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loops, dimension).

A reconstruction method should work given a perfect sample.
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Definition
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the power set of V' such that

a) Every o € K is finite, and
b) if 0 € K, then all subsets of ¢ are in K.
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Definition

An abstract simplicial complex K on vertex set V is a subset of

the power set of V' such that
a) Every o € K is finite, and

b) if 0 € K, then all subsets of ¢ are in K.

For example:
V ={a,b,c,d, e}

K = {labd], [ac], [bc], [ac], [ad], [cd], [al, [b], [¢], [d], [e]}



Simplicial Complexes

Every simplicial complex has a geometric realization:
V ={a,b,c,d,e}
K = {labc], [ac], [be], [ac], [ad], [cd], [a], [b], [c], [d], [e] }
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Simplicial Complexes

Every simplicial complex has a geometric realization:

[ XS]

The topology on a finite simplicial complex is the subspace
topology of its geometric realization in R". 4



The Vietoris—Rips Complex

Definition

Let X be a metric space and r > 0 a scale parameter. The
Vietoris—Rips complex, VR(X;r), of X, has vertex set X and a
simplex for every finite subset ¢ C X such that diam(o) <.
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The Cech Complex

Definition

Let X CY be a submetric space and r > 0 a scale parameter.
The Cech complex C(X,Y;7), of X, has vertex set X and a
simplex for every finite subset ¢ C X such that

Ti€E0
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Homotopy Equivalence

Definition
Let f: X - Y and g: X — Y be continuous maps. Then f is

homotopic to g, denoted f ~ g, if there exists a continuous
function H: X x [0,1] — Y such that H(z,0) = f(x),
H(z,1) = g(x).



Homotopy Equivalence

Definition

Let f: X - Y and g: X — Y be continuous maps. Then f is
homotopic to g, denoted f ~ g, if there exists a continuous
function H: X x [0,1] — Y such that H(z,0) = f(x),

H(z,1) = g(x).

Definition

Let X and Y be topological spaces. Then X is homotopy
equivalent to Y, written X ~ Y, if there exists a pair of
continuous functions f: X — Y and ¢g: Y — X such that
go f~idx and fog~idy.



Homotopy equivalence permits “stretching and bending” in a
way that allows the dimension to change:
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Nerve Lemma

Lemma (Nerve Lemma: Convex Version)

Let U, for a € A an index set be convex subsets of R™. Then
N({Ua}) = UaecaUa.-

I
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Nerve Lemma

Lemma (Nerve Lemma: Convex Version)

Let U, for a € A an index set be convex subsets of R™. Then
N({Ua}) = UaecaUa.-

I

The Cech complex is the nerve of balls of radius r/2, so it is

homotopy equivalent to the underlying space for a good cover.
10



Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and r > 0 be

sufficiently small. Then VR(M;r) ~ M [5].
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Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and r > 0 be

sufficiently small. Then VR(M;r) ~ M [5].

e The bound on r depends upon the curvature of M.
e VR(M;r) does not inherit the metric of M. Thus:
¢ Hausmann’s proof only gives a map
T: VR(M;r) — M, and proves the equivalence using
algebraic techniques.
o 1" depends upon a total order of the points in M.
o In particular, the inclusion ¢: M — VR(M;r) does not

provide the inverse (in fact, ¢ is not even continuous.)
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Metric Thickenings



Metric Vietoris—Rips Thickenings

Definition (Adamaszek, Adams, Frick)
For a metric space X and r > 0, the Vietoris—Rips thickening
VR™(X;r) is the set

k
VR™(X;7r) {Z/\ z; | k€N, z; € X, and diam({zo,...,zr}) < 7'},

=0

where A\; > 0 and >, \; = 1, equipped with the 1-Wasserstein

metric. [1]
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Metric Vietoris—Rips Thickenings

Definition (Adamaszek, Adams, Frick)

For a metric space X and r > 0, the Vietoris—Rips thickening
VR™(X;r) is the set

k
VR™(X;r) {Z/\ z; | k€N, z; € X, and diam({zo,...,2r}) Sr},

1=0
where A\; > 0 and >, \; = 1, equipped with the 1-Wasserstein
metric. [1]

e As a set this is identical to the geometric realization of
VR(X;r), but the topology is different.

e By identifying x € X with 0, € P(X), we can view
VR™(X;r) as a subset of P(X), the set of all Radon
probability measures on X.

e This makes VR™(X;r) a (metric) thickening of X.

e The same construction holds for the Cech thickening,

Cm(X;T)~ 12



Wasserstein Metric

Let ,2/ € VR™(X;r) with z = Y%/ \iz; and 2/ = Zi‘io 2T
Define a matching p between z and z’ to be any collection of

. k‘l
non-negative real numbers {p; ;} such that ) i—oPi,j = A; and
Zf:o Dij = )\9. Define the cost of the matching p to be

cost(p) = z” 5 gy, :L‘;)

Definition

The 1-Wasserstein metric on VR™(X;r) is the distance dyy
defined by

dw (z,z") = inf {cost(p) ‘ p is a matching between z and @'} .

13



Euclidean Submanifolds



Sets of Positive Reach

The medial axis of X C R” is the closure, Y, of

Y ={y € R" | Jz1 # 22 € M with d(y, 1) = d(y,z2) = d(y, X)} .

The reach, 7, of X is the minimal distance 7 = d(X,Y’) between

X and its medial axis.

14



Sets of Positive Reach

e Sets with “corners” have zero reach.
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Sets of Positive Reach

e Sets with “corners” have zero reach.

e Smooth manifolds embedded in R™ have positive reach.
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Sets of Positive Reach

e Sets with “corners” have zero reach.
e Smooth manifolds embedded in R™ have positive reach.
e Reach is < half the distance between non-connected

components. 5



Nearest Point Projection

Define the a-offset of X C R"™:

Tuby = {z € R" | d(z, X) < a} = U B(z, «).
zeX
If X has reach 7, then n: Tub, — X where x maps to its
nearest point in X is well-defined and continuous [4].

Tub,



Proposition (Niyogi, Smale, Weinberger)

Let X CR"™ have reach 7 > 0. Let p € X and suppose
x € Tub; \ X satisfies w(x) =p. Ifc=p+ Ta—p)> then
B(e,7)NX =0.

Iw pH ’
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Results



Main Theorem

Theorem (Metric Hausmann)

Let X CR™ and suppose the reach T of X is positive. Then for
all r < 7, the metric Vietoris—Rips thickening VR™(X;r) is
homotopy equivalent to X .
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Theorem (Metric Nerve Theorem)

Let X be a subset of Euclidean space R™, equipped with the
Euclidean metric, and suppose the reach T of X 1is positive.
Then for all v < 7, the metric Cech thickening C™(X;2r) is
homotopy equivalent to X.

19



Lemmas

Lemma

For X CR" and r > 0, the linear projection map
f: VR™(X;r) — R" defined by

has its image contained in Tub,..
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Lemmas

Lemma

For X CR" and r > 0, the linear projection map
f: VR™(X;r) — R" defined by

has its image contained in Tub,..

Proof.
Let z = Y. Mz € VR™(X;r); we have

diam(conv{zo, ...,z }) = diam([zo, ..., xx]) < 7.
Since f(x) € conv{zy,...,x}, it follows that
d(f(z),X) <d(f(x),x0) <r, and so f(z) € Tub,. O
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Lemma

Let xg, ...,z € R", let y € conv{xy,...,zr}, and let C be a
convez set with y ¢ C. Then there is at least one x; with x; ¢ C.

Proof.

Suppose for a contradiction that we had z; € C for all

1 =0,...,k. Then since C is convex, we’d also have

y € conv{xg, ..., 2} € C. Hence it must be the case that

x; ¢ C for some i. O

21



Lemma

Let X CR"™ have positive reach T, let [z, ...xE] be a simplez in
VR(X;r) withr <1, let x = > N\jz; € VR™(X;r), and let
p=n(f(x)). Then the simplez [zo,...,xk,p| is in VR(X;7).

Proof.

T;- Hl'()
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We are now prepared to prove our main result.

Theorem

Let X be a subset of Euclidean space R™, equipped with the
Euclidean metric, and suppose the reach T of X is positive.
Then for all r < T, the metric Vietoris—Rips thickening
VR™(X ;1) is homotopy equivalent to X .

23



Proof.

By [1, Lemma 5.2], map f: VR (X;r) — R" is 1-Lipschitz and
hence continuous. It follows from a previous lemma that the
image of f is a subset of Tub,. Let i: X — VR™(X;r) be the
inclusion map. Note that wo foi=idy.

J {
Z —
X with Tub,

0 24



Proof.

Consider H: VR™(X;r) x I — VR™(X;r) defined by

H(z,t) =t idygmx,) + (1 —t)iomo f. H is well-defined by
the final lemma, and continuous by [1, Lemma 3.8].It follows

that H is a homotopy equivalence from ¢ o mo f to idygrmx)-

D24



Cech Result

Theorem

Let X be a subset of FEuclidean space R™, equipped with the
FEuclidean metric, and suppose the reach T of X 1is positive.
Then for all < T, the metric Cech thickening C™(X;2r) is
homotopy equivalent to X .

Proof.
The proof uses similar techniques to that of the Metric

Hausmann’s Theorem. OJ

25
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Conclusions

e Metric analogue of Hausmann in FEuclidean space.
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Conclusions

e Metric analogue of Hausmann in FEuclidean space.

e For a Riemannian version see [1]. Or:

Corollary
If N is a smooth, compact, Riemannian manifold, there exists a
7 > 0 such that VR (N;r) ~ N for all0 <r < T.

Proof.
This follows from the Nash Embedding theorem [8]. O

e Open questions:

¢ Do similar results hold for sufficiently dense samplings
[7, 3]7
o Stability under persistent homology [2]?
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