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Introduction



Motivation

Can we recover the object on the right from the one on the left?

They share essentially no topological properties (connectedness,

loops, dimension).

A reconstruction method should work given a perfect sample.
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Background



Simplicial Complexes

Definition

An abstract simplicial complex K on vertex set V is a subset of

the power set of V such that

a) Every σ ∈ K is finite, and

b) if σ ∈ K, then all subsets of σ are in K.

For example:

V = {a, b, c, d, e}

K = {[abc], [ac], [bc], [ac], [ad], [cd], [a], [b], [c], [d], [e]}
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Simplicial Complexes

Every simplicial complex has a geometric realization:
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Simplicial Complexes

Every simplicial complex has a geometric realization:

a

b c

d

e

The topology on a finite simplicial complex is the subspace

topology of its geometric realization in Rn. 4



The Vietoris–Rips Complex

Definition

Let X be a metric space and r > 0 a scale parameter. The

Vietoris–Rips complex, VR(X; r), of X, has vertex set X and a

simplex for every finite subset σ ⊆ X such that diam(σ) ≤ r.

a

b c

d

e
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The Čech Complex

Definition

Let X ⊆ Y be a submetric space and r > 0 a scale parameter.

The Čech complex Č(X,Y ; r), of X, has vertex set X and a

simplex for every finite subset σ ⊆ X such that⋂
xi∈σ

B(xi, r/2) 6= ∅

.
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The Čech Complex
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The Čech Complex

a

b c

d

e

7



Homotopy Equivalence

Definition

Let f : X → Y and g : X → Y be continuous maps. Then f is

homotopic to g, denoted f ' g, if there exists a continuous

function H : X × [0, 1]→ Y such that H(x, 0) = f(x),

H(x, 1) = g(x).

Definition

Let X and Y be topological spaces. Then X is homotopy

equivalent to Y , written X ' Y , if there exists a pair of

continuous functions f : X → Y and g : Y → X such that

g ◦ f ' idX and f ◦ g ' idY .
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Homotopy equivalence permits “stretching and bending” in a

way that allows the dimension to change:
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Nerve Lemma

Lemma (Nerve Lemma: Convex Version)

Let Uα for α ∈ A an index set be convex subsets of Rn. Then

N ({Uα}) ' ∪α∈AUα.

a

b c

d

e

The Čech complex is the nerve of balls of radius r/2, so it is

homotopy equivalent to the underlying space for a good cover.
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Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and r > 0 be

sufficiently small. Then VR(M ; r) 'M [5].

• The bound on r depends upon the curvature of M .

• VR(M ; r) does not inherit the metric of M .

Thus:

� Hausmann’s proof only gives a map

T : VR(M ; r)→M , and proves the equivalence using

algebraic techniques.

� T depends upon a total order of the points in M .

� In particular, the inclusion ι : M ↪→ VR(M ; r) does not

provide the inverse (in fact, ι is not even continuous.)
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Metric Thickenings



Metric Vietoris–Rips Thickenings

Definition (Adamaszek, Adams, Frick)

For a metric space X and r ≥ 0, the Vietoris–Rips thickening
VRm(X; r) is the set

VRm(X; r) =

{
k∑

i=0

λixi | k ∈ N, xi ∈ X, and diam({x0, . . . , xk}) ≤ r

}
,

where λi ≥ 0 and
∑

i λi = 1, equipped with the 1-Wasserstein

metric.[1]

• As a set this is identical to the geometric realization of

VR(X; r), but the topology is different.

• By identifying x ∈ X with δx ∈ P(X), we can view

VRm(X; r) as a subset of P(X), the set of all Radon

probability measures on X.

• This makes VRm(X; r) a (metric) thickening of X.

• The same construction holds for the Čech thickening,

Čm(X; r).

12
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Wasserstein Metric

Let x, x′ ∈ VRm(X; r) with x =
∑k

i=0 λixi and x′ =
∑k′

i=0 λ
′
ix
′
i.

Define a matching p between x and x′ to be any collection of

non-negative real numbers {pi,j} such that
∑k′

j=0 pi,j = λi and∑k
i=0 pi,j = λ′j . Define the cost of the matching p to be

cost(p) =
∑

i,j pi,jd(xi, x
′
j).

Definition

The 1-Wasserstein metric on VRm(X; r) is the distance dW

defined by

dW (x, x′) = inf
{

cost(p)
∣∣ p is a matching between x and x′

}
.

13



Euclidean Submanifolds



Sets of Positive Reach

The medial axis of X ⊆ Rn is the closure, Y , of

Y = {y ∈ Rn | ∃x1 6= x2 ∈M with d(y, x1) = d(y, x2) = d(y,X)} .

The reach, τ , of X is the minimal distance τ = d(X,Y ) between

X and its medial axis.

τ

Y

X

14



Sets of Positive Reach

τ = 0 τ = r

r

τ

• Sets with “corners” have zero reach.

• Smooth manifolds embedded in Rn have positive reach.

• Reach is ≤ half the distance between non-connected

components.

15
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Nearest Point Projection

Define the α-offset of X ⊆ Rn:

Tubα = {x ∈ Rn | d(x,X) < α} =
⋃
x∈X

B(x, α).

If X has reach τ , then π : Tubτ → X where x maps to its

nearest point in X is well-defined and continuous [4].

τ

Y

Tubα
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Proposition (Niyogi, Smale, Weinberger)

Let X ⊆ Rn have reach τ > 0. Let p ∈ X and suppose

x ∈ Tubτ \X satisfies π(x) = p. If c = p+ τ x−p
‖x−p‖ , then

B(c, τ) ∩X = ∅.

Y

X

τ
c
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Results



Main Theorem

Theorem (Metric Hausmann)

Let X ⊆ Rn and suppose the reach τ of X is positive. Then for

all r < τ , the metric Vietoris–Rips thickening VRm(X; r) is

homotopy equivalent to X.

τ
Y

X with Tubτ

VRm(X; r)

f

π

i

X
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Theorem (Metric Nerve Theorem)

Let X be a subset of Euclidean space Rn, equipped with the

Euclidean metric, and suppose the reach τ of X is positive.

Then for all r < τ , the metric Čech thickening Čm(X; 2r) is

homotopy equivalent to X.

τ
Y

X with Tubτ

Čm(X; 2r)

f

π

i

X
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Lemmas

Lemma

For X ⊆ Rn and r > 0, the linear projection map

f : VRm(X; r)→ Rn defined by∑
λixi 7→

∑
λixi

has its image contained in Tubr.

Proof.

Let x =
∑k

i=0 λixi ∈ VRm(X; r); we have

diam(conv{x0, . . . , xk}) = diam([x0, . . . , xk]) ≤ r.

Since f(x) ∈ conv{x0, . . . , xk}, it follows that

d(f(x), X) ≤ d(f(x), x0) ≤ r, and so f(x) ∈ Tubr.
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Lemma

Let x0, . . . , xk ∈ Rn, let y ∈ conv{x0, . . . , xk}, and let C be a

convex set with y /∈ C. Then there is at least one xi with xi /∈ C.

Proof.

Suppose for a contradiction that we had xi ∈ C for all

i = 0, . . . , k. Then since C is convex, we’d also have

y ∈ conv{x0, . . . , xk} ⊆ C. Hence it must be the case that

xi /∈ C for some i.

21



Lemma

Let X ⊆ Rn have positive reach τ , let [x0, . . . xk] be a simplex in

VR(X; r) with r < τ , let x =
∑
λixi ∈ VRm(X; r), and let

p = π(f(x)). Then the simplex [x0, . . . , xk, p] is in VR(X; r).

Proof.
T⊥p Hx0

x0f(x)

p

B(c, τ)

c

B(x0, r)

22



Main Result

We are now prepared to prove our main result.

Theorem

Let X be a subset of Euclidean space Rn, equipped with the

Euclidean metric, and suppose the reach τ of X is positive.

Then for all r < τ , the metric Vietoris–Rips thickening

VRm(X; r) is homotopy equivalent to X.

23



Proof.

By [1, Lemma 5.2], map f : VRm(X; r)→ Rn is 1-Lipschitz and

hence continuous. It follows from a previous lemma that the

image of f is a subset of Tubτ . Let i : X → VRm(X; r) be the

inclusion map. Note that π ◦ f ◦ i = idX .

τ
Y

X with Tubτ

VRm(X; r)

f

π

i

X

24



Proof.

Consider H : VRm(X; r)× I → VRm(X; r) defined by

H(x, t) = t · idVRm(X;r) + (1− t)i ◦ π ◦ f . H is well-defined by

the final lemma, and continuous by [1, Lemma 3.8].It follows

that H is a homotopy equivalence from i ◦ π ◦ f to idVRm(X;r).

τ
Y

X with Tubτ

VRm(X; r)

f

π

i

X
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Čech Result

Theorem

Let X be a subset of Euclidean space Rn, equipped with the

Euclidean metric, and suppose the reach τ of X is positive.

Then for all r < τ , the metric Čech thickening Čm(X; 2r) is

homotopy equivalent to X.

Proof.

The proof uses similar techniques to that of the Metric

Hausmann’s Theorem.

25



Conclusion



Conclusions

• Metric analogue of Hausmann in Euclidean space.

• For a Riemannian version see [1]. Or:

Corollary

If N is a smooth, compact, Riemannian manifold, there exists a

τ > 0 such that VRm(N ; r) ' N for all 0 < r < τ .

Proof.

This follows from the Nash Embedding theorem [8].

• Open questions:

� Do similar results hold for sufficiently dense samplings

[7, 3]?

� Stability under persistent homology [2]?
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