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▶ Sparsity-based structure in missing entries
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▶ Partial labels and word count data structure

▶ Detecting Short-Lasting Topics Using Nonnegative Tensor
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entries of a partially observed matrix from a subset of known entries.

missing values observed values estimated values



Structured Matrix Completion

Matrix completion is the task of filling-in, or predicting, the missing
entries of a partially observed matrix from a subset of known entries.

missing values observed values estimated values



Structured Matrix Completion

We consider sparsity-based structure in the missing entries whereby most
of the missing values are close in the ℓ0 or ℓ1 norm sense to 0 (or more
generally, to a fixed value).

missing values observed values estimated values



Structured Matrix Completion Problem

Recent work by Molitor and Needell [16] proposes solving the problem,

minimize
X

∥X∥∗ + α∥PΩC (X )∥

subject to PΩ(X ) = PΩ(M),
(1)

where α > 0, ∥ · ∥∗ denotes the nuclear norm, ∥ · ∥ is an appropriate
matrix norm, Ω is the set of observed entries, and PΩ denotes the
sampling operator.



IRLS for Sparse Recovery

Iteratively reweighted least squares (IRLS) algorithm for sparse vector
recovery [7],

minimize ∥x∥ℓ2(w2)

subject to Ax = b

xk+1 = argmin
x

{
n∑

i=1

w k
i x

2
i : Ax = b

}
where w k = (|xk

i |2 + ϵ2k)
p/2−1



IRLS for Low-rank Matrix Recovery

In [15], Mohan and Fazel propose a family of IRLS algorithms for matrix
rank minimization.

The k-th iteration is given by

X k+1 = argmin
X

{
∥(W k

p )
1/2X∥2F : PΩ(X ) = PΩ(M)

}
, (2)

where W k
p = ((X k)⊤X k + γk I )

p
2−1.



Main Contribution



Algorithm: Structured IRLS

Algorithm 1: Structured IRLS for Matrix Completion
input : PΩ, M

initialize: X 0 = PΩ(M), W 0
p = I , w0

q = 1

while not converged do

X k = argmin
X

{
∥(W k−1

p )1/2X∥2F + α∥PΩc (X )∥2
ℓ2(w

k−1
q )

: PΩ(X ) = PΩ(M)
}

compute: W k
p = ((X k )⊤X k + γk I )

p
2
−1 and wk

q = ((PΩ(X ))2 + ϵk1)
q
2
−1

end



Implementation: Structured sIRLS

X k = argmin
X

{
∥(W k−1

p )1/2X∥2F + α∥PΩc (X )∥2
ℓ2(w

k−1
q )

: PΩ(X ) = PΩ(M)
}

Algorithm 2: Structured sIRLS for Matrix Completion
input: PΩ, M,r

initialize: X 0 = PΩ(M)

while not converged do
perform : take ks steps promoting sparsity

update : update the weights promoting low-rankness

perform : take kl steps promoting low-rankness

update : update the weights promoting sparsity

end



Exact Matrix Recovery: 1000× 1000 rank 10
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Figure 1. We consider twenty 1000⇥1000 sparse random matrices
of rank 10 with average density equal to 0.66. The upper plots
display (left) the average relative error for sIRLS kM�X̃kF /kMkF ,
and (right) the average relative error for Structured sIRLS kM �
X̂kF /kMkF . The lower plots display (left) the average ratio kM �
X̂kF /kM � X̃kF , and (right) the binned average ratio where white
means the average ratio is strictly less than 1, and black otherwise.

entries is greater than 0.5), which covers the majority of the cases where there is
sparsity-based structure in the missing entries.

4.2.4. 100 ⇥ 100 matrices with no knowledge of the rank a priori. In Figure 4, we
construct twenty random matrices of size 100⇥ 100 and of rank 8, as described in
Section 3.3. For this experiment, we do not provide the algorithm with any rank
estimate, for either sIRLS or Structured sIRLS. Instead, we allow the algorithm to
estimate the rank at each iteration based on a heuristic described in Section 3.3.
We observe in the bottom right plot of Figure 4, where we zoom in on the cases
where the sampling rate of non-zero entries is at least 0.7, that Structured sIRLS
outperform sIRLS to some extent in this region. Indeed, Structured sIRLS does
particularly better when more entries are observed.

4.2.5. 100 ⇥ 100 rank 20 matrices. We say a matrix completion problem is hard
when the degrees of freedom ratio FR is greater than 0.4 (as in [36]). In the
previous experiments, we considered a few cases where FR > 0.4, which occur
when the sampling rates of zero and nonzero entries are both relatively small. In
these cases, there is not necessarily high sparsity-based structure, which imposes
another challenge since the sampling rate of non-zero entries is approximately equal
to or only slightly greater than the sampling rate of zero entries. Therefore, in this
section, we consider hard cases (where FR > 0.4) with sparsity-based structure.

Figure: The plots display (left) the average relative error for sIRLS
∥M− X̃∥F/∥M∥F , and (right) the average relative error for Structured sIRLS
∥M− X̂∥F/∥M∥F .
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Figure 3. We consider twenty 100⇥ 100 sparse random matrices
of rank 10 with average density equal to 0.66. The upper plots
display (left) the average relative error for sIRLS kM�X̃kF /kMkF ,
and (right) the average relative error for Structured sIRLS kM �
X̂kF /kMkF . The lower plots display (left) the average ratio kM �
X̂kF /kM � X̃kF , and (right) the binned average ratio where white
means the average ratio is strictly less than 1, and black otherwise.

to handle significantly larger matrices. Similar experiments are considered in [37],
where Structured NNM is compared to NNM. Comparing our iterative algorithm
to Structured NNM is important since Structured NNM adapts nuclear norm min-
imization and `1 norm minimization, which are common heuristics for minimizing
rank and inducing sparsity, respectively. We define the relative error of Structured
NNM as kM � X̄kF /kMkF , where X̄ is the output of the Structured NNM algo-

rithm. The average ratio is then defined as kM � X̂kF /kM � X̄kF , where X̂ is the
output of the Structured sIRLS algorithm.

For all sampling rates, the degrees of freedom ratio is greater than 0.4, i.e. all the
problems are considered to be “hard” matrix completion problems. In Figure 6, we
provide Structured sIRLS with the rank of the matrices.

In Figure 6, we give Structured NNM an advantage by optimizing for each
matrix and combination of sampling rates the regularization parameter ↵ 2
{10�4, 10�3, 10�2, 10�1} for Structured NNM. However, for Structured sIRLS
(again with p = q = 1) we do not optimize the gradient step sizes or the num-
ber of step sizes. Varying the number or sizes of the gradient steps controls how
much we would like to promote low-rankness versus sparsity in the submatrix of
missing entries. In the experiments of Figure 6, we observe that for the most part
where the sampling rate of nonzero entries is between 0.6 and 0.9, Structured sIRLS

Figure: The plots display (left) the average relative error for sIRLS
∥M− X̃∥F/∥M∥F , and (right) the average relative error for Structured sIRLS
∥M− X̂∥F/∥M∥F .
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Exact Matrix Recovery: 30× 30 rank 7

ITERATIVE STRUCTURED MATRIX COMPLETION 19

Figure 6. We consider twenty 30⇥ 30 sparse random matrices of
rank 7, with average density equal to 0.53. We provide Structured
sIRLS with the rank of the matrices. We optimize for each matrix
and combination of sampling rates the regularization parameter
↵ 2 {10�4, 10�3, 10�2, 10�1} for Structured NNM. The upper plots
display (left) the average relative error for Structured NNM kM �
X̄kF /kMkF , and (right) the average relative error for Structured

sIRLS kM�X̂kF /kMkF . The lower plots display (left) the average

ratio kM � X̂kF /kM � X̄kF , and (right) the average ratio when
the sampling rate of non-zero entries is at most 0.90 (a zoomed in
version of part of the lower left plot).

0.3, which covers the majority of the cases where there is sparsity-based structure
in the missing entries, Structured sIRLS performs better than sIRLS.

For a higher noise level ✏ = 10�3, we observe that sIRLS and Structured sIRLS
algorithms perform roughly the same. This suggest that both sIRLS and Structured
sIRLS are robust to noise, with the improvements of Structured sIRLS from the
structure diminishing as the noise grows.

5. Conclusion. In this paper, we consider the notion of structured matrix com-
pletion, studied in the recent paper [37]. In particular, we are interested in sparsity-
based structure in the missing entries whereby the vector of missing entries is close
in the `0 or `1 norm sense to the zero vector (or more generally, to a constant vector).
For example, a missing rating of a movie might indicate the user’s lack of interest in
that movie, thus suggesting a lower rating than otherwise expected. In [37], Molitor
and Needell propose adjusting the standard nuclear norm minimization problem by
regularizing the values of the unobserved entries to take into account the structural
di↵erences between observed and unobserved entries.

Figure: The plots display (left) the average relative error for Structured NNM
∥M− X̄∥F/∥M∥F , and (right) the average relative error for Structured sIRLS
∥M− X̂∥F/∥M∥F .
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0.3, which covers the majority of the cases where there is sparsity-based structure
in the missing entries, Structured sIRLS performs better than sIRLS.

For a higher noise level ✏ = 10�3, we observe that sIRLS and Structured sIRLS
algorithms perform roughly the same. This suggest that both sIRLS and Structured
sIRLS are robust to noise, with the improvements of Structured sIRLS from the
structure diminishing as the noise grows.

5. Conclusion. In this paper, we consider the notion of structured matrix com-
pletion, studied in the recent paper [37]. In particular, we are interested in sparsity-
based structure in the missing entries whereby the vector of missing entries is close
in the `0 or `1 norm sense to the zero vector (or more generally, to a constant vector).
For example, a missing rating of a movie might indicate the user’s lack of interest in
that movie, thus suggesting a lower rating than otherwise expected. In [37], Molitor
and Needell propose adjusting the standard nuclear norm minimization problem by
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Figure: The plot displays the average ratio ∥M− X̂∥F/∥M− X̄∥F (Structured
sIRLS/Structured NNM), when the sampling rate of non-zero entries is at most
0.90.



Matrix Completion with Noise: 100× 100 rank 3
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Figure 7. We consider twenty 100⇥100 random matrices of rank
3 with noise parameter ✏ = 10�4. The upper plots display (left) the

average relative error for sIRLS kB � X̃kF /kBkF , and (right) the

average relative error for Structured sIRLS kB� X̂kF /kBkF . The

lower plots display (left) the average ratio kB � X̂kF /kB � X̃kF ,
and (right) the average ratio when the sampling rate of non-zero
entries is at least 0.35 (a zoomed in version of part of the lower left
plot).

To our knowledge, we develop the first iterative algorithm that addresses the
structured low-rank matrix completion problem, for which Structured NNM has
been proposed. We adapt an iterative algorithm, called Structured IRLS, by ad-
justing the IRLS algorithm proposed in [36]. We also present a gradient-projection-
based implementation, called Structured sIRLS that can handle large-scale matrices.
The algorithms are designed to promote low-rank structure in the recovered matrix
with sparsity in the missing entries.

We perform numerical experiments on various structured settings to test the per-
formance Structured sIRLS compared to sIRLS and Structured NNM. We consider
problems of various degrees of freedom and rank knowledge. To generate matrices
with sparsity-based structure in the missing entries, we subsample from the zero
and nonzero entries of a sparse data matrix at various rates. Indeed, we are inter-
ested in the structured cases, when the sampling rate of the zero entries is lower
than the sampling rate of the nonzero entries.

Our numerical experiments show that Structured sIRLS often gives better re-
covery results than sIRLS in structured settings. Further, for small enough noise
our proposed method often performs better than sIRLS in structured settings, and
as noise gets larger both converge to the same performance. Further, our numeri-
cal experiments show that Structured sIRLS is comparable to Structured NNM on

Figure: We consider twenty 100× 100 random matrices of rank 3 with noise
parameter ϵ = 10−4. The plots display (left) the average relative error for
sIRLS ∥B− X̃∥F/∥B∥F , and (right) the average relative error for Structured
sIRLS ∥B− X̂∥F/∥B∥F .



Summary

▶ We adapt an iterative algorithm for low-rank matrix completion to
take into account sparsity-based structure in unobserved entries by
adjusting the IRLS-p algorithm studied in [15].

▶ We also present an iterative gradient-projection-based
implementation [11] of the algorithm that can handle large-scale
matrices.

▶ We present numerical experiments showcasing improved performance
of the proposed method compared to the standard IRLS
algorithm [15] in structured settings on hard and noisy problems.

▶ We also show comparable performance with Structured NNM [16]
for structured (small) matrices.
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Future Work

▶ Extending the theoretical results for Structured IRLS to more
general settings.

▶ Extending sparsity-based structure in the missing entries to a more
general notion of structure, whereby the probability that an entry is
observed or not may depend on more than just the value of that
entry.

▶ Extending Structured IRLS methods to higher-order tensors with
certain underlying low-rank and sparsity structures.
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Topic Modeling

Topic modeling is an unsupervised machine learning technique used to
reveal latent themes from large datasets.

Figure: Topic modeling on 30,991 articles from the Grolier encyclopedia [13].



Nonnegative Matrix Factorization (NMF)

Given a matrix X ∈ Rn1×n2
≥0 and a desired dimension r , the goal is to

decompose X ≈ A · S into two low-dimensional matrices [5, 12, 13, 27]:

argmin
A≥0,S≥0

∥X− AS∥2F and argmin
A≥0,S≥0

D(X∥AS)



Nonnegative Matrix Factorization (NMF)

Given a matrix X ∈ Rn1×n2
≥0 and a desired dimension r , the goal is to

decompose X ≈ A · S into two low-dimensional matrices [5, 12, 13, 27]:

argmin
A≥0,S≥0

∥X− AS∥2F and argmin
A≥0,S≥0

D(X∥AS)



High-Dimensional Data

Frequently, one is faced with the problem of performing a
(semi-)supervised learning task on extremely high-dimensional data.



Semi-supervised NMF (SSNMF)

SSNMF, proposed in [14], is a modification of NMF to jointly incorporate
a data matrix and a (partial) class label matrix:
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Semi-supervised NMF

Given a data matrix X ∈ Rn1×n2
≥0 and a class label matrix Y ∈ Rk×n2

≥0 ,
SSNMF is defined by [14]:

argmin
A,S,B≥0

∥X− AS∥2F︸ ︷︷ ︸
Reconstruction Error

+λ ∥Y − BS∥2F︸ ︷︷ ︸
Classification Error

, (3)

Multiplicative updates have been developed for SSNMF for the Frobenius
norm.



Proposed SSNMF Models

In this work, we define models with different error functions applied to
the reconstruction and supervision factorization terms as

argmin
A,S,B≥0

R(W ⊙ X,W ⊙ AS)︸ ︷︷ ︸
Reconstruction Error

+ λ S(L⊙ Y,L⊙ BS)︸ ︷︷ ︸
Supervision Error

(4)

denoted by (R(·, ·),S(·, ·))-SSNMF where R(·, ·) and S(·, ·) are the error
functions applied to the reconstruction term and supervision term,
respectively.
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Model Objective
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Proposed SSNMF Models

▶ Utilizing information divergence on the data reconstruction term is a
natural choice since many representations of document data
correspond to counts of word patterns in the data and are naturally
modelled by Poisson distributions [4, 9, 19, 20, 22, 23].

▶ Further, our proposed models differ in the classification framework
proposed which does not necessarily rely on SVM for linear
classification.

▶ We further provide analysis on the topics learned for the
classification task, where the choice of rank is not necessarily the
same as the number of classes.
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Maximum Likelihood Estimation

Suppose that the observed data X and supervision information Y have
entries given as the sum of random variables,

Xγ,τ =
r∑

i=1

xγ,i,τ and Yη,τ =
r∑

i=1

yη,i,τ ,

and that the set of Xγ,τ and Yη,τ are statistically independent
conditional on A,B, and S.



Maximum Likelihood Estimation

1. When xγ,i,τ and yη,i,τ have distributions

N (xγ,i,τ |Aγ,iSi,τ , σ1) and N (yη,i,τ |Bη,iSi,τ , σ2)

respectively, the maximum likelihood estimator is

argmin
A,B,S≥0

∥X− AS∥2F +
σ1

σ2
∥Y − BS∥2F .

2. When xγ,i,τ and yη,i,τ have distributions

N (xγ,i,τ |Aγ,iSi,τ , σ1) and PO (yη,i,τ |Bη,iSi,τ )

respectively, the maximum likelihood estimator is

argmin
A,B,S≥0

∥X− AS∥2F + 2rσ1D(Y∥BS).
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Multiplicative Updates

Suppose that the gradient of F with respect to variable Θ has a
decomposition that is of the form:

∇ΘF = [∇ΘF ]
+ − [∇ΘF ]

−,

where [∇ΘF ]
+ > 0 and [∇ΘF ]

− > 0. Then the multiplicative update for
Θ has the form

Θ← Θ⊙ [∇ΘF ]
−

[∇ΘF ]+
.



Classification Framework

Here we describe a framework for using any of the SSNMF models for
classification tasks:

argmin
A,S,B≥0

R(W ⊙ X,W ⊙ AS)︸ ︷︷ ︸
Reconstruction Error

+ λ S(L⊙ Y,L⊙ BS)︸ ︷︷ ︸
Supervision Error

(5)
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1. Compute Atrain,Btrain,Strain as

argmin
A,B,S≥0

R(Wtrain ⊙ Xtrain,Wtrain ⊙ AS) + λS(Ytrain,BS).

2. Solve Stest = argmin
S≥0

R(Wtest ⊙ Xtest,Wtest ⊙ AtrainS).

3. Compute predicted labels as Ŷtest = label(BtrainStest), where label(·)
assigns the largest entry of each column to 1 and all other entries to
0.
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20 Newsgroups Data Experiments

Table: 20 Newsgroups and subgroups

Groups Subgroups

Computers graphics, mac.hardware, windows.x

Sciences crypt(ography), electronics, space

Politics guns, mideast

Religion atheism, christian(ity)

Recreation autos, baseball, hockey



20 Newsgroups Data Experiments

Figure: The normalized Btrain matrix for the (D(·∥·), ∥ · ∥F ) SSNMF.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12 Topic 13
would game god x would game players people would one israel like god
space team would thanks armenian one team israel chip us guns anyone people

government car one anyone one like car gun key get people available church
use games jesus graphics people car last right algorithm could gun key one
key engine think know fbi baseball year government use like well probably christians



20 Newsgroups Data Experiments

Table: Mean (and std. dev.) of test classification accuracy.

Model Class. accuracy % (sd)

(∥ · ∥F , ∥ · ∥F ) 79.37 (0.47)

(∥ · ∥F ,D(·∥·)) 79.51 (0.38)

(D(·∥·), ∥ · ∥F ) 81.88 (0.44)

(D(·∥·),D(·∥·)) 81.50 (0.47)

∥ · ∥F -NMF + SVM 70.99 (2.71)

D(·∥·)-NMF + SVM 74.75 (2.50)

SVM 80.70 (0.27)

Multinomial NB 82.28



Summary

▶ We propose variants of semi-supervised nonnegative matrix
factorization formulations which utilize information divergence on
the data reconstruction term.

▶ We demonstrate that these models are MLE in the case of specific
distributions of uncertainty assumed on the data and labels.

▶ We derive multiplicative updates for the proposed models that allow
for missing data and partial supervision.

▶ We propose a classification framework for the models and
demonstrate the ability of these models to perform document
classification (e.g. 20 Newsgroups dataset).



Summary

▶ We propose variants of semi-supervised nonnegative matrix
factorization formulations which utilize information divergence on
the data reconstruction term.

▶ We demonstrate that these models are MLE in the case of specific
distributions of uncertainty assumed on the data and labels.

▶ We derive multiplicative updates for the proposed models that allow
for missing data and partial supervision.

▶ We propose a classification framework for the models and
demonstrate the ability of these models to perform document
classification (e.g. 20 Newsgroups dataset).



Summary

▶ We propose variants of semi-supervised nonnegative matrix
factorization formulations which utilize information divergence on
the data reconstruction term.

▶ We demonstrate that these models are MLE in the case of specific
distributions of uncertainty assumed on the data and labels.

▶ We derive multiplicative updates for the proposed models that allow
for missing data and partial supervision.

▶ We propose a classification framework for the models and
demonstrate the ability of these models to perform document
classification (e.g. 20 Newsgroups dataset).



Summary

▶ We propose variants of semi-supervised nonnegative matrix
factorization formulations which utilize information divergence on
the data reconstruction term.

▶ We demonstrate that these models are MLE in the case of specific
distributions of uncertainty assumed on the data and labels.

▶ We derive multiplicative updates for the proposed models that allow
for missing data and partial supervision.

▶ We propose a classification framework for the models and
demonstrate the ability of these models to perform document
classification (e.g. 20 Newsgroups dataset).



Future Work

▶ Taking a Bayesian approach to SSNMF by assuming
data-appropriate priors and performing maximum a posteriori
estimation.

▶ Forming a general framework of MLE models for exponential family
distributions of uncertainty, and study the class of models where
multiplicative update methods are feasible.

▶ Adapting the SSNMF algorithms for other (semi-)supervised learning
tasks such as regression and generalizing such algorithms for
higher-order tensors.
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Dynamic Topic Modeling

Dynamic topic modeling investigates how topics evolve in a sequentially
organized corpus of documents.

A truly successful topic modeling strategy should be able to detect both
long-lasting and shortly-lasting topics and clearly locate them in time.



Dynamic Topic Modeling

Dynamic topic modeling investigates how topics evolve in a sequentially
organized corpus of documents.

A truly successful topic modeling strategy should be able to detect both
long-lasting and shortly-lasting topics and clearly locate them in time.



Overview on Tensors

A tensor is a multidimensional or N-way array.



NCPD for Topic Modeling

The proposed method, based on nonnegative CANDECOMP/PARAFAC
tensor decomposition (NCPD) [2, 8], processes the entire 3-dimensional
tensor at once.



Nonnegative CP Decomposition (NCPD)

Given a third-order tensor X ∈ Rn1×n2×n3
+ and a desired dimension r , the

approximate NCPD of X seeks A ∈ Rn1×r
+ ,B ∈ Rn2×r

+ ,C ∈ Rn3×r
+ so that

X ≈
r∑

ℓ=1

aℓ ⊗ bℓ ⊗ cℓ,

where ⊗ denotes the outer product and aℓ, bℓ, and cℓ are the columns of
A,B, and C, respectively.
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Nonnegative CP Decomposition (NCPD)
We consider minimizing the reconstruction error,∥∥∥∥∥X −

r∑
k=1

ak ⊗ bk ⊗ ck

∥∥∥∥∥
F

among all the nonnegative vectors ak , bk , and ck .



Latent Dirichlet Allocation (LDA)

LDA is a generative, probabilistic model:

▶ documents are probability distributions over latent topics;

▶ topics are probability distributions over words.

Figure: Plate notation for LDA with Dirichlet-distributed topic-word
distributions. Source: Wikipedia.



Latent Dirichlet Allocation (LDA)



Semi-synthetic 20 Newsgroups Dataset Preprocessing

Semi-synthetic 20 Newsgroups Dataset:

▶ The 20 Newsgroups dataset is a collection of documents divided into
six groups partitioned into subjects, with a total of 20 subgroups.

▶ We consider only five categories: “Atheism”, “Space”, “Baseball”,
“For Sale”, and “Windows X” with a total of 1040 documents.

Figure: Semi-synthetic 20 Newsgroups tensor construction.



Results on 20 Newsgroups Dataset

Figure: The learned topics and prevalence of each extracted topic from the
semi-synthetic 20 Newsgroups dataset for (NMF, NCPD, LDA).



Twitter COVID-19 dataset Preprocessing

Twitter COVID-19 data:

▶ We consider Twitter text data related to the COVID-19 pandemic
from Feb. 1 to May 1 of 2020 [3].

▶ Specifically, we consider the top 1000 retweeted English tweets from
each day.



NCPD Results on COVID-19 Twitter Dataset
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Figure: The normalized factor matrix of NCPD with rank 20. Each column of
the heatmap indicates the distribution over the extracted topics for each day.



News Sources

Date News

2 Feb ‘No Meat, No Coronavirus’ [26]
3 Feb COVID-19 cruise ship outbreak [10]
7 Feb Death of Dr. Li Wenliang [1]
8 Feb COVID-19 death toll overtakes SARS [6]
18 Feb Spike of cases in South Korea [24]
26 Feb Mike Pence appointed to lead Coronavirus task force [21]
28 Feb ‘Trump calls Coronavirus Democrats’ “new hoax” [18]
29 Feb First COVID-19 death in the U.S. [17]
11 Mar WHO declares a pandemic [25]

Table: Event dates, headline summaries and references for news events relevant
to identified topics.



NMF Results on COVID-19 Twitter Dataset

02
-0

1
02

-0
7
02

-1
3
02

-1
9
02

-2
5
03

-0
2
03

-0
8
03

-1
4
03

-2
0
03

-2
6
04

-0
1
04

-0
7
04

-1
3
04

-1
9
04

-2
5

Date

get, need, know: 1
cases, confirmed cases, deaths: 2

stay home, stay safe, home stay: 3
social distancing, practice social, social media: 4

china, communist, made china: 5
lockdown, day, police: 6

trump, president trump, response: 7
tested positive, cruise ship, tests positive: 8

people, many people, people died: 9
wuhan, hospital, patients: 10
new, new cases, new york: 11

health, public health, health care: 12
pandemic, global pandemic, pandemic response: 13

us, help us, let us: 14
first case, breaking, confirmed: 15

death toll, deaths, breaking: 16
like, looks like, would like: 17
outbreak, hong kong, due: 18

world, around world, world health: 19
chinese, government, chinese government: 20

T
op

ic
0.05 0.10 0.15 0.20 0.25

Figure: The normalized mean topic representation of tweets per day learned via
NMF with rank 20.



LDA Results on COVID-19 Twitter Dataset
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Figure: The mean topic representation of tweets per day learned via LDA with
rank 20.



Million Headlines Dataset Preprocessing

Million Headlines Dataset:

▶ Dataset containing news headlines published from the years 2003 to
2019 sourced from the Australian news source ABC.

▶ We consider 700 headlines randomly selected per month with a total
of 142,100 headlines in the entire dataset.



NCPD Results on News Headlines Dataset

Figure: The normalized factor matrix of NCPD on the News Headlines dataset
with rank 25.



NMF Results on News Headlines Dataset

Figure: The normalized mean topic representation of headlines per month
learned via NMF with rank 25.



LDA Results on News Headlines Dataset

Figure: The mean topic representation of headlines per month learned via LDA
with rank 25.



Summary

▶ We demonstrate NCPD as a dynamic topic modeling technique able
to detect and accurately represent long-lasting, short-lasting, and
periodic topics from temporal text data.

▶ NCPD performs significantly better than standard matrix-based
topic modeling methods such as LDA and NMF in detecting topics
with short durations.

▶ An interesting auxiliary result of this work is the analysis of Twitter
text data related to the COVID-19 pandemic [3].
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Future Work

▶ Improving the efficiency of nonnegative tensor decompositions.

▶ Controlling the average desired length of the discovered topics, thus
forcing the algorithm to focus more or less on the short-term events.

▶ Performing comparisons between matrix and tensor-based methods
on different types of data (e.g. hyperspectral image data) for topic
modeling and other applications.
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designed to handle large-scale datasets and take into account
sparsity-based structure in the missing values to improve recovery.

▶ The second is a semi-supervised nonnegative matrix factorization
formulation with information divergence to better model word count
data and learn a low-dimensional representation that serves a
(semi-)supervised machine learning task.

▶ The third is a dynamic topic modeling technique that uses
nonnegative tensor decomposition to simultaneously process all the
modes of the data tensor, resulting in a more time-localized
lower-dimensional representation than traditional matrix methods.

▶ Each method exploits a different structure in the data:
sparsity-based structure, partial labels and word count data, and
higher-order tensor structure.
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