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Introduction

Today, we’re going to cover groups acting on metric spaces and
the spaces we build on top of them: Vietoris–Rips complexes.

First, we’ll informally review some important definitions,

and then cover our main result.

If we have time, we’ll talk about additional extensions of our
results applied to the Vietoris Rips complexes of real
projective n-space.
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Preliminaries

We will briefly cover the following definitions:

Group Actions

Metric Spaces

Simplicial Complexes

Vietoris–Rips Complexes

Metric Thickenings

Quotient Spaces

Homotopy and Persistent Homology
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Group Actions

A group G acting on a set S is a map φ : G × S → S with the
following properties:

φ(id , s) = s
φ(gh, s) = φ(g , φ(h, s))
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Metric Spaces

A metric space (X , d) is a set X equipped with a metric
d : X × X → R satisfying the following properties:

d(x , y) is a nonnegative real number for all choices of x and y
in X ,

d(x , y) is zero if and only if x = y , and

d(x , y) + d(y , z) ≥ d(x , z).
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Simplices

A simplex can be thought of as the convex hull of standard basis
vectors in Rn.
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Simplicial Complexes

A simplex on the vertices v0, v1, v2, . . . , vk may be thought of
as the convex hull of these points when they are placed at the
location of the standard basis vectors ei in Euclidean space.

A simplicial complex is a union of simplices joined together by
gluing maps.

https://en.wikipedia.org/wiki/Simplicial complex
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Vietoris–Rips Complexes

Out[16]=

Cech and Vietors-Rips simplicial complexes

Draw balls

Select/deselect for Cech/Vietoris-Rips

Filtration parameter 0.049
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Vietoris–Rips Complexes

Out[16]=

Cech and Vietors-Rips simplicial complexes

Draw balls
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Filtration parameter 0.092

4     CechAndVietorisRips_MetricReconstruction.nb
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Vietoris–Rips Complexes

Out[16]=

Cech and Vietors-Rips simplicial complexes
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Vietoris–Rips Complexes

Out[16]=

Cech and Vietors-Rips simplicial complexes

Draw balls
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Vietoris–Rips Complexes

Out[16]=

Cech and Vietors-Rips simplicial complexes

Draw balls

Select/deselect for Cech/Vietoris-Rips

Filtration parameter 0.194
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Vietoris–Rips Metric Thickenings

The Vietoris–Rips metric thickening VRm(X ; r) is a related
construction that behaves better than the simplicial complex
VR(X ; r) when the underlying metric space X is not finite.
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Quotient Spaces

The group action here is the group C7.
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Homotopy
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Persistent Homology
Persistent	homology	

• Input:	Increasing	spaces.	Output:	barcode.

• Significant	features	persist.

• Cubic	computation	time	in	the	number	of	simplices.

4 H. Adams et al.

3 Topological Machinery

In this section we describe how to use only a finite sampling from some unknown
underlying space to estimate the underlying space’s topology. The first step is
to build a nested family of simplicial complexes, and the second is to apply per-
sistent homology. This is the same topological approach used to analyze optical
and range image patches in [2, 16]. We refer the interested reader to [4, 24] for
more information on homology, to [14, 20, 21, 36] for introductions to persistent
homology, and to [3, 8, 10, 11, 18, 28, 33–35] for example applications of persistent
homology to sensor networks, machine learning, biology, medical imaging, etc.

3.1 Vietoris–Rips Complexes

Our nested complexes will be Vietoris–Rips simplicial complexes. The main idea
is to define all data points to be vertices of the complex, and to define a sim-
plex � on each finite set of vertices within a given diameter. Indeed, let (X, d)
denote a metric space, and fix a scale parameter r � 0. The Vietoris–Rips sim-
plical complex with vertex set X and scale parameter r, denoted VR(X; r), is
defined as follows. A finite subset � = {x1, . . . , xn} ✓ X is a face of VR(X; r)
whenever diam(�)  r (i.e., whenever sup1ijn{d(xi, xj)}  r). By definition,
VR(X; r) ✓ VR(X; r0) whenever r  r0, so this family is indeed nested.

Let us consider an example. Let X be 21 points which (unknown to us) are
sampled with noise from a circle. Figure 3 contains four nested Vietoris–rips
complexes built from X, with r increasing from left to right. The black dots
denote X. In (a), r is small enough that a loop has not yet formed. In (b), r is
such that we recover instead a figure-eight. In (c), VR(X; r) recovers a circle. In
(d), r is large enough that the loop has filled to a disk.

In[70]:= Demo[data1, 0, .41]
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Fig. 3. Four nested Vietoris–Rips complexes, with �0 equal to 1 in all four complexes,
and with �1 equal to 0, 2, 1, and 0.

3.2 Persistent Homology

Betti numbers are one way of distinguishing between di↵erent topological spaces:
a necessary condition for two spaces to be homotopy equivalent is for all of their
Betti numbers to be equal. The k-th Betti number of a topological space, denoted

On the Nonlinear Statistics of Optical Flow 5

0 100 400300200

0 100 400300200

Fig. 4. (Top) The 0-dimensional persistence barcode associated to the dataset in Fig-
ure 3. (Bottom) The 1-dimensional persistence barcode associated to the same dataset.

�k, is the rank of the k-th homology group. Roughly speaking, �k is the number
of “k-dimensional holes” in a space, where the number of 0-dimensional holes is
the number of connected components. For an n-dimensional sphere with n � 1,
we have �0 = 1 and �n = 1.

If we want to estimate the topology of the underlying space by the topology
of VR(X; r), the choice of r is important. However, without knowing the under-
lying space, we do not know how to make this choice. Hence, we use persistent
homology [21, 36], which allows us to compute the Betti numbers over a range of
r-values and display the result as a persistent homology barcode. See Figure 4.

Persistent homology depends on the the fact that the map from a topological
space Y to its k-th homology group Hk(Y ) is a functor. This means that for
r  r0, the inclusion VR(X; r) ,! VR(X; r0)) of topological spaces induces a
map Hk

�
VR(X; r)

�
! Hk

�
VR(X; r0)

�
between homology groups [20].

The horizontal axis in Figure 4 contains the varying r-values. At a given scale
r, the Betti number �k is the number of intervals in the dimension k plot that
intersect the vertical line through scale r. In the dimension 0 plot, we see the
21 disjoint spaces joining into one connected component as r increases. The two
intervals in the dimension 1 plot correspond to the two loops that appear: each
interval begins when a loop forms and ends when that loop fills to a disk.

The topological profile of this example, �0 = 1 and �1 = 1, is obtained for a
long range of r-values in Figure 4. The idea of persistent homology is that long
intervals in the persistence barcodes correspond to real topological features of
the underlying space. We disregard short intervals as noise. Hence, this barcode
reflects the fact that our points X were noisily sampled from a circle.

3.3 Zigzag Persistent Homology

Zigzag persistence [15, 17] provides a generalization of the theory of persistent
homology. In zigzag persistence, the direction of maps along a sequence of topo-
logical spaces is arbitrary, as opposed to the unidirectional sequence of maps
in persistent homology. Given a large dataset Y , one may attempt to estimate
the topology of Y by instead estimating the topology of a number of smaller

H1

H0
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Introduction

In applied and computational topology, Vietoris–Rips
complexes have been used to recover the “shape” of a dataset.

If X is a sufficiently nice sample from an unknown underlying
space M, then one can recover the homotopy types, homology
groups, or approximate persistent homology of M from X .
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Group Action Types

We list increasingly stringent properties that the action of G on X
could satisfy:

The action of G on X is free if g · x = x for any x ∈ X
implies that g is the identity element in G .

The action of G on X is a covering space action if every point
x ∈ X has a neighborhood U 3 x such that if U ∩ g · U 6= ∅,
then g is the identity element in G .

Let t > 0. The action of G on a metric space X is an
t-diameter action when for any nonnegative integer k ,
diamX/G{[x0], . . . , [xk ]} < t implies that there exists a unique
choice of elements gi ∈ G for 1 ≤ i ≤ k such that
diamX{x0, g1 · x1 . . . , gk · xk} = diamX/G{[x0], . . . , [xk ]}.
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Main Results

Our main theorem is listed here:

Proposition

Let G be a group acting properly and by isometries on a metric
space X . If the action is a t-diameter action, then

VR<(X/G ; r) is isomorphic to VR<(X ; r)/G for all r ≤ t,

VR≤(X/G ; r) is isomorphic to VR≤(X ; r)/G for all r < t,

VRm
<(X/G ; r) is homeomorphic to VRm

<(X ; r)/G for all
r ≤ t, and

VRm
≤(X/G ; r) is homeomorphic to VRm

≤(X ; r)/G for all r < t.

We have analogous results for Čech complexes, omitted here.

Mark Heim Metric Thickenings and Group Actions



An Example: 22-holed Torus with D7 Symmetry

A 22-holed torus in R3. How would we compute VR≤(X ; r) for
small r?
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An Example: Chopped Off Arm

A chopped off section of a 22-holed torus in R3.
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An Applied Example: Ferrocene, with C5 symmetry

http://www.chem.ucla.edu/∼harding/IGOC/F/ferrocene.html
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Proof of Main Result

We first consider the case of the Vietoris–Rips simplicial
complexes.

Consider the simplicial map h : VR(X ; r)→ VR(X/G ; r)
defined by h(x) = [x ]

It’s well-defined since G acts isometrically.

If two points in the geometric realization of VR(X ; r) are in
the same orbit of the G action, then they have the same
image under h.

It follows that h induces a map
h̃ : VR(X ; r)/G → VR(X/G ; r).

We will show that h̃ is a homeomorphism.
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Final Elements of the Proof

We need to show the following two facts.

1 Map h̃ is surjective.

2 Map h̃ is injective.
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Surjectivity of the Map

For surjectivity, note that h̃ is surjective if h is surjective.
The map h is surjective because given any simplex

σ = {[x0], . . . , [xk ]} ∈ VR(X/G ; r),

by the definition of an r -diameter action there exists a simplex
σ′ = {x0, g1 · x1 . . . , gk · xk} ∈ VR(X ; r) with h(σ′) = σ.
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Injectivity of the Map

For injectivity, consider any two points
[
∑
λixi ], [

∑
λ′jx
′
j ] ∈ VR(X ; r)/G with h̃([

∑
λixi ]) = h̃([

∑
λ′jx
′
j ]).

This means that

∑
λi [xi ] = h(

∑
λixi ) = h(

∑
λ′jx
′
j ) =

∑
λ′j [x

′
j ].

From the “uniqueness” part of the definition of an r -diameter
action, given any simplex σ = {[x0], . . . , [xk ]} ∈ VR(X/G ; r), there
exists a unique simplex σ̃ = {x0, g1 · x1 . . . , gk · xk} ∈ VR(X ; r)
containing x0 with h(σ′) = σ and hence a unique simplex
σ′′ ∈ VR(X ; r)/G with h̃(σ′′) = σ.

Mark Heim Metric Thickenings and Group Actions



Modified Proof for Metric Thickenings

For the case of Vietoris–Rips metric thickenings, we consider the
analogous map h : VRm(X ; r)→ VRm(X/G ; r) defined by
h(
∑
λixi ) =

∑
λi [xi ]; this map is well-defined since G acts

isometrically. The only additional observation to make in this case
is that both h and its inverse are continuous.
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An Example: 22-holed Torus

A 22-holed torus in R3.
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An Example: Chopped Off Arm

A chopped off section of a 22-holed torus in R3.
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Another Example: Real Projective Space
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Conclusion

For X a metric space equipped with a group action by G , we
show how to relate the Vietoris–Rips complexes VR(X ; r) and
VR(X/G ; r) at small scales r .

We use this to identify homotopy types of Vietoris–Rips
thickenings of RPn at larger scale parameters than were
previously known.

Henry Adams, Mark Heim, Chris Peterson. Metric Thickenings
and Group Actions. Submitted and available at
arXiv:1911.00732, 2020.
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