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ABSTRACT

VIETORIS–RIPS THICKENINGS OF THE CIRCLE AND CENTRALLY–SYMMETRIC

ORBITOPES

Given a metric space X and a scale parameter r > 0, the associated Vietoris–Rips simplicial

complex, denoted VR(X; r), has as its simplices all finite subsets of X of diameter at most r. In

the case that X is a Riemannian manifold, a result of Jean–Claude Hausmann states that the homo-

topy type of X is achieved by VR(X; r) for sufficiently small r. However, this approach does not

recover metric information about X , and this deficiency motivates the consideration of a related

construction, called the Vietoris–Rips thickening of X , defined via the theory of optimal transport.

This construction, which does preserve metric information about X , additionally satisfies an ana-

logue of Hausmann’s theorem for sufficiently small r. On the other hand, one often encounters

such thickenings given instead by increasingly large values of r in applications of persistent ho-

mology, and much less is known about the topological behavior of these constructions. A recently

established result due to Adams and Adamaszek provides the homotopy type of the Vietoris–Rips

complex of the circle for arbitrarily large values of r. Presently, we determine the homotopy type

of the Vietoris–Rips thickening of the circle for a range of values of r. Our primary tools will be

an embedding of the metric thickening into Euclidean space via a symmetric moment curve, and

the facial structure of the related Barvinok–Novik orbitope.
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Chapter 1

Introduction

Given a metric space M , let X denote a set of points sampled from M , and consider the

induced metric on X given by restriction. In general, it is impossible to recover the homotopy

type of M from this data alone, even if X is (for example) ε-dense in M . However, Hausmann

proved in [14] that for a compact Riemannian manifold M and a sufficiently small scale r > 0,

the Vietoris–Rips simplicial complex VR(M ; r) achieves the homotopy type of M . A result due

to Latschev [16] moreover provides conditions under which it is possible to recover the homotopy

type of M from the sampling X , specifically, when M is a closed Riemannian manifold and X

is sufficiently close to M in the Gromov-Hausdorff distance. Hence, given a sampling X ⊆ M

satisfying this condition, Latschev proved that VR(X; r) achieves the homotopy type of M for

sufficiently small values of r.

Unfortunately, in the case that VR(X; r) is not locally finite, it is impossible to equip VR(X; r)

with a metric without changing the homeomorphism type, and it is therefore impossible to recover

metric information about M . In particular, the topology on VR(X; r) is such that the natural in-

clusion X ↪→ VR(X; r) is not continuous unless X is discrete. An attempt to remedy this issue is

given by Adamaszek, Adams, and Frick in [2], in which the authors construct a family of metric

spaces VRm(X; r), called Vietoris–Rips metric thickenings of X . Critically, metric information

about X is described in VRm(X; r) via the theory of optimal transport, i.e., the 1-Wasserstein

metric, which extends the original metric on X . As the notation suggests, this construction shares

similarities with the Vietoris–Rips simplicial complex VR(X; r). In particular, we may take ab-

stract convex combinations of points in X of diameter at most r, just as in VR(X; r). Further,

we now have a continuous inclusion X ↪→ VRm(X; r) for all metric spaces X and r ≥ 0, and

there exists an analogue of Hausmann’s theorem regarding the recovery of the homotopy type of

the underlying manifold for sufficiently small r > 0 [2].
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Recently, Vietoris–Rips complexes (and the related Čech simplicial complexes) have been used

in topological data analysis and persistent homology; specifically, they allow for a filtration of

simplicial complexes associated to a finite collection or sampling of data. From such a filtered

simplicial complex, one may apply homology to obtain a persistence module, which encodes some

topological properties of the point cloud. Because the point clouds under consideration often

naturally arise as samplings of some underlying (and typically unknown) metric space, Latschev’s

theorem provides an important connection between the topological invariants computed through

persistent homology and the underlying space from which the data is sampled. However, given

such a sampling of data, the particular scale parameters r at which Latshev’s theorem applies are

often unknown, and this leads to a difficult and related problem: predicting the behavior of the

homotopy type of VR(X; r) achieved for arbitrary (and in particular large) values of r. Along

these lines, Adamaszek and Adams determined the homotopy type of VR(S; r) for all values of

r [1]. These techniques additionally allow computation of the homotopy types of Vietoris–Rips

complex of the n-dimensional torus equipped with the supremum metric (for all values of r) [1,

Proposition 10.2], and for ellipses of small eccentricity [3] (for particular values of r depending on

the eccentricity of the ellipse).

In light of the aforementioned theorems of Hausmann, Latschev, and Adamsezek et al., we con-

sider the Vietoris–Rips metric thickening of the circle VRm
≤ (S1; r), and provide a geometric proof

of the homotopy type of this construction for r = 2π
3

, the side-length of an inscribed equilateral

triangle. To obtain this result, we first define a continuous embedding of VRm(S1; r) into R4 via a

symmetric moment curve. Then, we relate this embedding to the facial structure of the Barvinok–

Novik orbitope B4 [6]. Finally, we obtain the homotopy equivalence VRm
≤ (S1; r) ' ∂B4

∼= S3 via

a linear homotopy. To our knowledge, this is the first approach to determine the homotopy type

of a Vietoris–Rips thickening by mapping the underlying metric space into a higher-dimensional

Euclidean space. This technique is analogous to the “kernel trick” of machine learning, in which

data is mapped into a higher dimensional space to illuminate the underlying structure of the data.
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Chapter 2

Preliminaries

In this chapter we review background preliminaries on topology, metric spaces, simplicial com-

plexes, metric thickenings, convex geometry, moment curves, and polytopes.

2.1 Basic Topology
We refer the reader to [4, 13] for further background on topology.

Given a set X , let P(X) denote the power set of X .

Definition 2.1.1. Given a set X , a topology on X is a collection of subsets O ⊆ P(X) satisfying

the following:

1. ∅ ∈ O and X ∈ O.

2. Given a finite collection U1, . . . , Un ∈ O, the intersection
⋂n
i=1 Ui belongs to O.

3. Given an arbitrary index set A and a collection {Uα ∈ O | α ∈ A}, the union
⋃
α∈A Uα

belongs to O.

Elements of O are called open subsets of X . A topological space is an ordered pair (X,O) such

that O is a topology on X . We may simply write X to denote a topological space when the

topology is implicitly clear.

Definition 2.1.2. Given any topological space (X,O) and subset Y ⊆ X , define the subspace

topology induced by Y to be O′ ⊆ P(Y ) such that V ∈ O′ if and only if V = U ∩ Y for some

U ∈ O.

Fact 2.1.3. (Y,O′), as defined above, is a topological space.

A notion that will be required later (see Section 2.4) is that of compactness.
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Definition 2.1.4. Let (X,O) denote a topological space. We say X is compact if, given any

collection C ⊆ O with

X =
⋃
x∈C

x,

there exists a finite subset F ⊆ C such that

X =
⋃
x∈F

x.

A subset Y ⊆ X is said to be compact if it is compact as a subspace, i.e., if (Y,O′) is compact.

Sometimes, we may define a topology on a set X given only a particular collection of subsets

of X .

Definition 2.1.5. Given a set X and a collection B ⊆ P(X), we say B is a basis or base for X if

the following hold:

1. X is contained in the union of all elements of B.

2. Given B1, B2 ∈ B and x ∈ B1 ∩B2, there exists some B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2.

From such a basis B of X , we define the topology induced by B, denoted OB, to be the collection

of all possible unions (including the empty union) of elements of B.

Fact 2.1.6. Given a set X with a basis B, (X,OB) is a topological space.

Definition 2.1.7. Let {(Xi,Oi) | 1 ≤ i ≤ n} denote a collection of topological spaces. Define the

topological product of these spaces to be the set X1 ×X2 × · · · ×Xn =
∏n

i=1Xi equipped with

the topology generated by the basis

B =

{
n∏
i=1

Ui

∣∣∣∣Ui ∈ Oi
}
.

Note that we will require the definition of a topological product to define the notion of homo-

topy equivalence.
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For a set map f : X → Y and subset U ⊆ Y , let f−1(U) = {x ∈ X | f(x) ∈ U} denote the

preimage of U .

Definition 2.1.8. Let (X1,O1) and (X2,O2) be topological spaces. A map f : X1 → X2 is said to

be continuous if f−1(U) ∈ O1 for all U ∈ O2.

Definition 2.1.9. Let (X,O) denote a topological space. The identity function on X , denoted idX ,

is the unique and continuous map idX : X → X such that idX(x) = x for all x ∈ X .

Continuous maps between topological spaces allow us to define two important notions of topo-

logical equivalence: homeomorphism and homotopy equivalence.

Definition 2.1.10. Let (X1,O1) and (X2,O2) be topological spaces. We say X1 and X2 are home-

omorphic, denoted X1
∼= X2, if there exist continuous maps f : X1 → X2 and g : X2 → X1 such

that g ◦ f = idX1 and f ◦ g = idX2 .

Fact 2.1.11. The spaces X1 and X2 are homeomorphic if and only if there exists a continuous,

bijective map f : X1 → X2 with a continuous inverse.

In order to define homotopy equivalence, we will need an intermediate definition:

Definition 2.1.12. We say two continuous maps f, g : X → Y are homotopic, written f ' g, if

there exists a continuous map H : X × [0, 1] → Y such that H(x, 0) = f(x) and H(x, 1) = g(x)

for all x ∈ X . Such a map H is called a homotopy.

Definition 2.1.13. Let (X1,O1) and (X2,O2) be topological spaces. We say X1 and X2 are homo-

topy equivalent, denoted X1 ' X2, if there exist continuous maps f : X1 → X2 and g : X2 → X1

such that g ◦ f ' idX1 and f ◦ g ' idX2 .

2.2 Metric Spaces and the Euclidean Metric
Metric spaces are topological spaces which are furthermore equipped with the notion of a

distance. Let R+ = {t ∈ R | t ≥ 0}.
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Definition 2.2.1. Given a set M , a metric on M is any function d : M ×M → R+ such that the

following hold for all x, y, z ∈M :

1. d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

A metric space is an ordered pair (M,d) such that d is a metric on M .

Notably, any metric space (M,d) may be construed as a topological space in the following

way: given z ∈ M and 0 < r ∈ R, let B(z; r) = {z ∈ M | d(z, x) < r}, be the open ball of

radius r centered at z. Let B = {B(z; r) | z ∈ M, 0 < r ∈ R} ⊆ P(M) denote the collection of

all such balls. One may check that B forms a basis for M ; hence, (M,OB) is a topological space.

Definition 2.2.2. Given a set of points S ⊆M of a metric space (M,d), define the diameter of S,

denoted diam(S), by

diam(S) =


sup
x,y∈S

d(x, y) if sup
x,y∈S

d(x, y) ∈ R

∞ otherwise.

Definition 2.2.3. Let (M,d) be a metric space, and let S ⊆ M . Let d′ = d|S×S denote the

restriction of d to S × S ⊆ X ×X . Then, the metric subspace of M induced by restriction is the

tuple (S, d′). One may check that (S, d′) is, indeed, a metric space.

Definition 2.2.4. Let (X, dX) and (Z, d) be metric spaces. Following [12] and [2], we say Z is a

metric thickening of X if:

1. X ⊆ Z, and

2. dX(x, y) = d(x, y) for all (x, y) ∈ X ×X .
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If furthermore there exists some r ≥ 0 such that for every z ∈ Z we have d(z, x) ≤ r for some

x ∈ X , then we additionally say that Z is a metric r-thickening of X .

An important example of a metric thickening is given in Section 2.5.

Let Rn denote the n-fold Cartesian product of the set of real numbers. Under coordinate-wise

addition and scalar multiplication, recall that Rn has the structure of a vector space. Define the

standard inner product 〈·, ·〉 on Rn by

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑
i=1

xiyi,

and define the norm ||·|| of an element x ∈ Rn by ||x|| = 〈x, x〉1/2. Finally, define d : Rn×Rn → R

by d(x, y) = ||y − x||.

Definition 2.2.5. The function d above is a metric on Rn, called the Euclidean metric, and we will

refer to the metric space (Rn, d) as (n-dimensional) Euclidean space.

2.3 Simplicial Complexes
Simplicial complexes are a combinatorial way to define a topological space. Given a set X , let

finP(X) denote the collection of finite subsets of X .

Definition 2.3.1. Let X be a set. We say a collection ∅ 6= K ⊆ finP(X) forms an abstract

simplicial complex if, for every element σ ∈ K and nonempty subset σ′ ⊆ σ, the subset σ′ also

belongs to K. Elements σ ∈ K are called faces of the simplicial complex K, and we define the

vertex set of K to be the union of all faces of K. Finally, singleton elements of the vertex set of K

are called vertices of K.

Definition 2.3.2. A subset L ⊆ K of an abstract simplicial complex K is called a subcomplex of

K if L is itself an abstract simplicial complex. In the case that a subcomplex L ⊆ K is a face of

K, L is called a simplex of K.

To an abstract simplicial complex, we may associate a topological space as follows.
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Definition 2.3.3. Let K denote an abstract simplicial complex, let V denote its set of vertices, and

let

|K| =

{
f : V → [0, 1]

∣∣∣∣ supp(f) ∈ K,
∑
v∈V

f(v) = 1

}
.

Here, supp(f) = {v ∈ V | f(v) 6= 0} is the support of f . Next, give [0, 1]V the topology induced

as the direct limit of [0, 1]S as S varies over all finite subsets of V , and equip |K| with the induced

subset topology [20]. The space |K| with this induced topology is called the geometric realization

of K.

Given any metric space X and scale parameter r ≥ 0, we may define a particular simplicial

complex with vertex set X .

Definition 2.3.4. Let X be a metric space and fix r ≥ 0. The Vietoris–Rips simplicial complex of

X with scale parameter r, denoted VR≤(X; r) (resp. VR<(X; r)), has X as its vertex set and a

face σ ⊆ X whenever diam(σ) ≤ r (resp. diam(σ) < r).

A related construction, called the Čech simplicial complex of X with scale parameter r, de-

noted Č(X; r), has X as a vertex set and a face σ ⊆ X whenever

⋂
x∈σ

B(x; r) 6= ∅.

2.4 Wasserstein Metric and Optimal Transport
The Wasserstein or optimal transport metric gives a notion of distance between probability

measures defined on a metric space.

Definition 2.4.1. Let X be a set. A subset Σ ⊆ P(X) is called a σ-algebra on X if it satisfies the

following:

1. X ∈ Σ.

2. Given A ∈ Σ, the absolute complement X \ A belongs to Σ.

3. Given a countable collection {Ai}∞i=1 of elements of Σ, the union ∪iAi belongs to Σ.

8



Note that the last two properties additionally imply that Σ is closed under finite intersections.

Definition 2.4.2. Let X be a set and let Σ be a σ-algebra on X . A function µ : Σ→ R+ ∪ {∞} is

called a measure if it satisfies the following:

1. µ(∅) = 0.

2. If {Ai}∞i=1 is a countable collection of pairwise-disjoint elements of Σ, then

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

Definition 2.4.3. Given a nonempty set X , a σ-algebra Σ on X , and a measure µ on Σ, the triple

(X, σ, µ) is called a measure space. If, in addition, µ(X) = 1, we call (X, σ, µ) a probability

space.

Definition 2.4.4. Let X and Y be sets equipped with σ-algebras ΣX and ΣY , respectively. A

function f : X → Y is called measurable if, for all A ∈ ΣY , we have f−1(A) ∈ ΣX .

In particular, in the case that Y = R, the function f is measurable if ΣX contains the preimage

of all intervals of the form (t,∞), i.e., if {x | f(x) > t} ∈ ΣX for all t ∈ R.

Given a measure space (X, σ, µ) and a real-valued measurable function f on X , one may

define the Lebesgue integral
∫
X
f(x)dµ(x) =

∫
X
f(x)dµ, which is an element of the extended real

numbers R ∪ {±∞}. The definition of such an integral is lengthy and beyond the scope of this

exposition. For a proper treatment of Lebesgue integration, see [21].

Definition 2.4.5. Let (M,d) be a metric space, let B denote the collection of open balls of M , and

let (M,OB) denote the topological space induced by B (see Section 2.2). The Borel σ-algebra

over (M,OB), written B(M), is defined to be the intersection of all σ-algebras on M containing

OB. Equivalently, a subset of M belongs to B(M) if and only if it can be obtained through taking

countable unions, countable intersections, and absolute complements of open sets of M . Elements

of B(M) are called Borel sets of M .

9



Definition 2.4.6. A measure µ defined on a Borel σ-algebra B(M) is called inner regular if

µ(B) = sup{µ(K) | B ⊇ K compact} for all B ∈ B(M). µ is called locally-finite if, for all

x ∈ X , there exists a neighborhood x ∈ U ∈ B(M) such that µ(U) < ∞. Finally, µ is called a

Radon measure if it is both inner regular and locally-finite.

To define the 1-Wasserstein metric, we first introduce some notation. The following is taken

from [2]. Let (M,d) be a metric space. Let P(M) denote the set of Radon probability measures

µ on M such that for some (hence, all) x0 ∈ M , we have
∫
M
f(x, x0)dµ(x) < ∞. Next, define a

metric on M ×M by setting the distance between (x1, x2), (x′1, x
′
2) ∈ M ×M to be d(x1, x

′
1) +

d(x2, x
′
2). Given µ, ν ∈ P(M), let Π(µ, ν) ⊆ P(M ×M) denote the set of Radon probability

measures on M × M such that µ(A) = π(A × M) and ν(A) = π(M × A) for all Borel sets

A ⊆M . Note that π ∈ Π(µ, ν) is a joint probability measure with marginals µ and ν.

Definition 2.4.7. Let (M,d) be a metric space. The 1-Wasserstein metric on P(M) is defined by

dP(M)(µ, ν) = inf
π∈Π(µ,ν)

∫
M×M

d(x, y) dπ

Fact 2.4.8.
(
P(M), dP(M)

)
, as defined above, is a metric space.

Given x ∈ M , let δx ∈ P(M) denote the Dirac probability measure with mass one at x. One

may check that the map x 7→ δx is an isometry onto its image; hence, dP(M) extends the metric

d : M ×M → R to P(M)×P(M)→ R, and we therefore write dP(M) = d.

2.5 Vietoris–Rips Metric Thickenings
The material in this section is taken from [2]. Given a metric space M , let x0, . . . , xk ∈ M .

Write µ =
∑k

i=0 λiδxi , where λi > 0 and
∑k

i=0 λi = 1. Then, for all y ∈ M , we have∫
M
d(x, y)dµ =

∑k
i=0 λid(xi, y) < ∞. This fact, together with elementary properties of prob-

ability spaces, proves:

Fact 2.5.1. The measure µ, as defined above, belongs to P(M).
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Therefore, we may define the following:

Definition 2.5.2. (Definition 3.1 of [2]) Let (M,d) be a metric space and r ≥ 0. The Vietoris–Rips

thickening is the following set,

VRm
≤ (M ; r) =

{
k∑
i=0

λiδxi

∣∣∣∣ diam({x0, . . . , xk} ≤ r

}
or

VRm
< (M ; r) =

{
k∑
i=0

λiδxi

∣∣∣∣ diam({x0, . . . , xk} < r

}
,

equipped with the restriction of the 1-Wasserstein metric. By convention, VRm
< (X; r) = ∅ and

VRm
≤ (X; r) = (X, d).

Contrary to the situation for the usual Vietoris–Rips complex, the embeddingX → VRm
≤ (M ; r)

into the Vietoris–Rips metric thickening given by x 7→ δx is continuous (an isometry, in fact).

Therefore, we naturally identify points
∑k

i=0 λiδxi with
∑k

i=0 λixi and consider X to be a subset

of VRm
≤ (M ; r). In fact, more is true:

Lemma 2.5.3. VRm
≤ (M ; r) is an r-thickening of X .

Proof. We follow the proof of Lemma 3.5 of [2]. It is clear that the 1-Wasserstein metric extends

the metric on X . Additionally, given
∑

i λixi ∈ VRm
≤ (M ; r), note

d

(∑
i

λixi, X

)
≤ d

(∑
i

λixi, x0

)
=
∑
i

λid(xi, x0) ≤ r
∑
i

λi = r.

A useful reinterpretation of the 1-Wasserstein metric on VRm(X; r) is as follows: given x, x′ ∈

VRm(X; r) with x =
∑k

i=0 λixi and x′ =
∑k′

j=0 λ
′
jx
′
j , define a matching p between x and x′ to be

any collection of non-negative real numbers {pi,j}i,j such that
∑k′

j=0 pi,j = λi and
∑k

i=0 pi,j = λ′j .

Then, define the cost of the matching p to be cost(p) =
∑

i,j pi,j d̃(xi, x
′
j), where d̃ denotes the

original metric on X .
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Fact 2.5.4. The 1-Wasserstein metric d on VRm(X; r) satisfies

d(x, x′) = inf {cost(p) | p is a matching between x and x′}

for all x, x′ ∈ VRm(X; r). In general, this is an equivalent definition to Definition 2.4.7 whenever

x and x′ have finite support.

2.6 Convex Geometry
Convex geometry is the study of convex sets, especially polytopes and their facial structures.

We say a subset X ⊆ Rn is convex if {λx+ (1− λ)y | 0 ≤ λ ≤ 1} ⊆ X for all x, y ∈ X . In other

words, X is convex if and only if the line segment joining any two points of X is contained in X .

Given an arbitrary subset Y ⊆ Rn, we may construct the set

Conv(Y ) =

{
k∑
i=1

λivi

∣∣∣∣ k ∈ N, vi ∈ Y, λi ≥ 0,
k∑
i=1

λi = 1

}
,

called the convex hull of Y . This set is the unique minimal convex set containing Y , i.e., given any

convex set Z with Y ⊆ Z, we have Conv(Y ) ⊆ Z.

Given two vectors v, p ∈ Rn with n nonzero, we define

H(v, p) = {x ∈ Rn | 〈v, x− p〉 = 0}

to be the hyperplane through p with normal vector v. One may show that the set Rn \ H(v, p) is

given by two disconnected regions, and we therefore define

H(v, p)+ = {x ∈ Rn | 〈v, x− p〉 ≥ 0} ,

called the upper halfspace of Rn determined by H(v, p). We say a hyperplane H(v, p) supports a

set X ⊆ Rn, and is a supporting hyperplane of X , if X ⊆ H(v, p)+.

12



Figure 2.1: The convex hull of the set of points {(cos(t), sin(t), cos(3t))} in R3.

Definition 2.6.1. Given a convex set Y ⊆ Rn, define a face F of Y to be any nonempty intersection

of Y with a supporting hyperplane of Y . In other words, F ⊆ Y is a face of Y if and only if there

exist v, p ∈ Rn with v nonzero such that

∅ 6= F = Y ∩H(v, p) and Y ⊆ H(v, p)+.

Under this definition, F is often called a proper face of Y .

Example 2.6.2. Figure 2.1 shows the convex hull of the image of the map f : R→ R3 defined by

t 7→ (cos(t), sin(t), cos(3t)). The proper faces of this convex set are

• the 0-dimensional faces (vertices) f(t) for t ∈ [0, 2π),

• the 1-dimensional faces (edges) Conv(f({t0 + ε, t0 − ε})), for t0 ∈ {0, π3 ,
2π
3
, . . . , 5π

3
}, and

0 < ε < 2π
6

, and

• the 2-dimensional faces (triangles) Conv(f({0, 2π
3
, 4π

3
})) and Conv(f({π

3
, 3π

3
, 5π

3
})).

13



2.7 Conventions Regarding S1

We define the circle of radius one S1 to be the image of the map S1 : R → R2 defined by

t 7→ (cos(t), sin(t)). Where the meaning is clear, we may write S1 for both the map and its image.

We do this for convenience, as we will often lift a point S1(t) on the circle to a point SM2k(t) on

the centrally symmetric moment curve, defined below. Because S1(t) = S1(t+2π), we identify S1

with R/2πZ, where the positive orientation on R corresponds to the counterclockwise orientation

on S1. Finally, we equip S1 with the geodesic metric (of total circumference 2π), though our

results also hold when S1 is instead equipped with the restriction of the Euclidean metric on R2.

Unless otherwise stated, we will always take a representative t ∈ S1 belonging to [0, 2π).

2.8 Moment Curves
In Rd, the moment curve is the algebraic curve x : R→ Rd defined by

x(t) = (t, t2, . . . , td).

Motivating the consideration of this function is the combinatorial structure associated to the convex

hull of n > d ≥ 2 distinct points on the curve. In this context, the d-dimensional cyclic polytope

with n vertices is defined by

Cd(n) = Conv {x(t1), . . . ,x(tn)} ,

for t1 < t2 < · · · < tn. It has been shown that the combinatorial structure of this polytope is

independent of the particular values of ti chosen [24]. Another notable combinatorial property

of this polytope is its d/2-neighborliness: every set of d/2 vertices or less defines a face of Cd.

Furthermore, the upper bound theorem states that among all polytopes in Rd with n vertices, the

cyclic polytopes achieve the maximal possible number of (d− 1)-dimensional faces [24].

A related construction is given by the so-called trigonometric moment curve M2k : R → R2k

defined by
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M2k(t) = (cos(t), sin(t), cos(2t), sin(2t), . . . , cos(kt), sin(kt)) ,

assuming d = 2k. The associated polytope given by the convex hull of n > d points on M2k has

been proven by Gale [11] to be combinatorially equivalent to Cd(n).
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Chapter 3

Related Work

3.1 Results of Hausmann and Latschev
Vietoris–Rips complexes are often used in applications of persistent homology due to their

ease of computation and accompanying theoretical guarantees. Given a finite dataset sampled

from an underlying unknown manifold M , what properties of M can be recovered from this finite

sampling? The use of Vietoris–Rips complexes in computational topology is justified largely by the

theorems of Hausmann and Latschev, which provide theoretical guarantees that one may recover

the homotopy type of M from the Vietoris–Rips complex on M or on a sampling of M .

Given a manifold M , one may expect VR(M ; r) to achieve the homotopy type of M for some

scale parameter r ≥ 0. The following theorem, due to Hausmann [14, Theorem 3.5], provides an

affirmative answer for sufficiently nice manifolds and r sufficiently small.

Theorem 3.1.1. Let M be a Riemannian manifold with positive injectivity radius and bounded

sectional curvature. Then VR(M ; ε) 'M for sufficiently small ε > 0 depending on the curvature

of M .

Hausmann’s proof of Theorem 3.1.1 depends on a noncanonical choice of a total ordering of

all the points of M . In addition, because VR(M ; r) is not metrizable if it is not locally finite, the

natural inclusion M ↪→ VR(M ; r) is not in general continuous.

Latschev provides the following generalization of Hausmann’s theorem in [16]:

Theorem 3.1.2. Given a closed Riemannian manifold M , for ε > 0 sufficiently small there exists

a δ > 0 such that VR(X; ε) 'M for all metric spaces X δ-close to M in the Gromov–Hausdorff

distance.

The precise value of ε for which the theorem applies again depends upon the curvature of the

manifold. Note that, in particular, Theorem 3.1.2 applies to finite samplings X ⊆ M sufficiently
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close to M in Gromov–Hausdorff distance—in practice, a finite set X is chosen to be the vertex

set of a Vietoris–Rips complex.

3.2 Metric Reconstruction via Optimal Transport
Our work determines the homotopy type of the Vietoris–Rips metric thickening of the circle

for particular scale parameters. The construction of this metric thickening was first introduced by

Adamaszek, Adams, and Frick in [2]. Here, we give a brief summary of their work.

3.2.1 Vietoris–Rips Metric Thickenings

LetX denote a metric space and let r > 0. The Vietoris–Rips simplicial complex, VR(X; r), is

a common construction used to associate a topological space to X , traditionally considered in the

case that X is a finite dataset or sampling of a manifold. However, in the case that X is not finite,

it is impossible to equip VR(X; r) with a metric without changing the homeomorphism type. This

means that VR(X; r) necessarily destroys the metric information about the underlying space X .

This motivates the consideration of the Vietoris–Rips metric thickening, VRm(X; r), as defined

above in Definition 2.5.2, which does preserve metric information about X .

The most essential properties of the Vietoris–Rips metric thickening are as follows:

Theorem 3.2.1 (Main Theorem of [2]). Let X be a metric space and r > 0.

1. Metric space VRm(X; r) is an r-thickening of X; in particular the Gromov–Hausdorff dis-

tance between X and VRm(X; r) is at most r.

2. If VR(X; r) is locally finite, then VRm(X; r) is homeomorphic to VR(X; r).

3. If X is discrete, then VRm(X; r) is homotopy equivalent to VR(X; r).

4. If M is a complete Riemannian manifold with curvature bounded from above and below,

then VRm(M ; r) is homotopy equivalent to M for r sufficiently small.

Item (4) is an analogue of Hausmann’s theorem (cf. [14]). Remarkably, the homotopy equiva-

lence VRm(M ; r)→M is canonically defined in this setting, in contrast to Hausmann’s noncanon-
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ical homotopy equivalence VR(M ; r) → M depending on a total ordering of all the points of M .

Additionally, the homotopy inverse is given by the now-continuous inclusion M ↪→ VRm(M ; r).

3.3 Vietoris–Rips complexes at large scale parameters
While the theorems of Hausmann, Latschev, and Adamsezek et al. describe conditions under

which the homotopy type of a manifold is recoverable from a Vietoris–Rips simplicial or metric

construction for sufficiently small r > 0, much less is known about the topological behavior of

these constructions for large values of r. Further, the precise value of “sufficiently small” r is often

unknown in practice, and large values of r commonly arise in applications of persistent homology.

An important result toward understanding the topology of such constructions for large values

of r is given by Adamaszek and Adams in [1], in which the authors determine the homotopy type

of VR(S; r) for all values of r. Below, we provide a summary of their results.

3.3.1 The Vietoris–Rips Complexes of a Circle

Let c denote the cardinality of the continuum. We have the following:

Theorem 3.3.1 (Theorems 7.4 and 7.6 of [1]). Let 0 < r < π. There are homotopy equivalences

VR<(S1; r) ' S2l+1 if 2πl
2l+1

< r ≤ 2π(l+1)
2l+3

,

VR≤(S1; r) '


S2l+1 if 2πl

2l+1
< r < 2π(l+1)

2l+3
,∨c S2l if r = 2πl

2l+1
,

where l = 0, 1, 2, . . ..

In particular, as r increases, VR(S1; r) obtains the homotopy type of odd-dimensional spheres

S1, S3, S5, . . . , until it becomes contractible. Additionally, at critical values of r, VR≤(S1; r)

obtains the homotopy type of an infinite wedge sum of an even-dimensional sphere.

To establish this result, the authors of [1] use cyclic graphs and an associated numerical in-

variant called the winding fraction to compute the homotopy type of a clique complex of a cyclic
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graph. These results are first applied to Vietoris–Rips complexes of samplings of points of S1, and

then extended to Vietoris–Rips complexes of arbitrary (potentially infinite) subsets of S1.

Notably, an analogous description of the homotopy types achieved by the the Čech complexes

Č≤(S1; r) and Č<(S1; r) is also determined in [1].

Theorem 3.3.1 is, to our knowledge, the first computation of the homotopy types of VR(M ; r)

for a non-contractible connected manifold M at arbitrary values of r.

Adamaszek, Adams, and Reddy [3] have also determined the homotopy type of the Vietoris–

Rips simplicial complex of an ellipse of sufficiently small eccentricity for a range of scale param-

eters r (bounded above by a constant depending on the eccentricity of the ellipse).

3.4 A Centrally Symmetric Version of the Cyclic Polytope
The combinatorial structure associated to polytopes of moment curves, and in particular, their

neighborliness, arises in the context of linear optimization. In specific, certain underdetermined

systems Ax = y given by combinatorial optimization problems often have solutions associated

to centrally symmetric k-neighborly polytopes [10]. Additionally, Donoho [8, 9] has shown a

connection between sparse solutions of l1 optimization problems and the construction of certain

k-neighborly polytopes for sufficiently large k.

The centrally symmetric moment curve is analogous to the trigonometric moment curve (Sec-

tion 2.8), with the additional property that is symmetric under reflecting through the origin.

Definition 3.4.1. For k ∈ N, the centrally symmetric moment curve SM2k : R→ R2k is defined by

SM2k(t) = (cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t).

Because SM2k(t) = SM2k(t + 2π), SM2k defines a map SM2k : S1 → R2k, where we identify the

domain S1 with R/2πZ.

Note that SM2k(t+ π) = −SM2k(t). Therefore, we say SM2k is centrally symmetric about the

origin.
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The connection to linear optimization has motivated the study of the combinatorial properties

of bicyclic polytopes, defined for X = {t1, . . . , tn} ⊆ S1 by

B2k(X) = Conv {SM2k(t1), . . . , SM2k(tn)}

(see Section 3.5) by Barvinok and Novik in [6]. The authors of [6] note that such a bicyclic

polytope is centrally symmetric, i.e., x belongs to the polytope if and only if −x belongs to the

polytope, in the case that X is a centrally symmetric subset of the circle S1. Additionally, they

conjecture that, among all d-dimensional centrally symmetric polytopes with n vertices, the num-

ber of faces of centrally symmetric B2k(X) asymptotically approaches the largest number of faces

in every dimension as n grows and d is fixed.

3.5 Barvinok–Novik Orbitopes
The centrally symmetric orbitope, also called the Barvinok–Novik orbitope [6], is defined by

B2k = Conv(SM2k(S
1)) ⊆ R2k.

This convex body is not the convex hull of a finite set of points; it is an orbitope instead of a

polytope [19]. While the facial structure of B2k is in general an open question, the faces of B4 are

known.

Let B ⊂ R2k denote a convex body. Faces of B are defined by the intersection of B with a

supporting hyperplane, i.e., the intersection of B with the zero-set of an affine function A on R2k

satisfying A(x) ≥ 0 for all x ∈ B. The value of an affine function A(x) on SM2k is represented

by a trigonometric polynomial

A(t) = c+
k∑
j=1

aj cos[(2j − 1)t] +
k∑
j=1

bj sin[(2j − 1)t].

Following section 3.3 of [6], substitute z = eit into A(t) to write
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A(t) = z2k−1D(z),

where

D(z) = cz2k−1 +
k∑
j=1

aj − ibj
2

z2j+2k−2 +
k∑
j=1

aj + ibj
2

z2k−2j = cz2k−1 +
2k−1∑
j=0

d2jz
2j.

One may check that D(z) satisfies

D(z) = zmD(1/z), where m = 4k − 2.

Polynomials satisfying this relation are referred to as self-inversive polynomials, and have been

studied for their connections to complex numbers and number theory, as well as, more recently,

algebraic curves, coding theory, and reduction theory of binary forms (see [17] and [15], respec-

tively). Because all odd terms, excluding possibly the middle term, of D(z) vanish, such a poly-

nomial is called a raked self-inversive polynomial by the authors of [6].

With this in mind, we see that the faces of B2k are defined by raked self-inversive polynomi-

als of degree at most 4k−2 whose roots of modulus one have even multiplicity. In particular, given

such a polynomialD(z) with roots {eit0 , . . . , eits} of modulus one, Conv{SM2k(t0), . . . , SM2k(ts)}

defines a face of B2k, and each face arises in this way.

In the case k = 2, it is possible to use properties of raked self-inversive polynomials to de-

termine all possible configurations of roots corresponding to faces of B4. This establishes the

following theorem.

Theorem 3.5.1 (Theorem 4.1 of [6]). The proper faces of B4 are

• the 0-dimensional faces (vertices) SM4(t) for t ∈ S1,

• the 1-dimensional faces (edges) Conv(SM4({t1, t2})) where t1 6= t2 are the edges of an arc

of S1 of length less than 2π
3

, and

• the 2-dimensional faces (triangles) Conv(SM4({t, t+ 2π
3
, t+ 4π

3
})) for t ∈ S1.
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Note that some of the faces of B4 are visible in the convex hull in Figure 2.1, whose underlying

curve is one projection of the image of SM4 from R4 to R3.

While the precise facial structure ofB2k = B2k(S
1) is not known for k > 2, certain neighborliness-

results have been established by Barvinok, Lee, and Novik:

Theorem 3.5.2 (Theorem 1.1 of [5]). For every positive integer k there exists a number

π

2
< φk < π

such that for an arbitrary open arc Γ ⊆ S1 of length φk and arbitrary distinct n < k points

t0, . . . , tn ∈ Γ, the set

Conv ({SM2k(t0), . . . , SM2k(tn)})

is a face of B2k.

Additionally, Vinzant has proven the following regarding edges of ∂B2k:

Theorem 3.5.3 (Theorem 1 of [23]). For α 6= β ∈ [0, 2π], the line segment

Conv ({SM2k(α), SM2k(β)})

is an exposed edge of B2k if |α− β| < 2π(k−1)
2k−1

, and not an edge of B2k if |α− β| > 2π(k−1)
2k−1

.

Presently, we explore the close relationship between the facial structure of B2k and the structure

of VRm(S1; r) for particular values of r and k. This relationship will be made explicit in Chapter 4.
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Chapter 4

Results

4.1 Outline of the proof of the Main Theorem.
We are now prepared to state and prove our main result, Theorem 4.1.1.

Theorem 4.1.1. Let r = 2π
3

denote the side-length of an equilateral triangle inscribed in S1. Then,

VRm
≤ (S1; r) ' S3.

To prove this result, we construct homotopy equivalences between VRm
≤ (S1; 2π/3) and ∂B4

∼= S3

given by the maps p ◦ SM4 and ι in the following diagram:

VRm
≤ (S1; 2π/3)

SM4−−→ R4 \ {~0} p−→ ∂B4
ι−→ VRm

≤ (S1; 2π/3).

This construction will proceed as follows.

1. Define the radial projection p : R4 \ {~0} → ∂B4. Extend the domain of SM4 to VRm
≤ (S1; r),

and prove that the image of SM4 misses the origin in R4, so that the composition p ◦ SM4 is

well-defined.

2. Define the inclusion ι : ∂B4 → VRm
≤ (S1; r)

3. Prove that p ◦ SM4 and ι are homotopy inverses.

4.2 Extend the domain of SM4 to VRm
≤(S

1; r), and show the im-

age of SM4 misses the origin
Define the radial projection map p2k : R2k \ {~0} → ∂B2k ' S2k−1. As B2k is a convex body

containing the origin in its interior, each ray emanating from the origin intersects ∂B2k exactly

once. Hence, p2k is well-defined. Throughout, we write p = p4.
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In general, we may extend SM2k : S1 → R2k to SM2k : VRm
≤ (S1; r)→ R2k via

∑
i

λiS
1(θi) 7→

∑
i

λiSM2k(θi).

Because SM2k restricted to S1 is continuous and bounded, Lemma 5.2 of [2] proves that the exten-

sion to all of VRm
≤ (S1; r) is continuous.

Next, observe that the composition p ◦ SM4 : VRm
≤ (S1; r)→ ∂B4 is well-defined if and only if

~0 /∈ Im(SM4 : VRm
≤ (S1; r)→ R4).

Throughout this section, we fix k ∈ N and prove instead the general case:

Theorem 4.2.1. Given 0 ≤ t0 < t1 < · · · < t2k < 2π such that diam({t0, . . . , t2k}) < C < π,

Conv{SM2k(t0), . . . , SM2k(t2k)} does not contain ~0 if C ≤ 2πk
2k+1

, and this bound is sharp.

Therefore, p ◦ SM4 is well-defined for r < C = 4π
5

.

To prove Theorem 4.2.1, we may restrict attention to simplices of VRm
≤ (S1; r) of dimension 2k

or less by Carathéodory’s theorem. Therefore, suppose {t0, . . . , t2k} ⊂ S1 is such that the origin is

contained in the convex hull of {SM2k(t0), . . . , SM2k(t2k)}. Then, there exist scalars λi ≥ 0 such

that ~0 =
∑2k

i=0 λiSM2k(ti) and
∑2k

i=0 λi = 1. In this way, we obtain a system of 2k equations:

2k∑
i=0

λi cos(nti) = 0 for n = 1, 3, . . . , 2k − 1, and

2k∑
i=0

λi sin(nti) = 0 for n = 1, 3, . . . , 2k − 1.

Therefore, let
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M2k =



cos(t0) cos(t1) . . . cos(t2k)

sin(t0) sin(t1) . . . sin(t2k)

cos(3t0) cos(3t1) . . . cos(3t2k)

sin(3t0) sin(3t1) . . . sin(3t2k)

...
... . . . ...

cos((2k − 1)t0) cos((2k − 1)t1) . . . cos((2k − 1)t2k)

sin((2k − 1)t0) sin((2k − 1)t1) . . . sin((2k − 1)t2k)


and consider the vector equation M2k

~λ = ~0. As a step toward proving Theorem 4.2.1, we first

describe the nullspace of M2k. To obtain this description, it will be useful to state the following

proposition, which for example can be found in [18, Section 2.8.1].

Proposition 4.2.2. An n× n matrix of the form

V =



1 a1 a2
1 · · · an−1

1

1 a2 a2
2 · · · an−1

2

...
...

... . . . ...

1 an a2
n · · · an−1

n


satisfies

det(V ) =
∏

1≤i<j≤n

(aj − ai).

A matrix of this form is called a Vandermonde matrix.

Lemma 4.2.3. LetA denote the 2k×2k matrix whose columns are SM2k(t1), SM2k(t2), . . . , SM2k(t2k).

Then

det(A) = κ

( ∏
1≤j<l≤2k

sin(tl − tj)

)

for some nonzero constant κ depending only on k.
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Proof. We would like to thank Harrison Chapman for key insights behind this proof. Given

f : R→ C, define the function f : R2k → C2k via

f(t) =

(
f(t1) f(t2) · · · f(t2k)

)T

∈ C2k.

To prove this lemma, we will perform elementary row and column operations to A to obtain a

Vandermonde matrix. In order to clarify the proof of the general case, we consider first the case

k = 2, with

A =



cos(t1) cos(t2) cos(t3) cos(t4)

sin(t1) sin(t2) cos(t3) sin(t4)

cos(3t1) cos(3t2) cos(t3) cos(3t4)

sin(3t1) sin(3t2) cos(t3) sin(3t4)


.

Write

AT =

(
cos(t) sin(t) cos(3t) sin(3t)

)
for t = (t1, t2, t3, t4)T , and observe that

det(A) = det
(
AT)

= det

(
eit+e−it

2
eit−e−it

2i
e3it+e−3it

2
e3it−e−3it

2i

)
=

1

24
(−i)2 det

(
eit + e−it eit − e−it e3it + e−3it e3it − e−3it

)
.

Next, let Ci denote the i-th column of the above matrix and perform the following column opera-

tions:

C1 7→ C1 + C2 C2 7→ C2 −
1

2
C1 C3 7→ C3 + C4 C4 7→ C4 −

1

2
C3.

It follows that
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det(A) = − 1

24
det

(
2eit −e−it 2e3it −e−3it

)
= − 1

22
det

(
eit e−it e3it e−3it

)

by factoring out column multiples. Letting ω = e−3i(t1+t2+t3+t4), we may factor e−3itj from row j

to obtain

det(A) = −1

4
ω det

(
e4it e2it e6it 1

)
.

Re-ordering rows by the positive permutation (4 1 3) gives

det(A) = −1

4
ω det

(
1 e2it e4it e6it

)
= −1

4
ω

∏
1≤i<j≤4

(
e2itj − e2iti

)

by Proposition 4.2.2. Finally, into each factor (e2itj − e2iti), extract a factor of ei(tj+ti) from ω to

obtain

det(A) = −1

4

∏
1≤i<j≤4

(
ei(tj−ti) − ei(tj−ti)

)
= −1

4

∏
1≤i<j≤4

2i sin(tj − ti)

= −(2i)6

4

∏
1≤i<j≤4

sin(tj − ti)

= 16
∏

1≤i<j≤4

sin(tj − ti).

Next, we consider the general case, with
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A =



cos(t1) cos(t2) . . . cos(t2k)

sin(t1) sin(t2) . . . sin(t2k)

cos(3t1) cos(3t2) . . . cos(3t2k)

sin(3t1) sin(3t2) . . . sin(3t2k)

...
... . . . ...

cos((2k − 1)t1) cos((2k − 1)t2) . . . cos((2k − 1)t2k)

sin((2k − 1)t1) sin((2k − 1)t2) . . . sin((2k − 1)t2k)



.

Write

AT =

(
cos(t) sin(t) cos(3t) sin(3t) · · · cos((2k − 1)t) sin((2k − 1)t)

)

for t = (t1, t2, . . . , t2k)
T , and observe that

det(A) = det
(
AT)

= det

(
eit+e−it

2
eit−e−it

2i
e3it+e−3it

2
e3it−e−3it

2i
· · · e(2k−1)it+e−(2k−1)it

2
e(2k−1)it−e−(2k−1)it

2i

)
=

1

22k
(−i)k det

(
eit + e−it eit − e−it · · · e(2k−1)it + e−(2k−1)it e(2k−1)it − e−(2k−1)it

)
.

Next, let Ci denote the i-th column of the above matrix. For i = 1, 3, . . . , 2k − 1, perform the

following column operations: Ci 7→ Ci + Ci+1, Ci+1 7→ Ci+1 − 1
2
Ci. It follows that

det(A) =
1

22k
(−i)k det

(
2eit −e−it 2e3it −e−3it · · · 2e(2k−1)it −e−(2k−1)it

)
=
ik

2k
det

(
eit e−it e3it e−3it · · · e(2k−1)it e−(2k−1)it

)

by factoring out column multiples. Letting ω = e−(2k−1)i(t1+t2+···+t2k), we may factor e−(2k−1)itj

from row j to obtain
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det(A) =
ik

2k
ω det

(
e((2k−1)+1)it e((2k−1)−1)it · · · e((2k−1)+(2k−1))it e((2k−1)−(2k−1))it

)
=
ik

2k
ω det

(
e2kit e(2k−2)it e(2k+2)it e(2k−4)it · · · e2(2k−1)it 1

)
.

Re-ordering rows by a permutation σ gives

det(A) = sign(σ)
ik

2k
ω det

(
1 e2it e4it · · · e(2(2k−1))it

)
= sign(σ)

ik

2k
ω

∏
1≤i<j≤2k

(
e2itj − e2iti

)

by Proposition 4.2.2. Finally, into each factor (e2itj − e2iti), extract a factor of ei(tj+ti) from ω to

obtain

det(A) = sign(σ)
ik

2k

∏
1≤i<j≤2k

(
ei(tj−ti) − ei(tj−ti)

)
= sign(σ)

ik

2k

∏
1≤i<j≤2k

2i sin(tj − ti)

= sign(σ)
ik

2k
(2i)(2k−1)k

∏
1≤i<j≤2k

sin(tj − ti)

= sign(σ)i2k
2

22k(k−1)
∏

1≤i<j≤2k

sin(tj − ti)

= sign(σ)22k(k−1)
∏

1≤i<j≤2k

sin(tj − ti).

This completes the proof of Lemma 4.2.3.

The following corollary is immediate.

Corollary 4.2.4. For 0 ≤ i ≤ 2k, let M2k,i denote the 2k × 2k matrix obtained by removing the

i-th column of M2k. Then,

det(M2k,i) = κ

 ∏
0≤j<l≤2k
j,l 6=i

sin(tl − tj)

 ,
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for some nonzero constant κ depending only on k.

Theorem 4.2.5. The nullspace of M2k is one-dimensional and is spanned by

~λ = (λ0, λ1, . . . , λ2k)
T,

where

λi = (−1)i
∏

0≤j<l≤2k
j,l 6=i

sin(tl − tj).

Proof. Because M2k has 2k rows and 2k + 1 columns, it has nullity at least one. Further, by

Corollary 4.2.4, observe that M2k,0 is invertible if and only if no two points tl, tj are antipodal for

1 ≤ l, j ≤ 2k. Hence, M2k contains 2k linearly independent columns and has nullity exactly one.

Next, we prove ~λ is contained in the nullspace of M2k. To ease notation, write

M2k
~λ =

(
C1 S1 C3 S3 · · · C2k−1 S2k−1

)T

.

For n = 1, 3, 5, . . . , 2k − 1, note

Cn =
2k∑
i=0

cos(nti)λi =
2k∑
i=0

(−1)i cos(nti)
∏

0≤j<l≤2k
j,l 6=i

sin(tl − tj)

=
1

κ

2k∑
i=0

(−1)i cos(nti) det(M2k,i).

Hence, Cn is equal to 1
κ

times the determinant of the matrix
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

cos(nt0) cos(nt1) . . . cos(nt2k)

cos(t0) cos(t1) . . . cos(t2k)

sin(t0) sin(t1) . . . sin(t2k)

cos(3t0) cos(3t1) . . . cos(3t2k)

sin(3t0) sin(3t1) . . . sin(3t2k)

...
... . . . ...

cos((2k − 1)t0) cos((2k − 1)t1) . . . cos((2k − 1)t2k)

sin((2k − 1)t0) sin((2k − 1)t1) . . . sin((2k − 1)t2k)



.

Since n = 2j− 1 for some 1 ≤ j ≤ k, the first row of this matrix is equal to one of the other rows.

Therefore the matrix is singular, giving that Cn = 0.

Similarly, it follows that Sn is equal to 1
κ

times the determinant of



sin(nt0) sin(nt1) . . . sin(nt2k)

cos(t0) cos(t1) . . . cos(t2k)

sin(t0) sin(t1) . . . sin(t2k)

cos(3t0) cos(3t1) . . . cos(3t2k)

sin(3t0) sin(3t1) . . . sin(3t2k)

...
... . . . ...

cos((2k − 1)t0) cos((2k − 1)t1) . . . cos((2k − 1)t2k)

sin((2k − 1)t0) sin((2k − 1)t1) . . . sin((2k − 1)t2k)



.

For the same reasons as before, it follows that Sn = 0.

For convenience, we rescale ~λ by 0 6= γ =
∏

0≤j<l≤2k
1

sin(tl−tj)
to obtain

γ~λ =

(
1

α0(t0, . . . , t2k)
, . . . ,

1

α2k(t0, . . . , t2k)

)
,

where

31



αi(t0, . . . , t2k) =
∏

0≤j≤2k
j 6=i

sin(tj − ti).

Recall that entries of ~λ correspond to coefficients in the linear combination~0 =
∑2k

i=0 λiSM2k(ti).

In particular, we are concerned only with convex linear combinations. Hence, after normalizing ~λ

(and potentially rescaling by −1), it is necessary that each entry λi is positive. In other words, the

origin may be contained in the convex hull of {SM2k(t0), . . . , SM2k(t2k)} only in the case that the

terms αi(t0, . . . , t2k) share the same sign.

To relate the sign of each term αi(t0, . . . , t2k) to the configuration of points t0, . . . , t2k ∈ S1,

we first prove some intermediate lemmas. Throughout the remainder of this section, assume that

the points t0, . . . , t2k ∈ S1 are ordered by index with a counterclockwise orientation.

Definition 4.2.6. Let a, b ∈ S1 = R/2πZ, where a 6= b, and where a and b are each identified with

a point in [0, 2π). Define the open arc (a, b)S1 as follows:

(a, b)S1 =


{t ∈ S1 | a < t < b} if a < b

{t ∈ S1 | a < t < b+ 2π} if a > b.

Define the closed arc [a, b]S1 similarly.

Definition 4.2.7. Let t0, . . . , t2k ∈ S1 be distinct, with no two points antipodal. For i = 0, . . . , 2k

define

χ(ti) = #{tj | tj ∈ (ti + π, ti)}.

Lemma 4.2.8. Let t0, . . . , t2k ∈ S1 be distinct, with no two points antipodal. Then,
∑2k

i=0 χ(ti) =

k(2k + 1).

Proof. Note that since no two points are antipodal, we have that tj ∈ (ti + π, ti) if and only if

ti /∈ (tj + π, tj). Define
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1i,j =


1 if tj ∈ (ti + π, ti)

0 otherwise.

Note 1i,j + 1j,i = 1 for all i 6= j, and 1i,i = 0 for all i. Therefore we have

2k∑
i=0

χ(ti) =
2k∑
i=0

#{tj | tj ∈ (ti + π, ti)} =
2k∑

i,j=0

1i,j =
(2k + 1)(2k)

2
= k(2k + 1).

Lemma 4.2.9. Let t0, . . . , t2k ∈ S1 be distinct, with no two points antipodal. Then, χ(ti) = χ(tj)

(mod 2) for some i, j ∈ {1, . . . , 2k} if and only if sign(αi(t0, . . . , t2k)) = sign(αj(t0, . . . , t2k)).

Proof. Observe that sign(αi(t0, . . . , t2k)) = (−1)χ(ti).

Lemma 4.2.10. Let t0, . . . , t2k ∈ S1 be distinct, not all contained in a semicircle, with no two

points antipodal. Then, 1 ≥ χ(ti+1)− χ(ti) for 0 ≤ i ≤ 2k, where we set t2k+1 = t0.

Proof. Observe that the open arc (ti+1 + π, ti)S1 contains exactly χ(ti+1) − 1 points. Hence,

(ti + π, ti+1 + π)S1 must contain exactly χ(ti) − (χ(ti+1) − 1) points. Because this number is

nonnegative, it follows that 1 ≥ χ(ti+1)− χ(ti).

Lemma 4.2.11. Let t0, . . . , t2k ∈ S1, with no two points antipodal. Then, the numbers αi(t0, . . . , t2k)

have the same sign for all 0 ≤ i ≤ 2k if and only if χ(ti) = k for all i.

Proof. In the case that χ(ti) = k for all i, it is straightforward to verify that the numbers αi(t0, . . . , t2k)

are all positive or are all negative by considering the sign of each constituent sine function.

Conversely, suppose the numbers αi(t0, . . . , t2k) have the same sign. Then, by Lemma 4.2.9,

the numbers χ(ti) have the same parity. Further, in the case k is odd (resp. even), Lemma 4.2.8

implies each χ(ti) is odd (resp. even). Therefore, in either case, we may write χ(ti) = k + 2ni for

some integer ni ∈ Z. Note that Lemma 4.2.8 implies

k(2k + 1) =
2k∑
i=0

χ(ti) =
2k∑
i=0

k + 2ni = k(2k + 1) + 2
2k∑
i=0

ni,
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and it follows that
∑2k

i=0 ni = 0. Therefore, it is sufficient to prove that ni = nj for all i, j. Toward

that end, define t2k+1 = t0 and n2k+1 = n0 and observe

0 =
2k∑
i=0

ni+1 =
2k∑
i=0

(ni+1 + (−ni + ni)) =
2k∑
i=0

((ni+1 − ni) + ni)

=
2k∑
i=0

(ni+1 − ni) +
2k∑
i=0

ni

=
2k∑
i=0

(ni+1 − ni).

It cannot be the case that all of the points ti are contained in a semicircle, since then χ(ti) would

obtain all of the values 0, 1, . . . , 2k, contradicting the fact that these values have the same parity.

Therefore, we may apply Lemma 4.2.10 to obtain

1 ≥ (k + 2ni+1)− (k + 2ni) = 2(ni+1 − ni),

which implies 0 ≥ ni+1 − ni. Thus, since the points t0, . . . , t2k are ordered counterclockwise, it

follows that ni+1 = ni for all 0 ≤ i ≤ 2k, proving the claim.

We are now prepared to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. If diam({t0, . . . , t2k}) < C ≤ 2πk
2k+1

, observe that χ(ti) 6= k for some

0 ≤ i ≤ 2k. Then, Theorem 4.2.5 and Lemma 4.2.11 together imply that there do not exist

positive scalars λi such that ~0 =
∑2k

i=0 λiSM2k(ti).

To see that this bound is sharp, let ti ∈ S1 such that ti = t0 + i 2π
2k+1

for i = 1, . . . , 2k. Then,

Theorem 4.2.5 and Lemma 4.2.11 imply that there exists a vector of norm one with positive entries

contained in the nullspace of M2k (in fact, ~0 =
∑2k

i=0
1

2k+1
SM2k(ti) in this case).

Remark 4.2.12. If the orbitopes B2k were known to be simplicial (as we conjecture to be the case),

then together with Remark 4.3.2, Theorem 4.2.1 would imply that ∂B2l+2
∼= S2l+1 is a retract of
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VRm
≤ (S1; r) for 2πl

2l+1
≤ r < 2π(l+1)

2l+3
and 0 ≤ l. It would then follow that the (2l + 1)-dimensional

homology, cohomology, and homotopy groups of VRm
≤ (S1; r) are nontrivial for all 0 ≤ l.

4.3 Define the inclusion ι
For r ≥ 2π

3
, define ι : ∂B4 → VRm

≤ (S1; r) as follows: given an n-dimensional face of B4 of the

form Conv(SM4({θ0, . . . , θn})), define

ι

(
n∑
i=0

λiSM4(θi)

)
=

n∑
i=0

λiS
1(θi).

In light of Theorem 3.5.1 ι is well-defined; indeed each face of ∂B4 has diameter at most 2π
3

. We

also prove in the following lemma that ι is continuous.

Lemma 4.3.1. Let r ≥ 2π
3

. The map ι : ∂B4 → VRm
≤ (S1; r) is continuous.

Proof. We will show that (p◦SM4)|ι(∂B4) : ι(∂B4)→ ∂B4 is an bijective continuous function from

a compact space to a Hausdorff space. It follows from [4, Theorem 3.7] that (p ◦ SM4)|ι(∂B4) is a

homeomorphism, with a continuous inverse ι : ∂B4 → ι(∂B4). Therefore ι : ∂B4 → VRm
≤ (S1; r)

is continuous.

The fact that (p ◦ SM4)|ι(∂B4) is an bijective function follows from Theorem 3.5.1. The space

∂B4 is Hausdorff since it inherits the subspace topology from Euclidean space. Finally, to see

that ι(∂B4) is compact, we note that ι(∂B4) is a closed subset P(S1), the space of all Radon

probability measures on S1 equipped with the Wasserstein metric. Since S1 is compact, it follows

that P(S1) is compact by [22, Remark 6.19], and therefore ι(∂B4) is compact as a closed subset

of a compact space.

Remark 4.3.2. It follows from Theorem 3.5.1 that B4 is a simplicial orbitope, meaning that all of

its faces are simplices. To our knowledge, it is not known whether B2k is simplicial for k ≥ 3,

although we conjecture this to be the case. If B2k is simplicial, then an analogous map ι : ∂B2k →

VRm
≤ (S1; r) can be defined for r ≥ 2π(k−1)

2k−1
; this map will be well-defined by [23, Theorem 1], and

continuous by an argument analogous to Lemma 4.3.1.
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4.4 Show p ◦ SM4 and ι are homotopy inverses.
Observe that (p ◦SM4) ◦ ι = id∂B4 . Hence, it remains to show that ι ◦ (p ◦SM4) ' idVRm

≤ (S1;r).

Theorem 4.4.1. Let x =
∑n

i=0 λiti ∈ VRm
≤ (S1; 2π

3
) and write ι ◦ (p ◦ SM4)(x) =

∑m
j=0 µsj for

some sj ∈ S1. Then, diam({t0, . . . , tn} ∪ {s0, . . . , sm}) = diam({t0, . . . , tn}).

In order to prove Theorem 4.4.1, we first introduce a definition and prove a number of interme-

diate lemmas.

Definition 4.4.2. Let ~v0, . . . , ~vk ∈ Rm. Let

Cone({~v0, . . . , ~vk}) =

{
k∑
i=0

λi~vi

∣∣∣∣λi ≥ 0

}

denote the convex cone generated by {~v0, . . . , ~vk}.

The next lemma, Farkas’ Lemma, gives a charagerization of when a vector lies in a convex

cone.

Lemma 4.4.3 (Farkas’ Lemma [7]). Let M ∈ Rm×n and ~v ∈ Rm, and let ~ai denote the columns

of M for 1 ≤ i ≤ n. Then, exactly one of the following is true:

1. There exists ~x ∈ (R+)n such that M~x = ~v.

2. There exists ~y ∈ Rm such that ~ai
T~y ≥ 0 for all i and ~v T~y < 0.

We can use Farkas’ Lemma to study how cones intersect.

Lemma 4.4.4. Let ~u0, . . . , ~un, ~v0, . . . , ~vk ∈ Rm. If there exists ~y ∈ Rm such that

~ui
T~y ≥ 0 for 0 ≤ i ≤ n and ~vi

T~y < 0 for 0 ≤ i ≤ k,

then

Cone ({ ~u0, . . . , ~un}) ∩ Cone ({~v0, . . . , ~vk}) = ~0.
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Proof. Suppose such a vector ~y ∈ Rm exists, and let ~0 6= ~v =
∑k

i=0 λi~vi ∈ Cone({~v0, . . . , ~vk}).

Then, because there exists some 0 ≤ j ≤ k with λj > 0,

~v T~y =
k∑
i=0

λi~vi
T~y ≤ λj ~vj

T~y < 0.

Hence, by Lemma 4.4.3, ~v is not contained in the convex cone generated by {~u0, . . . , ~un}.

Lemma 4.4.5. Fix a positive integer k ≥ 2, and let n ≥ 0. Let distinct t0, . . . , tn ∈ S1 be given

with a counterclockwise order. Let distinct s0, . . . , sm ∈ S1 for some 0 ≤ m ≤ 2k − 2 be given

with a counterclockwise order such that

1. {s0, . . . , sm} ∩ {t0, t1, . . . , tn} = ∅,

2. no two elements of {s0, . . . , sm} are antipodal, and

3. there exists an arc Γ = (γ1, γ2)S1 of length π such that

(a) [t0, tn]S1 ⊆ Γ,

(b) {s0, . . . , sm} ∩ {γ1, γ2} = ∅, and

(c) at most k − 1 elements of {s0, . . . , sm} are contained within Γ.

Then,

Cone ({SM2k(t0), . . . , SM2k(tn)}) ∩ Cone ({SM2k(s0), . . . , SM2k(sm)}) = ~0.

Proof. Throughout, for convenience, consider points SM2k(t) ∈ R2k to be written as column

vectors. Let 0 ≤ N ≤ min(k−1,m+1) denote the number of elements of {s0, . . . , sm} contained

in Γ. In the case N > 0, we may assume without loss of generality that s0, . . . , sN−1 ∈ Γ.

Observe, by Lemma 4.4.4, it is sufficient to find ~y ∈ R2k such that (SM2k(ti))
T ~y ≥ 0 for

0 ≤ i ≤ n and (SM2k(si))
T ~y < 0 for 1 ≤ i ≤ m. Toward defining such a vector ~y, fix points

v1, . . . , v2k−1 ∈ S1 as follows:
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t0

t1

t2
v1

s0v2

t3

t4
t5

v3
s1

v4
t6

v5

s2

s3 s4

γ1

γ2

Figure 4.1: An example of points {t0, . . . , t6} (black), {s0, . . . , s4} (green), and {γ1, γ2} (gray) in S1

satisfying the hypotheses of Lemma 4.4.5 for k = 3 and n = 6. Points {v1, . . . , v5} (blue) are defined in
the proof of Lemma 4.4.5, and are used to construct a vector satisfying the hypotheses of Lemma 4.4.4.

1. In the case N > 0, define v2i+1 = si − ε and v2i+2 = si + ε with ε > 0 small enough such

that the N intervals of the form (v2i+1, v2i+2)S1 are disjoint, and furthermore

(v2i+1, v2i+2)S1 ∩ {t0, . . . , tn} = ∅

and

(v2i+1 + π, v2i+2 + π)S1 ∩ {s0, . . . , sm} = ∅

for 0 ≤ i ≤ N−1. Note that such points v2i+1 and v2i+2 must exist, because no two elements

of {s0, . . . , sm} are antipodal. This defines v1, v2, . . . , v2N .

2. For 2N < i ≤ 2k − 1, choose vi such that

max{tn, v2N , sm + π} < v2N+1 < v2N+2 < · · · < v2k−1 < γ2.
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Next, for t ∈ S1, define the 2k × 2k matrix

Nt =

(
SM2k(t) SM2k(v1) SM2k(v2) · · · SM2k(v2k−2) SM2k(v2k−1)

)
.

By Corollary 4.2.4,

det(Nt) = κ

( ∏
1≤l≤2k−1

sin(vl − t)

)( ∏
1≤j<l≤2k−1

sin(vl − vj)

)
,

where κ is a nonzero constant that depends only on k. By construction, since v1, . . . , v2k−1 live in

an arc of length less than π, note that

∏
1≤j<l≤2k−1

sin(vl − vj) > 0.

Hence,

sign

(
1

κ
det(Nt)

)
= sign

( ∏
1≤l≤2k−1

sin(vl − t)

)
.

Therefore, define

ρ(t) = # {l ∈ {1, . . . , 2k − 1} | (vl − t (mod 2π)) > π}

for t ∈ S1 and note that

sign

(
1

κ
det(Nt)

)
= (−1)ρ(t).

Now, for j = 1, . . . , 2k, letN j denote the submatrix ofNt obtained by deleting the first column

and jth row of Nt, and define ~y ∈ R2k by

yj =
(−1)j

κ
det(N j).

By considering the computation of det(Nt) by performing cofactor expansion along the first col-

umn of Nt, we note that
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sign
(

(SM2k(ti))
T ~y
)

= sign

(
1

κ
det(Nt)

)
= (−1)ρ(t).

When we consider the case t = ti for 0 ≤ i ≤ n, we note by construction that ρ(ti) is even for

each ti, and so (SM2k(ti))
T ~y ≥ 0 for 0 ≤ i ≤ n.

On the other hand, observe that ρ(si) = 2i+ 1 for 0 ≤ i ≤ N − 1, and it follows that

sign
(
(SM2k(si))

T~y
)

= (−1)ρ(si) = −1

for 0 ≤ i ≤ N − 1.

Finally, for N ≤ i ≤ m, note that each pair {vj, vj+1} for 1 ≤ j ≤ 2N − 1 has zero net effect

on the parity of ρ(si) by the fact that (vj + π, vj+1 + π)S1 ∩ {s0, . . . , sm} = ∅. Therefore,

sign
(
(SM2k(si))

T~y
)

= sign

 ∏
1≤l≤2k−1

sin(vl − si)

 = (−1)(2k−1)−2N = −1

for N ≤ i ≤ m.

The following is both a corollary and a generalization of Lemma 4.4.5, where now some of the

ti and sj points may coincide.

Corollary 4.4.6. Let k ≥ 2, n ≥ 0, and t0, . . . , tn ∈ S1 be given as in Lemma 4.4.5. Let distinct

s0, . . . , sm ∈ S1 for some 0 ≤ m ≤ min({2k − 2, n− 1}) be given with a counterclockwise order

such that

1. {s0, . . . , sm} ∩ {t0, t1, . . . , tn} = {tp}p∈I for some I ⊆ {0, . . . , n} with |I| ≤ m,

2. no two elements of {s0, . . . , sm} are antipodal, and

3. there exists an arc Γ = (γ1, γ2)S1 of length π such that

(a) [t0, tn]S1 ⊆ Γ,

(b) {s0, . . . , sm} ∩ {γ1, γ2} = ∅, and
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(c) at most k − 1 elements of {s0, . . . , sm} are contained within Γ.

Then,

Cone ({SM2k(t0), . . . , SM2k(tn)})∩Cone ({SM2k(s0), . . . , SM2k(sm)}) = Cone
(
{SM2k(tp)}p∈I

)

Proof. The inclusion ⊇ is clear; it remains to show the reverse direction ⊆.

Assume, for the sake of contradiction, that there exists some vector

~u ∈ Cone ({SM2k(t0), . . . , SM2k(tn)}) ∩ Cone ({SM2k(s1), . . . , SM2k(sm)})

such that

~u /∈ Cone
(
{SM2k(tp)}p∈I

)
.

In particular, we may write ~u =
∑n

i=0 λiSM2k(ti) =
∑m

j=0 µjSM2k(sj) for some scalars λi, µj ≥

0.

In the case that {s0, . . . , sm}∩{t0, t1, . . . , tn} = ∅, we obtain a contradiction by Lemma 4.4.5.

Otherwise, suppose |I| = M for some 0 < M < m, and re-index as necessary so that si = ti for

all 0 ≤ i < M . Since ~u /∈ Cone({SM2k(tp)}p∈I), it follows that λi > 0 for some i ≥ M , and also

µj > 0 for some j ≥M . Next, define

λ̃i =


λi − µi if 0 ≤ i < M and λi − µi > 0

0 if 0 ≤ i < M and µi − λi ≥ 0

λi if M ≤ i

and

µ̃i =


µi − λi if 0 ≤ i < M and µi − λi > 0

0 if 0 ≤ i < M and λi − µi ≥ 0

µi if M ≤ i
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and observe that we have
∑n

i=0 λ̃iSM2k(ti) =
∑m

j=0 µ̃jSM2k(sj). By removing terms with a zero

coefficient and re-indexing as necessary, it follows that

ñ∑
i=0

λ̃iSM2k(ti) =
m̃∑
j=0

µ̃jSM2k(sj)

for some ñ ≥ n − M > 0 and m̃ ≥ m − M > 0. Finally, we obtain a contradiction by

Lemma 4.4.5.

We now are ready for the proof of Theorem 4.4.1, which states if x =
∑n

i=0 λiti ∈ VRm
≤ (S1; 2π

3
)

with ι ◦ (p ◦ SM4)(x) =
∑m

j=0 µsj for some sj ∈ S1, then diam({t0, . . . , tn} ∪ {s0, . . . , sm}) =

diam({t0, . . . , tn}).

Proof of Theorem 4.4.1. Write x =
∑n

i=0 λiti ∈ VRm
≤ (S1; 2π

3
) and observe that

m∑
j=0

µSM4(si) = (p ◦ SM4)(x) ∈ Cone ({SM4(t0), . . . , SM4(tn)}) .

There are two cases:

1. t0, . . . , tn ∈ Γ for an arc Γ = [t0, tn]S1 of length less than or equal to 2π
3

, or

2. n = 2 and ti = t0 + 2π
3
i.

First, assume {t0, . . . , tn} are contained within an arc of length less than or equal to 2π
3

. In the

case n = 1, note that SM4(x) ∈ ∂B4 and ι ◦ (p ◦ SM4)(x) = x. Otherwise, assume n ≥ 2. In light

of Theorem 3.5.1, observe that the hypotheses of Corollary 4.4.6 are satisfied, unless m = 1 and

s0, s1 ∈ [t0, tn].

Finally, in the second case, SM4(x) ∈ ∂B4 by Theorem 3.5.1, and ι ◦ (p ◦ SM4)(x) = x.

We have now reached the proof of our main result.
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Proof of Theorem 4.1.1. As observed at the beginning of this section, it remains only to show that

ι ◦ (p ◦ SM4) ' idVRm
≤ (S1;r). Consider the linear homotopy H : VRm

≤ (S1; r) × I → VRm
≤ (S1; r)

defined by

H(x, t) = t[ι ◦ (p ◦ SM4)](x) + (1− t)x.

Observe that H is well-defined by Theorem 4.4.1 and continuous by Lemma 3.8 of [2], with

H(·, 0) = idVRm
≤ (S1;r) and H(·, 1) = ι ◦ (p ◦ SM4).

We conjecture that a similar proof works in higher dimensions. There are two main obstacles.

The first obstacle is knowing the facial structure of the Barvinok–Novik orbitopes B2k for k > 2

(and in particular, knowing if they are simplicial or not). The second obstacle would be an analogue

of Theorem 4.4.1 for larger r and k values.

Conjecture 4.4.7. We conjecture that for 2πk
2k+1

≤ r < 2π(k+1)
2k+3

, the map p2k◦SM2k : VRm
≤ (S1; r)→

∂B2k+2 is a homotopy equivalence, and hence VRm
≤ (S1; r) ' ∂B2k+2

∼= S2k+1.
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Chapter 5

Conclusion

In applications of persistent homology, Vietoris–Rips simplicial complexes provide a conve-

nient method of associating a topological space to a dataset. As a step toward gaining a better

understanding of the topological behavior of these complexes at large scale parameters, we con-

sider the simplest manifold with nonzero homology: the circle. In this paper, we have shown that

the Vietoris–Rips metric thickening of the circle achieves the homotopy type of the 3-sphere S3

at scale parameter r = 2π
3

, in contrast to the infinite wedge-sum of 2-spheres attained by the ordi-

nary Vietoris–Rips complex on the circle. In addition, we have employed a geometric method of

proof, taking advantage of continuous maps afforded by the 1-Wasserstein metric, and revealing

connections between Vietoris–Rips thickenings of the circle and the Barvinok-Novik orbitopes.

This work leads to a number of open questions. In particular, in light of Theorem 3.3.1, it

seems reasonable to expect VRm
≤ (S1; r) to obtain the homotopy type of odd–dimensional spheres

as r increases. As noted in Section 4.3, Vinzant’s result would provide a continuous inclusion

ι : ∂B2k → VRm
≤ (S1; r) for appropriate scale parameters if it were known that B2k is simplicial.

Then, it would remain to prove the homotopy equivalence ι ◦ (p2k ◦ SM2k) ' idVRm
≤ (S1;r), where

a linear homotopy may again be well-defined given a generalization of Corollary 4.4.6 (or through

other, more sophisticated methods).
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Appendix A

Metric thickenings of S1 at small scale parameters

Following techniques similar to that of Chapter 4, we may deduce the following:

Theorem A.0.1. Let r denote the side-length of an equilateral triangle inscribed in S1. Then,

VRm
< (S1; r) ' S1.

Proof. We construct homotopy equivalences between VRm
< (S1; 2π/3) and ∂B2 = S1 given by

p2 ◦ SM2 and ι in the following diagram:

VRm
< (S1; 2π/3)

SM2−−→ R2 \ {~0} p2−→ ∂B2
ι−→ VRm

< (S1; 2π/3).

Observe that ι is well-defined and is continuous by an argument analogous to Lemma 4.3.1.

Additionally, SM2 : VRm
< (S1; 2π/3) → R2 is continuous by Lemma 5.2 of [2], and p2 ◦ SM2

is well-defined by Theorem 4.2.1. Finally, for x =
∑n

i=0 λiti ∈ VRm
< (S1; 2π

3
), we may write

ι ◦ (p2 ◦ SM2)(x) = s0 ∈ S1, and it is clear that diam({t0, . . . , tn} ∪ {s0}) = diam({t0, . . . , tn}).

It follows as in the proof of Theorem 4.1.1 that ι and p2 ◦ SM2 are homotopy inverses.
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