Metric reconstruction via optimal transport

Henry Adams (Colorado State University), Michał Adamaszek (MOSEK ApS), Florian Frick (Carnegie Mellon)

Thanks to my graduate students: Johnathan Bush, Brittany Carr, Mark Heim, Lara Kassab, Joshua Mirth

Apply to our conference!

Home Programs ▼ Your Visit ▼ Videos ▼ About ▼ §

Applied Mathematical Modeling with Topological Techniques

Aug 5 - 9, 2019

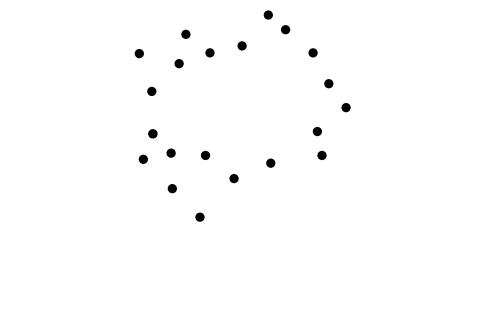
Visa Information

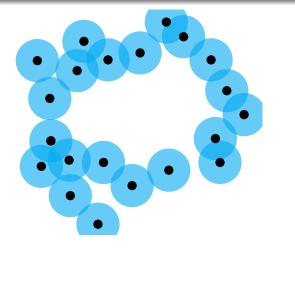
Organizing Committee

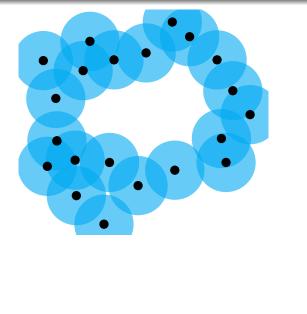
- Henry Adams
 Colorado State University
- Jose Perea Michigan State University

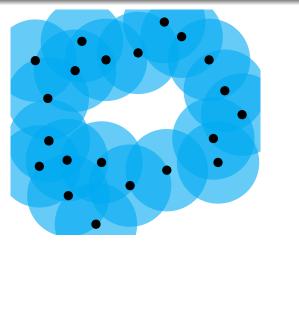
- Maria D'Orsogna
 California State University, Northridge
- Chad Topaz
 Williams College

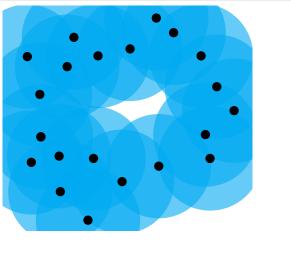
Rachel Neville
 University of Arizona

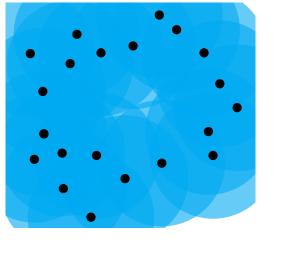


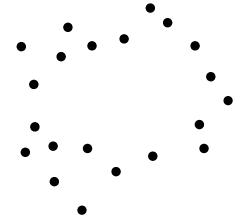




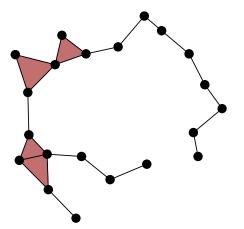




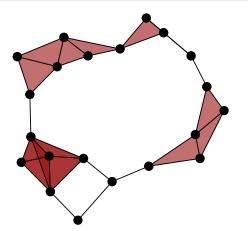




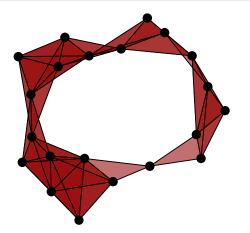
- vertex set X
- simplex $\{x_0, \ldots, x_k\}$ when diam $(\{x_0, \ldots, x_k\}) \le r$.



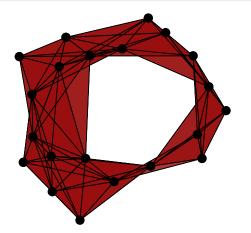
- vertex set X
- simplex $\{x_0, \ldots, x_k\}$ when diam $(\{x_0, \ldots, x_k\}) \le r$.



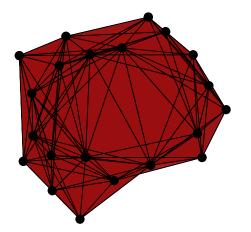
- vertex set X
- simplex $\{x_0, \ldots, x_k\}$ when diam $(\{x_0, \ldots, x_k\}) \le r$.



- vertex set X
- simplex $\{x_0, \ldots, x_k\}$ when diam $(\{x_0, \ldots, x_k\}) \le r$.



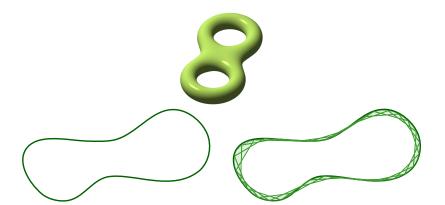
- vertex set X
- simplex $\{x_0, \ldots, x_k\}$ when diam $(\{x_0, \ldots, x_k\}) \le r$.



- vertex set X
- simplex $\{x_0, \ldots, x_k\}$ when diam $(\{x_0, \ldots, x_k\}) \le r$.

For M a compact Riemannian manifold and r sufficiently small, $VR(M;r) \simeq M$.

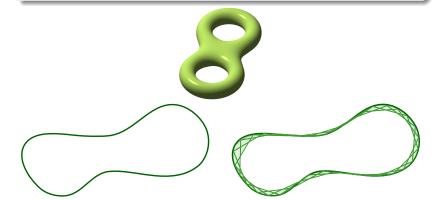
For M a compact Riemannian manifold and r sufficiently small, $VR(M;r) \simeq M$.



For M a compact Riemannian manifold and r sufficiently small, $VR(M;r) \simeq M$.

Theorem (Latschev, 2001)

For r sufficiently small and $X \subseteq M$ sufficiently dense (dep. on r), $VR(X;r) \simeq M$.



For M a compact Riemannian manifold and r sufficiently small, $VR(M;r) \simeq M$.

Theorem (Latschev, 2001)

For r sufficiently small and $X \subseteq M$ sufficiently dense (dep. on r), $VR(X;r) \simeq M$.

Theorem (Chazal, de Silva, Oudot, 2013)

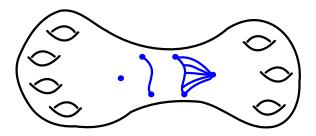
For X and Y totally bounded metric spaces,

$$d_b(\operatorname{PH}(\operatorname{VR}(X;-)),\operatorname{PH}(\operatorname{VR}(Y;-))) \leq 2d_{\operatorname{GH}}(X,Y).$$

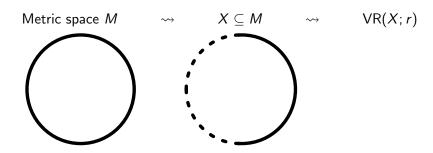
For M a compact Riemannian manifold and r sufficiently small, $VR(M; r) \simeq M$.

Downsides of the proof:

- map $VR(M; r) \rightarrow M$ depends on the choice of a total ordering of all points in M, and
- the inclusion $M \hookrightarrow VR(M; r)$ is not continuous.



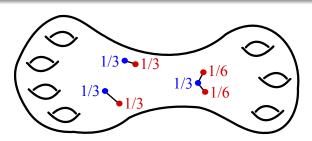
The Vietoris-Rips simplicial complex may not be metrizable!



For X a metric space and r > 0, the Vietoris-Rips metric thickening is

$$VR^{m}(X; r) = \left\{ \sum_{i=0}^{k} \lambda_{i} x_{i} \middle| \lambda_{i} \geq 0, \sum_{i} \lambda_{i} = 1, x_{i} \in X, \operatorname{diam}(\{x_{0}, \dots, x_{k}\}) \leq r \right\},$$

equipped with the 1-Wasserstein metric.

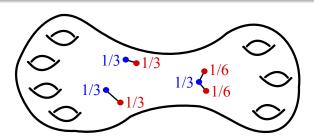


Note $VR^m(X; r)$ is a metric r-thickening of X.

For X a metric space and r > 0, the Vietoris-Rips metric thickening is

$$VR^{m}(X; r) = \left\{ \sum_{i=0}^{k} \lambda_{i} \delta_{x_{i}} \mid \lambda_{i} \geq 0, \sum_{i} \lambda_{i} = 1, x_{i} \in X, \operatorname{diam}(\{x_{0}, \dots, x_{k}\}) \leq r \right\},$$

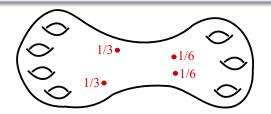
equipped with the 1-Wasserstein metric.



Note $VR^m(X; r)$ is a metric r-thickening of X.

Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then $VR^m(M; r) \simeq M$.



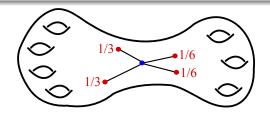
Proof.

$$VR^m(M;r)$$
 M

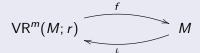
- $f: \sum_{i} \lambda_{i} \delta_{x_{i}} \mapsto \text{Fr\'echet mean}.$
- $f \circ \iota = id_M$, and $\iota \circ f \simeq id_{VR^m(M;r)}$ via a linear homotopy.

Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then $VR^m(M; r) \simeq M$.



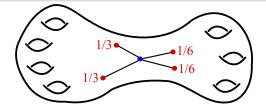
Proof.



- $f: \sum_{i} \lambda_{i} \delta_{x_{i}} \mapsto \text{Fr\'echet mean}.$
- $f \circ \iota = id_M$, and $\iota \circ f \simeq id_{VR^m(M;r)}$ via a linear homotopy.

Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then $VR^m(M; r) \simeq M$.



With Joshua Mirth we prove a metric Hausmann's theorem for sets in \mathbb{R}^n with positive reach (including submanifolds).

Metric thickenings, Borsuk–Ulam theorems, and orbitopes

Henry Adams (Colorado State University)
Johnathan Bush (Colorado State University)
Florian Frick (Carnegie Mellon)

Paper in preparation

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

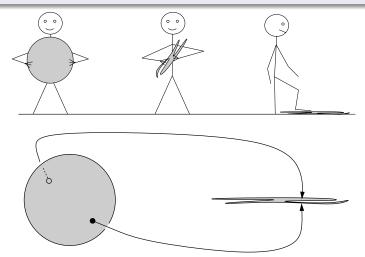


Figure credit: Jiří Matoušek, Using the Borsuk-Ulam theorem

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (Gromov's "waist" theorem)

For $f: S^n \to \mathbb{R}^n$, there exists some $y \in \mathbb{R}^n$ with $\operatorname{vol}_0(f^{-1}(y)) \ge \operatorname{vol}_0(S^0 \subseteq S^n)$.

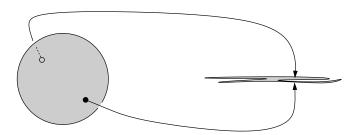


Figure credit: Jiří Matoušek, Using the Borsuk-Ulam theorem

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (Gromov's "waist" theorem)

For $f: S^n \to \mathbb{R}^k$ with $k \le n$, there exists some $y \in \mathbb{R}^n$ with $\operatorname{vol}_{n-k}(f^{-1}(y)) \ge \operatorname{vol}_{n-k}(S^{n-k} \subseteq S^n)$.

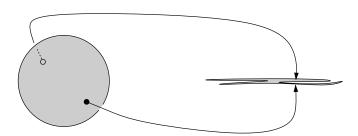


Figure credit: Jiří Matoušek, Using the Borsuk-Ulam theorem

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (Gromov's "waist" theorem)

For $f: S^n \to \mathbb{R}^k$ with $k \le n$, there exists some $y \in \mathbb{R}^n$ with $\operatorname{vol}_{n-k}(f^{-1}(y)) \ge \operatorname{vol}_{n-k}(S^{n-k} \subseteq S^n)$.

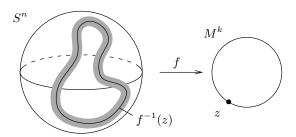


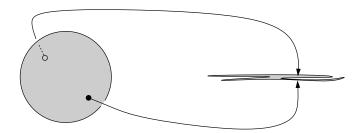
Figure credit: Benjamin Matschke, Journal of Topology & Analysis

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (Gromov's "waist" theorem)

For $f: S^n \to \mathbb{R}^k$ with $k \le n$, there exists some $y \in \mathbb{R}^n$ with $\operatorname{vol}_{n-k}(f^{-1}(y)) \ge \operatorname{vol}_{n-k}(S^{n-k} \subseteq S^n)$.

What about $f: S^n \to \mathbb{R}^k$ with $k \ge n$?

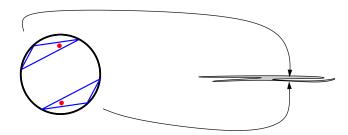


For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (Gromov's "waist" theorem)

For $f: S^n \to \mathbb{R}^k$ with $k \le n$, there exists some $y \in \mathbb{R}^n$ with $\operatorname{vol}_{n-k}(f^{-1}(y)) \ge \operatorname{vol}_{n-k}(S^{n-k} \subseteq S^n)$.

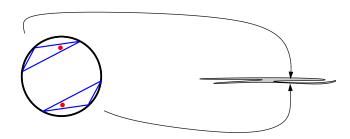
What about $f: S^n \to \mathbb{R}^k$ with $k \ge n$?



For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \dots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.



For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \dots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \dots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

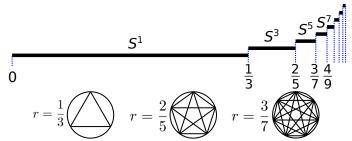
Proof:
$$S^{2k+1} \simeq VR^m(S^1; \frac{k}{2k+1}) \xrightarrow{f} \mathbb{R}^{2k+1}$$

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \dots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

Proof:
$$S^{2k+1} \simeq VR^m(S^1; \frac{k}{2k+1}) \xrightarrow{f} \mathbb{R}^{2k+1}$$



For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \dots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

Proof:
$$S^{2k+1} \simeq VR^m(S^1; \frac{k}{2k+1}) \xrightarrow{f} \mathbb{R}^{2k+1}$$

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \dots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

Proof:
$$S^{2k+1} \simeq VR^m(S^1; \frac{k}{2k+1}) \xrightarrow{f} \mathbb{R}^{2k+1}$$

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \dots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

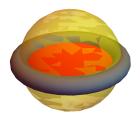
Proof:
$$S^{2k+1} \simeq VR^m(S^1; \frac{k}{2k+1}) \xrightarrow{f} \mathbb{R}^{2k+1}$$

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \dots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

Proof:
$$S^{2k+1} \simeq VR^m(S^1; \frac{k}{2k+1}) \xrightarrow{f} \mathbb{R}^{2k+1}$$

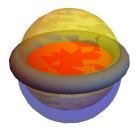


For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \dots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

Proof:
$$S^{2k+1} \simeq VR^m(S^1; \frac{k}{2k+1}) \xrightarrow{f} \mathbb{R}^{2k+1}$$

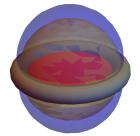


For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \dots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

Proof:
$$S^{2k+1} \simeq VR^m(S^1; \frac{k}{2k+1}) \xrightarrow{f} \mathbb{R}^{2k+1}$$



For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem (A, Bush, Frick)

For $f: S^n \to \mathbb{R}^{n+2}$, there exists a set $\{x_0, \dots, x_{n+2}\}$ of diameter at most r_n such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

Proof: S^{n+2} " \subseteq " $VR^m(S^n; r_n) \xrightarrow{f} \mathbb{R}^{n+2}$

 r_n is the side-length of an inscribed simplex

References

- Michał Adamaszek, Henry Adams, Florian Frick, Metric reconstruction via optimal transport, SIAM Journal on Applied Algebra and Geometry 2 (2018).
- Michał Adamaszek and Henry Adams, The Vietoris-Rips complexes of a circle, Pacific Journal of Mathematics 290 (2017), 1-40.
- Henry Adams, Johnathan Bush, and Florian Frick, Metric thickenings, Borsuk-Ulam theorems, and orbitopes (2019), in preparation.
- Jean-Claude Hausmann, On the Vietoris-Rips complexes and a cohomology theory for metric spaces, Annals of Mathematics Studies 138 (1995), 175–188.

Thank you!