mathbb{R}^4$ is the (second) Barvinok–Novik orbitope,

$$\operatorname{VR}^m(S^1; 1/3) \xrightarrow{\operatorname{SM}_4} \mathbb{R}^4 \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_4 \xrightarrow{\iota} \operatorname{VR}^m(S^1; 1/3)$$

where $SM_4: S^1 \to \mathbb{R}^4$ is defined by

$$SM_4(\theta) = (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta)),$$

p is radial projection, $\mathcal{B}_4 = \operatorname{conv}(\operatorname{SM}_4(S^1)) \subseteq \mathbb{R}^4$ is the (second) Barvinok–Novik orbitope, and ι is inclusion.

Barvinok–Novik Orbitopes

Fix $k \geq 1$ and define the symmetric moment curve

 $\mathrm{SM}_{2k} \colon \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}^{2k}$

 $\theta \mapsto (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta)).$

Barvinok–Novik Orbitopes

Fix $k \ge 1$ and define the symmetric moment curve $\operatorname{SM}_{2k} \colon \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}^{2k}$ $\theta \mapsto (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta)).$

Define the k-th Barvinok–Novik orbitope by

 $\mathcal{B}_{2k} = \operatorname{conv}(\mathrm{SM}_{2k}(S^1)).$

Barvinok–Novik Orbitopes

Fix $k \ge 1$ and define the symmetric moment curve $\operatorname{SM}_{2k} \colon \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}^{2k}$ $\theta \mapsto (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta)).$

Define the *k*-th Barvinok–Novik orbitope by $\mathcal{B}_{2k} = \operatorname{conv}(\operatorname{SM}_{2k}(S^1)).$

The precise facial structure of \mathcal{B}_{2k} is unknown for k > 2.

Our proof technique involves the faces of \mathcal{B}_4 .

Theorem (4.1 of [3])

The proper faces and subfaces of \mathcal{B}_4 are

- 0-dimensional faces, $SM_4(t)$ for $t \in S^1$,
- 1-dimensional faces, conv(SM₄({t₁, t₂})) where t₁ ≠ t₂ are the edges of an arc of S¹ of length less than or equal to ¹/₃,
- 2-dimensional faces, $\operatorname{conv}(\operatorname{SM}_4(\{t, t+\frac{1}{3}, t+\frac{2}{3}\}))$ for $t \in S^1$.

Theorem (4.1 of [3])

The proper faces and subfaces of \mathcal{B}_4 are

- 0-dimensional faces, $SM_4(t)$ for $t \in S^1$,
- 1-dimensional faces, conv(SM₄({t₁, t₂})) where t₁ ≠ t₂ are the edges of an arc of S¹ of length less than or equal to ¹/₃,
- 2-dimensional faces, $\operatorname{conv}(\operatorname{SM}_4(\{t, t+\frac{1}{3}, t+\frac{2}{3}\}))$ for $t \in S^1$.

By contrast, the simplicies of $VR^m(S^1; \frac{1}{3})$ are

- Vertices, $t \in S^1$,
- All simplices of the form conv({t₁,...,t_l}), where t₁,...,t_m belong to an arc of S¹ of length less than or equal to ¹/₃,
- 2-simplices, $\operatorname{conv}(\{t, t+\frac{1}{3}, t+\frac{2}{3}\})$ for $t \in S^1$.

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

(1) Prove ι is well-defined and continuous.

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

- (1) Prove ι is well-defined and continuous.
- (2) Extend SM₄ to $VR^m(S^1; r)$.

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

- (1) Prove ι is well-defined and continuous.
- (2) Extend SM₄ to $VR^m(S^1; r)$.
- (3) Prove $SM_4(VR^m(S^1; r))$ misses the origin.

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

- (1) Prove ι is well-defined and continuous.
- (2) Extend SM₄ to $VR^m(S^1; r)$.
- (3) Prove $SM_4(VR^m(S^1; r))$ misses the origin.
- (4) Prove $p \circ SM_4$ and ι are homotopy inverses.

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

- (1) Prove ι is well-defined and continuous.
- (2) Extend SM₄ to $VR^m(S^1; r)$.
- (3) Prove $SM_4(VR^m(S^1; r))$ misses the origin.
- (4) Prove $p \circ SM_4$ and ι are homotopy inverses.

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

- (1) Prove ι is well-defined and continuous.
- (2) Extend SM₄ to $VR^m(S^1; r)$.
- (3) Prove $SM_4(VR^m(S^1; r))$ misses the origin.
- (4) Prove $p \circ SM_4$ and ι are homotopy inverses.

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

- (1) Prove ι is well-defined and continuous.
- (2) Extend SM₄ to VR^{*m*}(S¹; *r*). $\sum_i \lambda_i \theta_i \mapsto \sum_i \lambda_i SM_{2k}(\theta_i)$
- (3) Prove $SM_4(VR^m(S^1; r))$ misses the origin.
- (4) Prove $p \circ SM_4$ and ι are homotopy inverses.

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

- (1) Prove ι is well-defined and continuous.
- (2) Extend SM₄ to VR^{*m*}(S¹; *r*). $\sum_i \lambda_i \theta_i \mapsto \sum_i \lambda_i SM_{2k}(\theta_i)$
- (3) Prove $SM_4(VR^m(S^1; r))$ misses the origin.
- (4) Prove $p \circ SM_4$ and ι are homotopy inverses.

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

- (1) Prove ι is well-defined and continuous.
- (2) Extend SM₄ to VR^{*m*}(S¹; *r*). $\sum_i \lambda_i \theta_i \mapsto \sum_i \lambda_i SM_{2k}(\theta_i)$
- (3) Prove $SM_4(VR^m(S^1; r))$ misses the origin.

(4) Prove $p \circ SM_4$ and ι are homotopy inverses.

- $(p \circ SM_4) \circ \iota = id_{\partial \mathcal{B}_4}.$
- To show $\iota \circ (p \circ SM_4) \simeq id_{VR^m(S^1;r)}$ we use a linear homotopy H.

- $(p \circ SM_4) \circ \iota = id_{\partial \mathcal{B}_4}.$
- To show $\iota \circ (p \circ SM_4) \simeq id_{VR^m(S^1;r)}$ we use a linear homotopy H.
- *H* is well-defined only if $\iota \circ (p \circ SM_4)$ does not "increase diameter" too much.

• In general, this "non-diameter increasing" property of p depends on the facial structure of \mathcal{B}_{2k} .

- In general, this "non-diameter increasing" property of p depends on the facial structure of \mathcal{B}_{2k} .
- We use Farkas' Lemma to exclude certain cases.

- In general, this "non-diameter increasing" property of p depends on the facial structure of \mathcal{B}_{2k} .
- We use Farkas' Lemma to exclude certain cases.
- Continuity of H follows from the fact that $VR^m(S^1; r)$ is a metric r-thickening.

$$\operatorname{VR}^{m}(S^{1}; 1/3) \xrightarrow{\operatorname{SM}_{4}} \mathbb{R}^{4} \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_{4} \xrightarrow{\iota} \operatorname{VR}^{m}(S^{1}; 1/3)$$

Thus, $\iota \circ (p \circ SM_4) \simeq id_{VR^m(S^1;r)}$ and $VR^m(S^1;1/3) \simeq \partial \mathcal{B}_4 \cong S^3$.

$$\operatorname{VR}^m(S^1; 1/3) \xrightarrow{\operatorname{SM}_4} \mathbb{R}^4 \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_4 \xrightarrow{\iota} \operatorname{VR}^m(S^1; 1/3)$$

Thus, $\iota \circ (p \circ SM_4) \simeq id_{VR^m(S^1;r)}$ and $VR^m(S^1;1/3) \simeq \partial \mathcal{B}_4 \cong S^3$.

• *Geometric* proof of the homotopy type of a Vietoris–Rips metric thickening.

$$\operatorname{VR}^m(S^1; 1/3) \xrightarrow{\operatorname{SM}_4} \mathbb{R}^4 \setminus \{\vec{0}\} \xrightarrow{p} \partial \mathcal{B}_4 \xrightarrow{\iota} \operatorname{VR}^m(S^1; 1/3)$$

Thus, $\iota \circ (p \circ SM_4) \simeq id_{VR^m(S^1;r)}$ and $VR^m(S^1;1/3) \simeq \partial \mathcal{B}_4 \cong S^3$.

• *Geometric* proof of the homotopy type of a Vietoris–Rips metric thickening.

• Conjecture: for
$$\frac{k-1}{2k-1} \le r < \frac{k}{2k+1}$$
,

 $p_{2k} \circ \mathrm{SM}_{2k} \colon \mathrm{VR}^m_{\leq}(S^1; r) \to \partial \mathcal{B}_{2k}$

is a homotopy equivalence.

- M. ADAMASZEK AND H. ADAMS, The vietoris-rips complexes of a circle, Pacific Journal of Mathematics, 290 (2017), pp. 1–40.
- [2] M. ADAMASZEK, H. ADAMS, AND F. FRICK, Metric reconstruction via optimal transport, To appear in the SIAM Journal on Applied Algebra and Geometry, (2018).
- [3] A. BARVINOK AND I. NOVIK, A centrally symmetric version of the cyclic polytope, Discrete & Computational Geometry, 39 (2008), pp. 76–99.
- J.-C. HAUSMANN, On the vietoris-rips complexes and a cohomology theory for metric spaces, Ann. Math. Studies, 138 (1995), pp. 175–188.
- J. LATSCHEV, Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold, Archiv der Mathematik, 77 (2001), pp. 522-528.

Thank you!