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Multidimensional Scaling

Multidimensional scaling (MDS) is a set of statistical
techniques concerned with the problem of constructing a
configuration of n points in Euclidean space using information
about the dissimilarities between the n objects.
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Purpose of Multidimensional Scaling

MDS mainly serves as a visualization technique for proximity
data, the input of MDS, which is usually represented in the
form of an n× n dissimilarity matrix.

The choice of the embedding dimension m is arbitrary in
principle, but low in practice m = 1, 2, or 3.
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Some Applications of MDS

MDS was invented for the analysis of proximity data which
arise in the following areas:

Social sciences, behavioral sciences, psychometrics
Archeology
Chemistry (molecular conformation)
Graph layout techniques
Classification problems
Dimension reduction
Machine learning (Isomap, kernel PCA · · · )

Similarities can represent for instance:

People’s ratings of similarities between objects
The percent agreement between judges
The number of times a subjects fails to discriminate between
stimuli etc.
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Visualization of MDS

Consider the following dissimilarity matrix, D1 =

0 6 8
6 0 10
8 10 0

 .

Figure: MDS embedding of D1 into R2.

Configuration Points: (−1.3163, 3.0624), (−4.3046,−2.1404) and
(5.6209,−0.9220).
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Visualization of MDS

Consider the following dissimilarity matrix,

D2 =


0 1 1

√
2 1

1 0
√
2 1 1

1
√
2 0 1 1√

2 1 1 0 1
1 1 1 1 0

 .

Figure: MDS embedding of D2 into R3.
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Visualization of MDS

Consider the following dissimilarity matrix, D3 =


0 2 2 1
2 0 2 1
2 2 0 1
1 1 1 0

 .

Figure: MDS embedding of D3 into R2.
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Types of Multidimensional Scaling

There are several types of MDS, and they differ mostly in the loss
function they minimize. In general, there are two dichotomies:

Kruskal-Shepard distance scaling versus classical
Torgerson-Gower inner-product scaling.

Metric scaling versus nonmetric scaling.
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Common Loss Functions

A Stress Function:

Stress(f) =

√√√√∑
i,j

(dij − d̂ij)
2

scale
.

A Strain Function:

Strain(f) =
∑
i,j

(bij − 〈f(xi), f(xj)〉)2.
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Motivation Behind Our Work

We address questions on convergence of MDS: if a sequence
of metric measure spaces converges to a fixed metric measure
space X, then in what sense do the MDS embeddings of
these spaces converge to the MDS embedding of X?
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MDS of evenly spaced points on a Circle

MDS of evenly-spaced points on the circle equipped with the
geodesic metric:
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Figure: MDS embedding of S1
1000.
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MDS of evenly spaced points on a Circle

Proposition

The classical MDS embedding of S1
n lies, up to a rigid motion of

Rm, on the curve γm : S1 → Rm defined by

γm(θ) = (a1(n) cos(θ), a1(n) sin(θ), a3(n) cos(3θ), a3(n) sin(3θ), . . .) ∈ Rm,

where limn→∞ aj(n) =
√
2
j (with j odd).

The MDS embeddings of the geodesic circle are closely related
to [6].
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Motivation Behind Our Work

Convergence is well-understood when each metric space has
the same finite number of points, and also fairly
well-understood when each metric space has a finite number
of points tending to infinity.

An important example is the behavior of MDS as one samples
more and more points from a dataset.

Figure: Convergence of arbitrary measures with finite support.
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Motivation Behind Our Work

We are also interested in convergence when the metric
measure spaces in the sequence perhaps have an infinite
number of points.

In order to prove such results, we first need to define the MDS
embedding of an infinite metric measure space X, and study
its optimal properties and goodness of fit.

Figure: Convergence of arbitrary measures with infinite support.

Lara Kassab Multidimensional Scaling: Infinite Metric Measure Spaces- 14



Classical MDS: Algorithm

The procedure for classical MDS can be summarized in the
following steps.

Let D = (dij) be a n× n distance matrix.

1 Compute the matrix A = (aij), where aij = −1
2d

2
ij .

2 Apply double centering to A. Define B = HAH, where
H = I− n−111>.

3 Compute the eigendecomposition of B = ΓΛΓ>.

4 Let Λm be the matrix of the largest m eigenvalues sorted in
descending order, and let Γm be the matrix of the
corresponding m eigenvectors. Then, the coordinate matrix of

classical MDS is given by X = ΓmΛ
1/2
m .
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Classical MDS: Theory

Theorem

[2, Theorem 14.2.1] Let D be a dissimilarity matrix. Then D is
Euclidean if and only if B is a positive semi-definite matrix.

Theorem

[2, Theorem 14.4.1] Let D be a Euclidean distance matrix
corresponding to a configuration X in Rm, and fix k (1 ≤ k ≤ m).
Then amongst all projections XL1 of X onto k-dimensional

subspaces of Rm, the quantity
n∑

r,s=1
(d2rs − d̂2rs) is minimized when

X is projected onto its principal coordinates in k dimensions.
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Classical MDS: Optimality Property

When D is not necessarily Euclidean, it is more convenient to work
with the matrix B = HAH. If X̂ is a fitted configuration in Rm
with centered inner product matrix B̂, then a measure of the
discrepancy between B and B̂ is the following Strain function:

tr((B− B̂)2) =

n∑
i,j=1

(bi,j − b̂i,j)2. (1)

Theorem

[2, Theorem 14.4.2] Let D be a dissimilarity matrix (not
necessarily Euclidean). Then for fixed m, (1) is minimized over all
configurations X̂ in m dimensions when X̂ is the classical solution
to the MDS problem.
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Metric Measure Space

Definition

A metric measure space (mm-space) is a triple (X, dX , µX) where

(X, dX) is a compact metric space.

µX is a Borel probability measure on X, i.e. µX(X) = 1.

Figure: An illustration of a metric measure space.
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Euclidean Metric Measure Spaces

Definition

A metric space (X, dX) is said to be Euclidean if (X, dX) can be
isometrically embedded into (`2, ‖ · ‖2). That is, (X, dX) is
Euclidean if there exists an isometric embedding f : X → `2,
meaning ∀x, s ∈ X, we have that dX(x, s) = d`2(f(x), f(s)).

Furthermore, we call a metric measure space (X, dX , µX)
Euclidean if its underlying metric space (X, dX) is.

Indeed, (X̂, dX̂) could be finite dimensional, i.e., X̂ ⊆ Rm and dX̂
is the Euclidean metric on Rm.
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Square-Integrable Functions

We denote by L2(X,µ) the set of square integrable L2-functions
with respect to the measure µ. We note that L2(X,µ) is
furthermore a Hilbert space, after equipping it with the inner
product given by

〈f, g〉 =

∫
X
fg dµ.

Definition (Roughly Speaking)

A measurable function f on X ×X is said to be square-integrable
if ∫

X

∫
X
|f(x, s)|2 µ(dx)µ(ds) <∞.

We denote by L2
µ⊗µ(X ×X) the set of square integrable functions

with respect to the measure µ⊗ µ.
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Kernels

In this context, a real-valued L2-kernel K : X ×X → R is a
continuous measurable square-integrable function i.e.
K ∈ L2

µ⊗µ(X ×X).

Definition

A kernel K is symmetric (or complex symmetric or Hermitian) if

K(x, s) = K(s, x) for all x, s ∈ X,

where the overline denotes the complex conjuguate.

Most of the kernels that we define in our work are symmetric.

Lara Kassab Multidimensional Scaling: Infinite Metric Measure Spaces- 21



Symmetric Kernels

Definition

A symmetric function K : X ×X → R is called a positive
semi-definite (p.s.d.) kernel on X if

n∑
i=1

n∑
j=1

cicjK(xi, xj) ≥ 0

holds for any m ∈ N, any x1, . . . , xm ∈ X, and any c1, . . . , cm ∈ R.
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Hilbert–Schmidt Integral Operator

Definition (Hilbert–Schmidt Integral Operator)

Let (X,Ω, µ) be a σ-finite measure space, and let
K ∈ L2

µ⊗µ(X ×X). Then the integral operator

[TKφ](x) =

∫
X
K(x, s)φ(s)µ(ds)

defines a linear mapping acting from the space L2(X,µ) into itself.

Hilbert–Schmidt integral operators are both continuous (and hence
bounded) and compact operators.
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Spectral theorem on compact self-adjoint operators

Theorem (Spectral theorem on compact self-adjoint operators)

Let H be a not necessarily separable Hilbert space, and suppose
T ∈ B(H) is compact self-adjoint operator. Then T has at most a
countable number of nonzero eigenvalues λn ∈ R, with a
corresponding orthonormal set {en} of eigenvectors such that

T (·) =
∑
n

λn〈en, ·〉 en.

An important consequence of the spectral theorem, is the
Generalized Mercer’s theorem.
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MDS on Infinite metric measure spaces

Let (X, d, µ) be a bounded metric measure space, where d is a
real-valued L2-function on X ×X with respect to the measure
µ⊗ µ. We propose the following MDS method on infinite metric
measure spaces:

1 From the metric d, construct the kernel KA : X ×X → R
defined as KA(x, s) = −1

2d
2(x, s).

-0.5

-0.4

-0.3

1.5

-0.2

-0.1

0

0.1

0.2

1

0.3

0.4

0.5

0.5
1.5

0 1
0.5-0.5

0
-1 -0.5

-1
-1.5 -1.5

Lara Kassab Multidimensional Scaling: Infinite Metric Measure Spaces- 25



MDS on Infinite metric measure spaces

2 Obtain the kernel KB : X ×X → R defined as

KB(x, s) = KA(x, s)−
∫
X

KA(w, s)µ(dw)−
∫
X

KA(x, z)µ(dz)

+

∫
X×X

KA(w, z)µ(dw × dz).

Assume KB ∈ L2(X ×X). Define TKB
: L2(X)→ L2(X) as

[TKB
φ](x) =

∫
X

KB(x, s)φ(s)µ(ds).
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MDS on Infinite metric measure spaces

3 Let λ1 ≥ λ2 ≥ . . . denote the eigenvalues of TKB
with

corresponding eigenfunctions φ1, φ2, . . ., where the
φi ∈ L2(X) are real-valued functions. Indeed, {φi}i∈N forms
an orthonormal system of L2(X).
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MDS on Infinite metric measure spaces

4 Define KB̂(x, s) =
∞∑
i=1

λ̂iφi(x)φi(s), where

λ̂i =

{
λi if λi ≥ 0,

0 if λi < 0.

Define TKB̂
: L2(X)→ L2(X) to be the Hilbert–Schmidt

integral operator associated to the kernel KB̂. Note that the
eigenfunctions φi for TKB

(with eigenvalues λi) are also the
eigenfunctions for TKB̂

(with eigenvalues λ̂i).
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MDS on Infinite metric measure spaces

5 Define the MDS embedding of X into `2 via the map
f : X → `2 given by

f(x) =

(√
λ̂1φ1(x),

√
λ̂2φ2(x),

√
λ̂3φ3(x), . . .

)
for all x ∈ X.
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MDS on Infinite metric measure spaces

Proposition

The MDS embedding map f : X → `2 defined by

f(x) =

(√
λ̂1φ1(x),

√
λ̂2φ2(x),

√
λ̂3φ3(x), . . .

)
is a continuous map.
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MDS on Infinite metric measure spaces

Proposition

A metric measure space (X, d, µ) is Euclidean if and only if TKB
is

a positive semi-definite operator on L2(X,µ).
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Optimality Property

Definition

Define the Strain function of f as follows

Strain(f) = ‖TKB
− TKB̂

‖2HS = Tr((TKB
− TKB̂

)2)

=

∫ ∫ (
KB(x, t)−KB̂(x, t)

)2
µ(dt)µ(dx).

Theorem

Let (X, d, µ) be a bounded (and possibly non-Euclidean) metric
measure space. Then Strain(f) is minimized over all maps
f : X → `2 or f : X → Rm when f is the MDS embedding.
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Convergence of MDS

Convergence of MDS for Arbitrary Measures:

Figure: Convergence of arbitrary measures with finite support.

Figure: Convergence of arbitrary measures with infinite support.
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Convergence of MDS

Convergence of MDS with Respect to Gromov–Wasserstein
Distance:

Figure: Convergence of mm-spaces equipped with measures of finite
support.

Figure: Convergence of mm-spaces equipped with measures of infinite
support.
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Convergence of MDS

Robustness of MDS with Respect to Perturbations:

In a series of papers, Sibson and his collaborators consider the
robustness of multidimensional scaling with respect to
perturbations of the underlying distance or dissimilarity matrix.

Figure: Perturbation of the given dissimilarities.

Sibson’s perturbation analysis shows that if one is has a converging
sequence of n× n dissimilarity matrices, then the corresponding
MDS embeddings of n points into Euclidean space also converge.
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Convergence of MDS

Convergence of MDS by the Law of Large Numbers [1]:

Suppose we are given the data set Xn = {x1, . . . , xn} with
xi ∈ Rk sampled independent and identically distributed (i.i.d.)
from an unknown probability measure µ on X.

Figure: Convergence of arbitrary measures with finite support.
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Convergence of MDS

Data-Dependent Kernel:

K(x, y) =
1

2
(−d(x, y)2 +

∫
X

d(w, y)2µ(dw) +

∫
X

d(x, z)2µ(dz)

−
∫
X×X

d(w, z)2µ(dw × dz))

Associated Operator:

Define TK : L2(X)→ L2(X) as

[TKf ](x) =

∫
K(x, s)f(s)µ(ds).
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Convergence of MDS

Theorem

[3, Theorem 3.1] The ordered spectrum of TKn converges to the
ordered spectrum of TK as n→∞ with respect to the `2-distance,
namely

`2(λ(TKn), λ(TK))→ 0 a.s.
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Convergence of MDS

Theorem

[1, Proposition 2] If Kn converges uniformly in its arguments and
in probability, with the eigendecomposition of the Gram matrix
converging, and if the eigenfunctions φk,n(x) of TKn associated
with non-zero eigenvalues converge uniformly in probability, then
their limit are the corresponding eigenfunctions of TK .
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Convergence of MDS

Definition (Total-variation convergence of measures)

Let (X,F) be a measurable space. The total variation distance
between two (positive) measures µ and ν is then given by

‖µ− ν‖TV = sup
f

{∫
X
f dµ−

∫
X
f dν

}
.

Indeed, convergence of measures in total-variation implies
convergence of integrals against bounded measurable functions,
and the convergence is uniform over all functions bounded by any
fixed constant.
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Convergence of MDS

Convergence of MDS for Finite Measures:

Proposition

Suppose µn = 1
n

∑
x∈Xn

δx converges to µ in total variation. If the
eigenfunctions φk,n of TKn converge uniformly to φk,∞ as n→∞,
then their limit are the corresponding eigenfunctions of TK .
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Convergence of MDS

Convergence of MDS for Arbitrary Measures:

Figure: Convergence of arbitrary measures with finite support.

Figure: Convergence of arbitrary measures with infinite support.
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Convergence of MDS

Proposition

Suppose µn converges to µ in total variation. If the eigenvalues
λk,n of TKn converge to λk, and if their corresponding
eigenfunctions φk,n of TKn converge uniformly to φk,∞ as n→∞,
then the φk,∞ are eigenfunctions of TK with eigenvalue λk.

Lara Kassab Multidimensional Scaling: Infinite Metric Measure Spaces- 43



Convergence of MDS

Conjecture

Suppose we have the convergence of measures µn → µ in total
variation. The ordered spectrum of TKn converges to the ordered
spectrum of TK as n→∞ with respect to the `2–distance,

`2(λ(TKn), λ(TK))→ 0.
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Convergence of MDS

Convergence of MDS with Respect to Gromov–Wasserstein
Distance:

Figure: Convergence of mm-spaces equipped with measures of finite
support.

Figure: Convergence of mm-spaces equipped with measures of infinite
support.
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Convergence of MDS

Conjecture

Let (Xn, dn, µn) for n ∈ N be a sequence of metric measure spaces
that converges to (X, d, µ) in the Gromov–Wasserstein distance.
Then the MDS embeddings converge.
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