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Definition

For X a metric space and scale r > 0, the
Vietoris—Rips simplicial complex VR(X; r) has
@ vertex set X

@ simplex {xp,...,xx} when diam({xp,...,xk}) <r.
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Theorem (Hausmann, 1995)

For M a compact Riemannian manifold and r sufficiently small,
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Theorem (Latschev, 2001)
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Theorem (Chazal, de Silva, Oudot, 2013)

For X and Y totally bounded metric spaces,
dp(PH(VR(X; —)), PH(VR(Y —))) < 2dgu(X, Y).




Theorem (Hausmann, 1995)

For M a compact Riemannian manifold and r sufficiently small,
VR(M; r) ~ M.

Downsides of the proof:

e map VR(M; r) — M depends on the choice of a total
ordering of all points in M, and

@ the inclusion M — VR(M; r) is not continuous.




The Vietoris—Rips simplicial complex may not be metrizable!

Metric space M ~ XCM ~ VR(X; r)



Definition

For X a metric space and r > 0, the Vietoris—Rips metric
thickening is

VR™(X; r) =
k
{Z)\ixi Ai > 0, Z/\i =1, x; € X, diam({xo, ..., xk}) < r},
i=0 i

equipped with the 1-Wasserstein metric.

Note VR™(X; r) is a metric r-thickening of X.
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Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then
VR™(M; r) ~ M.
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If M is a Riemannian manifold and r is sufficiently small, then
VR™(M; r) ~ M.

Proof.
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Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then
VR™(M; r) ~ M.

With Joshua Mirth we prove a metric Hausmann's theorem for
sets in R” with positive reach (including submanifolds).
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Theorem (Borsuk-Ulam)
For f: S" — R", there exists a point x € S" with f(x) = f(—x).

Theorem (Gromov's “waist” theorem)

For f: S" — R with k < n, there exists some y € R” with
vol,,_k(f_l(y)) > vol,,_k(S"_k C S").

S’n,

Figure credit: Benjamin Matschke, Journal of Topology & Analysis
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Theorem (Borsuk—Ulam)

For f: S" — R", there exists a point x € S" with f(x) = f(—x).

Theorem (A, Bush, Frick)

For f: S" — R™?2, there exists a set {xy,...,Xn12} of diameter
at most r, such that > \if(x;) = > A\if (—x;).

Proof: $72 “C " VR™(S";r,) L R7+2

rp is the side-length of an inscribed simplex
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