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Objectives
The objectives of our research project include:
•Defining a notion of MDS on infinite metric measure spaces
•Studying its optimal properties and goodness of fit
•Testing convergence of MDS on metric measure spaces

Multidimensional Scaling
Multidimensional scaling (MDS) is a set of statistical techniques con-
cerned with the problem of constructing a configuration of n points in
a Euclidean space using information about the dissimilarities (or dis-
tances) between the n objects. The dissimilarities need not be based on
Euclidean distances; they can represent many types of dissimilarities
between objects. The goal of MDS is to map the objects x1, . . . , xn
to configuration (or embedding) points f (x1), . . . , f (xn) in Rm in such
a way that the given dissimilarities d(xi, xj) are well-approximated by
the Euclidean distance between f (xi) and f (xj) [1].

Motivating questions
• If a finite sample Xn ⊆ X converges to X as we sample more
points, then in what sense do the MDS embeddings of these finite
samples converge to the MDS embedding of X?

•More generally, if a sequence of metric measure spaces converges
to X , then in what sense do the MDS embeddings of these spaces
converge to the MDS embedding of X?

MDS on Infinite Metric Measure
Spaces and its Convergence

We study multidimensional scaling of infinite metric measure spaces,
that is spaces with infinitely many points equipped with some prob-
ability measure. Our motivation is to prove convergence properties
of MDS of finite metric spaces. Convergence is well-understood when
each metric space has the same finite number of points [3], but we are
also interested in convergence when the number of points varies (and
perhaps tends to infinity). An important application would be under-
standing how MDS behaves as one samples more and more points from
a dataset.

Classical MDS - Infinite MDS
The following table shows a comparison of various elements of classical MDS and infinite MDS.

Elements Classical MDS Infinite MDS

Data (Xn, d) (X, dX, µ)

Distance Representation Di,j = d(xi, xj), D ∈Mn×n KD(x, s) = dX(x, s) ∈ L2
µ⊗µ(X ×X)

Linear Operator B = −1
2HD

(2)H [TKB
φ](x) = ∫

KB(x, s)φ(s)µ(ds)

Eigenvalues λ1, λ2, . . . λn λ̂1, λ̂2, . . .

Eigenvectors/Eigenfunctions v(1), v(2), . . . , v(m) ∈ Rn φ1(x), φ2(x), . . . ∈ L2(X)

Embedding in Rm or `2 f (xi) =
(√

λ1v
(1)
i ,
√
λ2v

(2)
i , . . . ,

√
λnv

(m)
i

)
f (x) =

(√
λ̂1φ1(x),

√
λ̂2φ2(x),

√
λ̂3φ3(x), . . .

)

Strain Minimization
n∑

i,j=1
(bi,j − b̂i,j)2 ∫ ∫ (

KB(x, t)−KB̂(x, t)
)2
µ(dt)µ(dx)

Example: A Circle
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Figure 1: MDS embedding of 1000 evenly spaced points on S1
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