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Multidimensional Scaling

o Multidimensional scaling (MDS) is a set of statistical
techniques concerned with the problem of constructing a
configuration of n points in Euclidean space using information
about the dissimilarities between the n objects.
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Purpose of Multidimensional Scaling

@ MDS mainly serves as a visualization technique for proximity
data, the input of MDS, which is usually represented in the
form of an n x n dissimilarity matrix.

@ The choice of the embedding dimension m is arbitrary in
principle, but low in practice m = 1,2, or 3.
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Some Applications of MDS

@ MDS was invented for the analysis of proximity data which
arise in the following areas:

Social sciences, behavioral sciences, psychometrics
Archeology

Chemistry (molecular conformation)

Graph layout techniques

Classification problems

Dimension reduction

Machine learning (Isomap, kernel PCA -- )
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o Similarities can represent for instance:
o People’s ratings of similarities between objects
o The percent agreement between judges
o The number of times a subjects fails to discriminate between
stimuli etc.

Lara Kassab Multidimensional Scaling: Infinite Metric Measure Spaces- 4



Visualization of MDS

0 6 8
Consider the following dissimilarity matrix, D1 = [6 0 10
8§ 10 0

Figure: MDS embedding of D; into R2.

Configuration Points: (—1.3163,3.0624), (—4.3046, —2.1404) and
(5.6209, —0.9220).
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Visualization of MDS

Consider the following dissimilarity matrix,

0 1 1 V2 1
1 0 Vv2 1 1
D=1 V2 o0 1 1
NI 1 0 1
1 1 1 1 0

Figure: MDS embedding of D5 into R3.
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Visualization of MDS
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Figure: MDS embedding of D3 into R?.
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Types of Multidimensional Scaling

There are several types of MDS, and they differ mostly in the loss
function they minimize. In general, there are two dichotomies:

o Kruskal-Shepard distance scaling versus classical
Torgerson-Gower inner-product scaling.

o Metric scaling versus nonmetric scaling.
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Common Loss Functions

A Stress Function:

> (dij — diy)”

Stress(f) = \| =2 soale

A Strain Function:

Strain(f) = Z (bij — (f(4), f(fbj)>)2-

i?j

Lara Kassab Multidimensional Scaling: Infinite Metric Measure Spaces- 9



Motivation Behind Our Work

o We address questions on convergence of MDS: if a sequence
of metric measure spaces converges to a fixed metric measure
space X, then in what sense do the MDS embeddings of
these spaces converge to the MDS embedding of X7?
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MDS of evenly spaced points on a Circle

MDS of evenly-spaced points on the circle equipped with the
geodesic metric:

05

Figure: MDS embedding of Siggo-
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MDS of evenly spaced points on a Circle

Proposition

The classical MDS embedding of S} lies, up to a rigid motion of
R™, on the curve v,,: S — R™ defined by

Ym (0) = (a1(n) cos(8), a1 (n) sin(h), as(n) cos(30), as(n) sin(36),...) € R™,

where lim,, o a;j(n) = \/75 (with j odd).

The MDS embeddings of the geodesic circle are closely related
to [6].
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Motivation Behind Our Work

o Convergence is well-understood when each metric space has
the same finite number of points, and also fairly
well-understood when each metric space has a finite number

of points tending to infinity.

@ An important example is the behavior of MDS as one samples
more and more points from a dataset.

—

Figure: Convergence of arbitrary measures with finite support.
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Motivation Behind Our Work

o We are also interested in convergence when the metric
measure spaces in the sequence perhaps have an infinite
number of points.

@ In order to prove such results, we first need to define the MDS
embedding of an infinite metric measure space X, and study
its optimal properties and goodness of fit.

Figure: Convergence of arbitrary measures with infinite support.
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Classical MDS: Algorithm

The procedure for classical MDS can be summarized in the
following steps.

Let D = (d;j) be a n x n distance matrix.

@ Compute the matrix A = (a;;), where a;; = —%dfj.

Q Apply double centering to A. Define B=HAH, where
H=I-n"111".
O Compute the eigendecomposition of B = TAT " .

Q Let A,, be the matrix of the largest m eigenvalues sorted in
descending order, and let I';,, be the matrix of the
corresponding m eigenvectors. Then, the coordinate matrix of

classical MDS is given by X = I',, AL/
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Classical MDS: Theory

[2, Theorem 14.2.1] Let D be a dissimilarity matrix. Then D is
Euclidean if and only if B is a positive semi-definite matrix.

Theorem

[2, Theorem 14.4.1] Let D be a Euclidean distance matrix
corresponding to a configuration X in R™, and fix k (1 < k < m).
Then amongst all projections XL of X onto k-dimensional

| A

n ~
subspaces of R™, the quantity > (d2, — d2,) is minimized when
r,s=1
X is projected onto its principal coordinates in k dimensions.
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Classical MDS: Optimality Property

When D is not necessarily Euclidean, it is more convenient to work
with the matrix B = HAH. If X is a fitted configuration in R™
with centered inner product matrix B, then a measure of the
discrepancy between B and B is the following Strain function:

tr(B-B)%) =Y (bij —bij)™ (1)

[2, Theorem 14.4.2] Let D be a dissimilarity matrix (not
necessarily Euclidean). Then for fixed m, (1) is minimized over all

configurations X in m dimensions when X is the classical solution
to the MDS problem.
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Metric Measure Space

Definition

A metric measure space (mm-space) is a triple (X, dx, ux) where
o (X,dx) is a compact metric space.

o ux is a Borel probability measure on X, i.e. pux(X)=1.

Figure: An illustration of a metric measure space.
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Euclidean Metric Measure Spaces

Definition

A metric space (X, dx) is said to be Euclidean if (X,dx) can be
isometrically embedded into (¢2, || - ||2). Thatis, (X,dx) is
Euclidean if there exists an isometric embedding f: X — ¢2,
meaning Vz,s € X, we have that dx(z,s) = dp2(f(z), f(s)).

Furthermore, we call a metric measure space (X, dx, pux)
Euclidean if its underlying metric space (X, dx) is.

Indeed, (X,dX) could be finite dimensional, i.e., X C R™ and dg
is the Euclidean metric on R™.
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Square-Integrable Functions

We denote by L?(X, ;1) the set of square integrable L?-functions
with respect to the measure y. We note that L?(X, i) is
furthermore a Hilbert space, after equipping it with the inner
product given by

(f.9) :/ng dp.

Definition (Roughly Speaking)

A measurable function f on X x X is said to be square-integrable
if

/X /X |f(z, )2 p(dz)u(ds) < oo

We denote by Lf@u(X x X) the set of square integrable functions

with respect to the measure yu ® pu.

v
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Kernels

In this context, a real-valued L?-kernel K: X x X — R is a
continuous measurable square-integrable function i.e.

KelLl,, (X xX).

Definition
A kernel K is symmetric (or complex symmetric or Hermitian) if

K(z,s) = K(s,x) forall z,s € X,

where the overline denotes the complex conjuguate.

Most of the kernels that we define in our work are symmetric.
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Symmetric Kernels

Definition
A symmetric function K : X x X — R is called a positive
semi-definite (p.s.d.) kernel on X if

i iciCjK(:L‘i, LL‘j) > 0

i=1 j=1

holds for any m € N, any z1,...,2, € X, and any c1,...,¢pn € R,
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Hilbert—Schmidt Integral Operator

Definition (Hilbert-Schmidt Integral Operator)

Let (X, €, 1) be a o-finite measure space, and let

K € L2, (X x X). Then the integral operator

[Tk ) (z / K(z, s)d(s)u(ds)

defines a linear mapping acting from the space L?(X, i) into itself.

Hilbert-Schmidt integral operators are both continuous (and hence
bounded) and compact operators.
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Spectral theorem on compact self-adjoint operators

Theorem (Spectral theorem on compact self-adjoint operators)

Let H be a not necessarily separable Hilbert space, and suppose
T € B(H) is compact self-adjoint operator. Then T has at most a
countable number of nonzero eigenvalues \,, € R, with a
corresponding orthonormal set {e,} of eigenvectors such that

T() = Z)‘n<€na > €n.

An important consequence of the spectral theorem, is the
Generalized Mercer’s theorem.
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MDS on Infinite metric measure spaces

Let (X,d, ) be a bounded metric measure space, where d is a
real-valued L2-function on X x X with respect to the measure
1 & . We propose the following MDS method on infinite metric
measure spaces:

@ From the metric d, construct the kernel K4: X x X — R
defined as K4(z,s) = —3d*(x, s).
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MDS on Infinite metric measure spaces

Q@ Obtain the kernel Kg: X x X — R defined as

Kp(z,s) = Ka(z,s) — /KA(w,s),u(dw) - /KA(x,z),u(dz)
X X

+ Ky(w, z)p(dw x dz).
XxX

Assume Kp € L*(X x X). Define Tk, : L*(X) — L*(X) as

Ty ) () = / Kp(x, 5)6(s)u(ds).

X
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MDS on Infinite metric measure spaces

© Let Ay > X2 > ... denote the eigenvalues of Tk, with
corresponding eigenfunctions ¢1, ¢o, . .., where the
¢i € L?(X) are real-valued functions. Indeed, {;}icn forms
an orthonormal system of L?(X).
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MDS on Infinite metric measure spaces

Xii(z)i(s), where

gk

O Define Ky(z,s) =

" lo ifx<o.

Define Tk, : L*(X) — L?*(X) to be the Hilbert—Schmidt
integral operator associated to the kernel K 5. Note that the
eigenfunctions ¢; for Tk, (with eigenvalues \;) are also the
eigenfunctions for T, (with eigenvalues Ai).
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MDS on Infinite metric measure spaces

@ Define the MDS embedding of X into 2 via the map
f: X — (% given by

f(z) = (\/5\71%(33), \/5\72452(33), \/5\73¢3(x), .. >

forall z € X.
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MDS on Infinite metric measure spaces

The MDS embedding map f: X — (? defined by

f(x) = (\/;ubl(a:), \/;m(x), \/;3¢3(x),...)

is a continuous map.
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MDS on Infinite metric measure spaces

Proposition

A metric measure space (X, d, ) is Euclidean if and only if Tk, is
a positive semi-definite operator on L*(X, ).
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Optimality Property

Definition

Define the Strain function of f as follows
Strain(f) = |Twp — Tiy | s = Te(Trp — Trey)?)

— [ [ (Kw,t) - Kyw.0) udt)u(da).

Let (X,d, ) be a bounded (and possibly non-Euclidean) metric
measure space. Then Strain(f) is minimized over all maps
f: X =0 orf: X — R™ when f is the MDS embedding.
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Convergence of MDS

Convergence of MDS for Arbitrary Measures:

S

Figure: Convergence of arbitrary measures with finite support.

sl

Figure: Convergence of arbitrary measures with infinite support.
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Convergence of MDS

Convergence of MDS with Respect to Gromov—Wasserstein
Distance:

C -

Figure: Convergence of mm-spaces equipped with measures of finite

support.
w N -

Figure: Convergence of mm-spaces equipped with measures of infinite
support.

Lara Kassab Multidimensional Scaling: Infinite Metric Measure Spaces- 34



Convergence of MDS

Robustness of MDS with Respect to Perturbations:
In a series of papers, Sibson and his collaborators consider the

robustness of multidimensional scaling with respect to
perturbations of the underlying distance or dissimilarity matrix.

>

Figure: Perturbation of the given dissimilarities.

Sibson's perturbation analysis shows that if one is has a converging
sequence of n X n dissimilarity matrices, then the corresponding
MDS embeddings of n points into Euclidean space also converge.
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Convergence of MDS

Convergence of MDS by the Law of Large Numbers [1]:
Suppose we are given the data set X,, = {x1,...,z,} with

x; € R¥ sampled independent and identically distributed (i.i.d.)
from an unknown probability measure p on X.

—

Figure: Convergence of arbitrary measures with finite support.
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Convergence of MDS

Data-Dependent Kernel:

K(ay) = (=) + [ dw,pPutdu) + [ dGe2Puz)
X X

- / d(w, 2)*u(dw x dz))
XxX

Associated Operator:

Define Tx : L2(X) — L2(X) as

[Tk fl(x /K:cs ds).

Lara Kassab Multidimensional Scaling: Infinite Metric Measure Spaces- 37



Convergence of MDS

[3, Theorem 3.1] The ordered spectrum of Tk, converges to the
ordered spectrum of T as n — oo with respect to the (>-distance,
namely

fQ(A(TKn), )\(TK)) —0 a.s.
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Convergence of MDS

Theorem

[1, Proposition 2| If K,, converges uniformly in its arguments and
in probability, with the eigendecomposition of the Gram matrix
converging, and if the eigenfunctions ¢y, ,,(z) of Tk, associated
with non-zero eigenvalues converge uniformly in probability, then
their limit are the corresponding eigenfunctions of Tk .
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Convergence of MDS

Definition (Total-variation convergence of measures)

Let (X, F) be a measurable space. The total variation distance
between two (positive) measures 1 and v is then given by

||u—v||w=s1;p{/xfdu—/xfdu}.

Indeed, convergence of measures in total-variation implies
convergence of integrals against bounded measurable functions,
and the convergence is uniform over all functions bounded by any
fixed constant.
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Convergence of MDS

Convergence of MDS for Finite Measures:

Proposition

Suppose i, = %ZzeXn 0, converges to y in total variation. If the
eigenfunctions ¢y, , of T, converge uniformly to ¢, o, asn — oo,
then their limit are the corresponding eigenfunctions of Tk .
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Convergence of MDS

Convergence of MDS for Arbitrary Measures:

S

Figure: Convergence of arbitrary measures with finite support.
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Figure: Convergence of arbitrary measures with infinite support.
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Convergence of MDS

Proposition

Suppose ., converges to i in total variation. If the eigenvalues
Ak of Tk, converge to Ay, and if their corresponding
eigenfunctions ¢y, , of Tk, converge uniformly to ¢, o, as n — oo,
then the ¢y ~, are eigenfunctions of T with eigenvalue \j.
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Convergence of MDS

Conjecture

Suppose we have the convergence of measures (i, — (i in total
variation. The ordered spectrum of Tk, converges to the ordered
spectrum of Ty as n — oo with respect to the ¢?—distance,

P(\Tx,),\Tk)) = 0.
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Convergence of MDS

Convergence of MDS with Respect to Gromov—Wasserstein
Distance:

C -

Figure: Convergence of mm-spaces equipped with measures of finite

support.
w N -

Figure: Convergence of mm-spaces equipped with measures of infinite
support.
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Convergence of MDS

Let (X, dy, jin) forn € N be a sequence of metric measure spaces
that converges to (X,d, ) in the Gromov—Wasserstein distance.
Then the MDS embeddings converge.
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