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Carathéodory subsets of moment curves and faces of orbitopes

generalizations of the Borsuk–Ulam theorem

zeros of trigonometric polynomials

2



Background and related work



Convex geometry

Let V denote a real vector space.

Given a subset Y ⊆ V , define the convex hull of Y to be

conv(Y ) :=

{
k∑
i=0

λixi

∣∣∣∣ k ≥ 0, xi ∈ Y, λi ∈ R≥0,

k∑
i=0

λi = 1

}
.

Y conv(Y )
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Convex geometry

Definition

A (proper) face of a convex body C is any nonempty

intersection of C with an affine hyperplane P such that C is

contained in a closed half-space bounded by P .

Equivalently, F is a proper face

of C if and only if there exists

an affine function

A(x) = α0 + α1x1 + · · ·+ αnxn

such that

1. A(x) = 0 for all x ∈ F and

2. A(y) > 0 for all y ∈ C \ F .
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Simplicial complexes

X

Č(X; r) VR(X; r)

r/2
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Simplicial complexes

Definition

Let X be a subset of a metric space (Y, d) and fix r ≥ 0. The

open Čech simplicial complex of X at scale r, denoted

Č<(X; r), has X as its vertex set and a simplex σ ⊆ X if and

only if σ is nonempty, finite, and⋂
v∈σ

B
(
v; 1

2r
)
6= ∅,

where B
(
v; 1

2r
)

:=
{
y ∈ Y | d(v, y) < 1

2r
}
⊆ Y denotes the

open ball of radius 1
2r centered at v.
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Simplicial complexes

Definition

Let X be a metric space and fix r ≥ 0. The open

Vietoris–Rips simplicial complex of X at scale r, denoted

VR<(X; r), has X as its vertex set and a simplex σ ⊆ X if and

only if σ is nonempty, finite, and diam(σ) < r.
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Simplicial complexes

X

Č(X; r) VR(X; r)

r/2
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Simplicial complex

Topology on a simplicial complex K?

We define

|K| :=

{
k∑
i=0

λixi

∣∣∣∣ k ≥ 0, {x0, . . . , xk} ∈ S(K), λi ∈ R≥0,

k∑
i=0

λi = 1

}

• coherent topology

• metric topology

• simplicial metric thickening topology

These all coincide if K is locally finite.
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Metric thickenings

Let X be a metric space. Let δx denote the Dirac delta mass at

a point x ∈ X and let P(X) denote the space of all Radon

probability measures on X equipped with the 1-Wasserstein

metric.

Then, X embeds X ↪→ P(X) via x 7→ δx, and this is an

isometry onto its image.
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Metric thickenings

Definition

Let X be a metric space, and let K denote a simplicial complex

with vertex set X. The simplicial metric thickening (or

simply metric thickening) of K is defined to be the following

submetric space of P(X),

Km :=

{
k∑
i=0

λiδxi

∣∣∣∣ k ≥ 0, {x0, . . . , xk} ∈ S(K), λi ∈ R≥0,
k∑
i=0

λi = 1

}
,

equipped with the restriction of the 1-Wasserstein metric.
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Conventions regarding spheres

Throughout, we equip the sphere Sn with the intrinsic metric in

which great circles have circumference 2π.

Definition

Identify S1 with R/2πZ. Let a, b ∈ S1 with a 6= b. We define

the open circular arc (a, b)S1 as follows:

The closed circular arc [a, b]S1 is defined analogously.
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Trigonometric polynomials

A trigonometric polynomial is an expression of the form

p(t) = c+

n∑
j=1

(aj cos(jt) + bj sin(jt)) ,

inducing a map S1 → R under the identification S1 = R/2πZ.

Throughout, we assume all coefficients are real.

If c = 0, we call p a homogeneous trigonometric

polynomial.

The largest j for which aj 6= 0 or bj 6= 0 is the degree of p.

If aj = bj = 0 whenever j is even, then p is called a raked

trigonometric polynomial.
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The trigonometric moment curve

Definition

For k ∈ N, the trigonometric moment curve M2k : S1 → R2k

is defined by

M2k(t) := (cos(t), sin(t), cos(2t), sin(2t), . . . , cos(kt), sin(kt))ᵀ .
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Carathéodory orbitopes

The Carathéodory orbitopes are defined by

C2k := conv(M2k(S
1)) ⊆ R2k for integers k ≥ 1.

Figure 1: (Left) The image of the map S1 → R3 defined by

t 7→ (cos(t), sin(t), cos(2t)). (Right) The convex hull of this set.
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Carathéodory orbitopes

Theorem ([8, Corollary 5.4])

The proper faces of C2k are in inclusion-preserving bijection

with sets of at most k points in S1.

Note that any {t1, . . . , tm} ⊂ S1 with m ≤ k must be disjoint

from some open arc of length at least 2π
k , and hence in some

ball of S1 of radius r ≤ (k−1)π
k .
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The centrally-symmetric trigonometric moment curve

Definition

For k ∈ N, the centrally symmetric trigonometric

moment curve (or symmetric moment curve)

SM2k : S1 → R2k is defined by

SM2k(t) :=
(
cos t, sin t, cos 3t, sin 3t, . . . , cos(2k−1)t, sin(2k−1)t

)ᵀ
.

Note that SM2k is centrally symmetric:

SM2k(t+ π) = −SM2k(t).
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Barvinok–Novik orbitopes

The Barvinok–Novik orbitopes are defined by

B2k := conv(SM2k(S
1)) ⊆ R2k for k ≥ 1.

Figure 2: (Left) The image of the map S1 → R3 defined by

t 7→ (cos(t), sin(t), cos(3t)). (Right) The convex hull of this set.
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Barvinok–Novik orbitiopes

Theorem ([9, 10])

Every proper face of the Barvinok–Novik orbitope B2k is a

simplex such that the preimage of the vertex set of the simplex

has diameter in S1 at most 2π(k−1)
2k−1 .

A complete description of the faces of B2k is currently unknown

for k > 2.
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The Borsuk–Ulam theorem

Given topological spaces X and Y equipped with Z/2Z-actions

µ and ν respectively, we say a map f : X → Y is odd or

Z/2Z-equivariant if f ◦ µ = ν ◦ f .

Throughout, we equip Rn and Sn with the standard antipodal

Z/2Z-action.
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The Borsuk–Ulam theorem

Theorem

Given a continuous map f : Sn → Rn, there exists x0 ∈ Sn such

that f(x0) = f(−x0).

– equivalently –

Theorem

Given a continuous odd map f : Sn → Rn, there exists x0 ∈ Sn

such that f(x0) = ~0.

– equivalently –

Theorem

There does not exist a continuous odd map Sn → Sn−1.
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Corollaries of the Borsuk–Ulam theorem

Theorem (Stone–Tukey theorem for measures)

Let µ1, µ2, . . . , µk be finite Borel measures in Rk such that every

hyperplane has measure 0 for each of the µi. Then, there exists

a hyperplane h such that

µi(h
+) = 1

2µi(R
k) for i = 1, 2, . . . , d,

where h+ denotes one of the half-spaces defined by h.
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Corollaries of the Borsuk–Ulam theorem

Theorem (Lyusternik–Shnirel’man covering theorem)

For any cover A1, . . . , An+1 of the sphere Sn by n+ 1 sets such

that the n sets A1, . . . , An are each either open or closed, there

is at least one set containing a pair of antipodal points.
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Metric thickenings of the circle



Čech and Vietoris–Rips complexes of the circle

Theorem ([1, Main Result])

There are homotopy equivalences

Č≤(S1; r) '

S2k−1 if 2π(k−1)
k < r < 2πk

k+1∨c S2(k−1) if r = 2π(k−1)
k ,

and

VR≤(S1; r) '

S2k−1 if 2π(k−1)
2k−1 < r < 2πk

2k+1∨c S2(k−1) if r = 2π(k−1)
2k−1 ,

where k = 1, 2, . . ., and where c denotes the cardinality of the

continuum.
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Čech and Vietoris–Rips metric thickenings of the circle

Conjecture

There are homotopy equivalences

Čm
≤(S1; r) ' S2k−1 if

2π(k − 1)

k
≤ r < 2πk

k + 1
,

and

VRm
≤(S1; r) ' S2k−1 if

2π(k − 1)

2k − 1
≤ r < 2πk

2k + 1
,

where k = 1, 2, . . ..
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Metric thickenings of the circle

For what follows, we will focus on the Vietoris–Rips metric

thickenings.

Recall:

Theorem ([9, 10])

Every proper face of the Barvinok–Novik orbitope B2k is a

simplex such that the preimage of the vertex set of the simplex

has diameter in S1 at most 2π(k−1)
2k−1 .
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Proof idea

At the appropriate scales r,

• extend the domain of SM2k to VRm
≤(S1; r)

• radially project to the boundary of the corresponding

orbitope (an odd-dimensional sphere)

• prove that the composition of these maps is a homotopy

equivalence
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Proof idea

VRm(S1; r) R2k \ {~0} ∂B2k

SM2k
p

The composition VRm(S1; r)
SM2k−−−→ R2k \ {~0} p−→ ∂B2k, drawn in

the case k = 1 (so, 0 ≤ r < 2π
3 ).

Let ι : ∂B2k → VRm(S1; r) denote the inclusion,

ι :
∑
i

λiSM2k(xi) 7→
∑
i

λiδxi .
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Proof idea

VRm(S1; r) R2k \ {~0} ∂B2k

SM2k
p

Ingredients:

• continuity: proved using the metric thickening topology

X

• well-definedness: need SM2k(VRm
≤(S1; r)) to miss the origin

for 2π(k−1)
2k−1 ≤ r < 2πk

2k+1

X

• homotopy equivalence:

• note that (p ◦ SM2k) ◦ ι = id∂B2k
X

• need ι ◦ (p ◦ SM2k) ' idVRm
≤(S1;r) . . .
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Proof idea

Theorem

For 0 ≤ r < 2π
3 , ι◦ (p◦SM2) ' idVRm

≤(S1;r) by a linear homotopy.

For r = 2π
3 , ι ◦ (p ◦ SM4) ' idVRm

≤(S1;r) by a linear homotopy.

Consequently, there is a homotopy equivalence

VRm
≤(S1; r) '

S1 0 ≤ r < 2π
3

S3 r = 2π
3 .
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Proof idea

Difficulty at higher scales: five pages of combinatorial

arguments to establish well-definedness at scale r = 2π
3 .

Michael Moy recently showed that a linear homotopy is not

well-defined for r > 2π
3 . So, this proof technique will require a

more complicated homotopy at higher scales.
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Proof idea

VRm(S1; r) R2k \ {~0} ∂B2k

SM2k
p

Ingredients:

• continuity: proved using the metric thickening topology X

• well-definedness: need SM2k(VRm
≤(S1; r)) to miss the origin

for 2π(k−1)
2k−1 ≤ r < 2πk

2k+1 X
• homotopy equivalence:

• note that (p ◦ SM2k) ◦ ι = id∂B2k
X

• need ι ◦ (p ◦ SM2k) ' idVRm
≤(S1;r) (?)

32



Proof idea

The above is enough to prove that ∂B2k
∼= S2k−1 is a retract of

VRm
≤(S1; r) at the appropriate scales.

Lemma

Similarly, for 2π(k−1)
2k−1 ≤ r < 2πk

2k+1 , the (2k − 1)-dimensional

homology, cohomology, and homotopy groups of VRm
≤(S1; r) are

nontrivial.

A similar argument using the Carathéodory orbitopes implies

that ∂C2k
∼= S2k−1 is a retract of Čm

≤(S1; r). Hence, for
2π(k−1)

k ≤ r < 2πk
k+1 , the (2k − 1)-dimensional homology,

cohomology, and homotopy groups of Čm
≤(S1; r) are nontrivial.
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that ∂C2k
∼= S2k−1 is a retract of Čm
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Carathéodory subsets of moment

curves and faces of orbitopes



Carathéodory subsets

Definition
Let Y ⊆ Rk. We say Y ′ ⊆ Y is a Carathéodory subset of Y if
~0 ∈ conv(Y ′).

Motivation: we want to know when the image of the metric

thickening misses the origin (so we can radially project to the

boundary of the orbitope).
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Carathéodory subsets of the trigonometric moment curve

The following is a corollary of a theorem due to Gilbert and

Smyth [7].

Theorem

Let X ⊆ S1 be contained in a closed circular arc [a, b]S1 of

length less than L. Then the convex hull conv(M2k(X)) does not

contain the origin ~0 ∈ R2k if L = 2πk
k+1 , and this bound is sharp.

In particular, if µ ∈ Čm
≤(S1; r), then the support of µ is

contained in a closed circular arc of length less than r; hence,

the convex hull of M2k(Č
m
≤(S1; r)) does not contain the origin

when r < 2πk
k+1 .
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Carathéodory subsets of the cs-trig. moment curve

Theorem

Let X ⊆ S1 be such that diam(X) < D. Then the convex hull

conv(SM2k(X)) does not contain the origin ~0 ∈ R2k if

D = 2πk
2k+1 , and this bound is sharp.

In particular, given µ ∈ VRm
≤(S1; r), the support of µ has

diameter at most r in S1; hence, the convex hull of

SM2k(VRm
≤(S1; r)) does not contain the origin when r < 2πk

2k+1 .
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Carathéodory subsets of the cs-trig. moment curve

Proof sketch
If ~0 ∈ conv(SM2k(X)), we may assume without loss of

generality that |X| ≤ 2k + 1 by Carathéodory’s theorem. So,

suppose ~0 =
∑2k

i=0 λiSM2k(ti) for some convex coefficients {λi}i.

Define ~λ = (λ0, . . . , λ2k)
ᵀ. Then, SM2k(~t)~λ = ~0, where

SM2k(~t) :=



cos(t0) cos(t1) . . . cos(t2k)

sin(t0) sin(t1) . . . sin(t2k)

cos(3t0) cos(3t1) . . . cos(3t2k)

sin(3t0) sin(3t1) . . . sin(3t2k)
...

...
. . .

...

cos((2k − 1)t0) cos((2k − 1)t1) . . . cos((2k − 1)t2k)

sin((2k − 1)t0) sin((2k − 1)t1) . . . sin((2k − 1)t2k)
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Carathéodory subsets of the cs-trig. moment curve

Proof sketch.
So, if ~0 ∈ conv(SM2k(X)), there exists a nonzero vector ~λ in the

nullspace of SM2k(~t) such that all nonzero entries of ~λ are

positive.

So, we determine the nullspace of SM2k(~t) (it is

one-dimensional) and establish a relationship between the

configuration of points t0, . . . , t2k ∈ S1 and the generator of the

nullspace.

Last, we use a combinatorial argument to show that the vector

generating the nullspace can not have strictly non-negative

entries if diam({t0, . . . , t2k}) is less than 2πk
2k+1 .
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Faces of Carathéodory orbitopes

The matrix SM2k, with columns consisting of points along the

symmetric moment curve, was useful in establishing properties

of the curve (a characterization of its Carathéodory subsets).

We found that other, analogous matrices are useful in different

contexts.

We will consider matrices with columns consisting of points

along the trigonometric moment curve and use them to describe

the faces of the Carathéodory orbitopes.
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Faces of Carathéodory orbitopes

Recall:

F is a proper face of C if and

only if there exists an affine

function

A(x) = α0 + α1x1 + · · ·+ αnxn

such that

1. A(x) = 0 for all x ∈ F and

2. A(y) > 0 for all y ∈ C \ F .
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Faces of Carathéodory orbitopes

One may show: F = {M2k(t1), . . . ,M2k(tn)} is the set of

vertices of a proper face of C2k if and only if there exists an

affine function

A(t) = α0 + α1 cos(t) + α2 sin(t) · · ·+ αn−1 cos(kt) + αn sin(kt)

= c+

k∑
j=1

(aj cos(jt) + bj sin(jt))

such that

1. A(t) = 0 for all t ∈ {t1, . . . , tn} and

2. A(s) > 0 for all s ∈ S1 \ {t1, . . . , tn}.
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Faces of Carathéodory orbitopes

So, faces of C2k are defined by the roots of non-negative

trigonometric polynomials.

Theorem

For any s = (s1, . . . , s2k) ∈ R2k,

fs(t) :=
∏

1≤j≤2k

sin

(
sj − t

2

)

is a degree k trigonometric polynomial in t.

If all si appear with even multiplicity, this polynomial is

non-negative.

Furthermore, we prove that these are all degree k trigonometric

polynomials with 2k prescribed roots (counted with

multiplicity).
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Faces of Carathéodory orbitopes

0 π
2

π 3π
2

2π

Figure 3: A set of non-negative trigonometric polynomials fs of

degree 2, each of which defines a 1-dimensional face on the boundary

of the Carathéodory orbitope C4. The non-zero root of each

polynomial has been chosen at random.
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Faces of Barvinok–Novik orbitopes

All of the above also applies to the Barvinok–Novik orbitopes.

Here, faces are defined by non-negative raked trigonometric

polynomials.

We obtain a similar family of polynomials gs (in analogy with

the fs), and conjecture that these are the polynomials defining

all faces of Barvinok–Novik orbitopes.

The roots of these polynomials are much harder to “control,” so

it is difficult to choose s = (s1, . . . , s2k) such that gs is

non-negative.

Experimentally, these gs recover the faces of B4.
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Faces of Barvinok–Novik orbitopes

0 2π
3

π 3π
2

2π

Figure 4: Non-negative trigonometric polynomials gs of degree 3,

each of which defines a face of the Barvinok–Novik orbitope B4. For

clarity, each polynomial has been multiplied by a non-zero constant to

achieve the same maximum value.
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Generalizations of the

Borsuk–Ulam theorem



The Z/2Z-index

At the appropriate scales, 2π(k−1)
2k−1 ≤ r < 2πk

2k+1 , we have

constructed continuous maps

VRm
≤(S1; r)→ R2k \ {~0} → ∂B2k → S2k−1

and

S2k−1 → ∂B2k → VRm
≤(S1; r).

Furthermore, these maps are all odd, or Z/2Z-equivariant.

This proves that the Z/2Z-(co)index of VRm
≤(S1; r) at these

scales is 2k − 1.
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Odd maps S1 → Rk

Knowledge of the Z/2Z-index of VRm
≤(S1; r) implies the

following generalization of the Borsuk–Ulam theorem.

Theorem
If f : S1 → R2k+1 is odd and continuous, then there is a subset

X ⊆ S1 of diameter at most 2πk
2k+1 such that conv(f(X))

contains the origin, and this diameter bound is sharp.
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Odd maps Sn → Rk

Theorem

If f : Sn → Rn+2 is odd and continuous, then there is a subset

X ⊆ Sn of diameter at most arccos (−1/(n+ 1)) such that

conv(f(X)) contains the origin, and this diameter bound is

sharp.

Theorem

If f : S2n−1 → R2kn+2n−1 is odd and continuous, then there is a

subset X ⊆ S2n−1 of diameter at most 2πk
2k+1 such that

conv(f(X)) contains the origin.

48



Odd maps Sn → Rk

Theorem

If f : Sn → Rn+2 is odd and continuous, then there is a subset

X ⊆ Sn of diameter at most arccos (−1/(n+ 1)) such that

conv(f(X)) contains the origin, and this diameter bound is

sharp.

Theorem

If f : S2n−1 → R2kn+2n−1 is odd and continuous, then there is a

subset X ⊆ S2n−1 of diameter at most 2πk
2k+1 such that

conv(f(X)) contains the origin.

48



Corollaries

Generalization of the ham sandwich theorem:

Figure 5: (Left) A bundle of three logs. Dashed blue lines indicate

horizontal cuts. (Right) A vertical cut through the center of one slice

of the log bundle. In this case, the saw blade is on a fixed pivot that

can not swivel by an angle of more than 2π
3 .
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Corollaries

Recall:

Theorem (Lyusternik–Shnirel’man covering theorem)

For any cover A1, . . . , An+1 of the sphere Sn by n+ 1 sets such

that the n sets A1, . . . , An are each either open or closed, there

is at least one set containing a pair of antipodal points.

Generalization (in the case of the circle):

Theorem
For k ≥ 1, suppose A1, . . . , Ak+1 is a cover of the sphere S1 by

k + 1 sets such that the first k sets A1, . . . , Ak are each open or

closed. Furthermore, suppose that any subset of the circle of

diameter at most 2π(k−1)
2k−1 is contained in some subset Ai. Then,

there is at least one set Ai containing a pair of antipodal points.
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Corollaries

Definition

Given a set X and a collection of nonempty subsets

U = {Uα ⊆ X | α ∈ A} for some index set A, we say T ⊆ X is a

traversal of U if T ∩ Uα 6= ∅ for all α ∈ A.

Theorem

Fix k ≥ 1. For any collection of k + 1 closed hemispheres

U = {H1, . . . ,Hk+1} of S1, there exists a traversal of U of

diameter at most 2π(k−1)
2k−1 .
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Zeros of trigonometric

polynomials



Zeros of trigonometric polynomials

Theorem (Gilbert and Smyth, [7, Corollary 1])

Let [a, b]S1 ⊆ S1 denote a closed circular arc of length less than
2πk
k+1 . Then, there is a homogeneous trigonometric polynomial of

degree k that is positive on [a, b]S1. Moreover, no homogeneous

trigonometric polynomial of degree at most k is positive on any

subset that contains a closed circular arc of length 2πk
k+1 .
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Zeros of trigonometric polynomials

Theorem

Let X ⊆ S1 be such that diam(X) < 2πk
2k+1 . Then there is a raked

homogeneous trigonometric polynomial of degree 2k − 1 that is

positive on X. Moreover, no raked homogeneous trigonometric

polynomial of degree at most 2k − 1 is positive on any subset

that contains the vertices of a regular inscribed (2k + 1)-gon.
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Zeros of trigonometric polynomials

Lemma

Fix a list of odd continuous functions fi(t) : S1 → R for

1 ≤ i ≤ 2k + 1. Let P be the set of functions of the form

p : S1 → R defined by p(t) =
∑2k+1

j=1 zjfj(t) with zj ∈ R. Then

there is a subset X ⊆ S1 of diameter at most 2πk
2k+1 such that no

function in P is strictly positive on X.

Applies, for example, to functions of the form

p(t) =
k∑
j=1

aj cos(2j − 1)t+
k∑
j=1

bj sin(2j − 1)t.
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Future work



Future work

• ι ◦ (p ◦ SM2k) ' idVRm
≤(S1;r)

• relationships between VRm(X; r) and VR(X; r)

• generalizations of the (symmetric) moment curve to higher

spheres, bounds on Carathéodory subsets

• diameter bounds in Borsuk–Ulam theorems vs. changes in

homotopy type of VR thickenings and complexes of spheres

• strongly self-dual polytopes
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